

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f818-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	5					
2.0	Memory Organization	9					
3.0	Data EEPROM and Flash Program Memory	. 25					
4.0	Oscillator Configurations	. 33					
5.0	I/O Ports	39					
6.0	Timer0 Module	. 53					
7.0	Timer1 Module	. 57					
8.0	Timer2 Module	. 63					
9.0	Capture/Compare/PWM (CCP) Module	. 65					
10.0	Synchronous Serial Port (SSP) Module	. 71					
11.0	Analog-to-Digital Converter (A/D) Module	. 81					
12.0	Special Features of the CPU	. 89					
13.0	Instruction Set Summary	103					
14.0	Development Support	111					
15.0	Electrical Characteristics	115					
16.0	DC and AC Characteristics Graphs and Tables	141					
17.0	Packaging Information	155					
Appe	ndix A: Revision History	165					
Appe	ndix B: Device Differences	165					
INDE	X	167					
The I	/icrochip Web Site	173					
Custo	mer Change Notification Service	173					
Custo	Customer Support 173						
Read	er Response	174					
PIC1	6F818/819 Product Identification System	175					

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

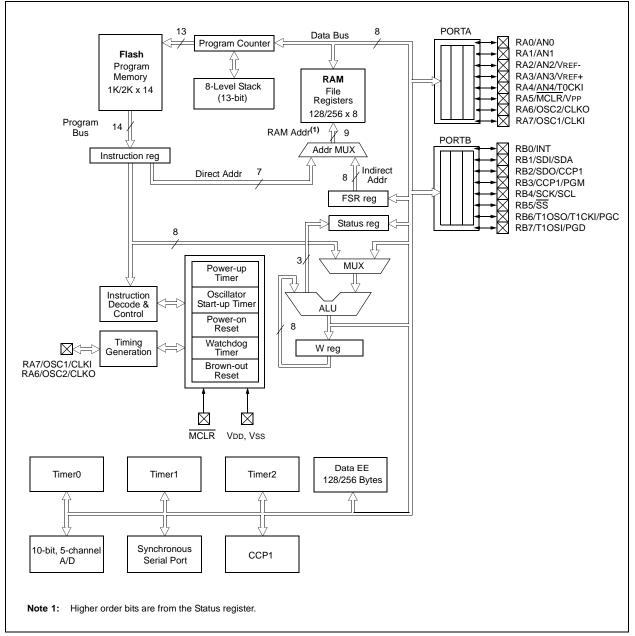
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com


• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

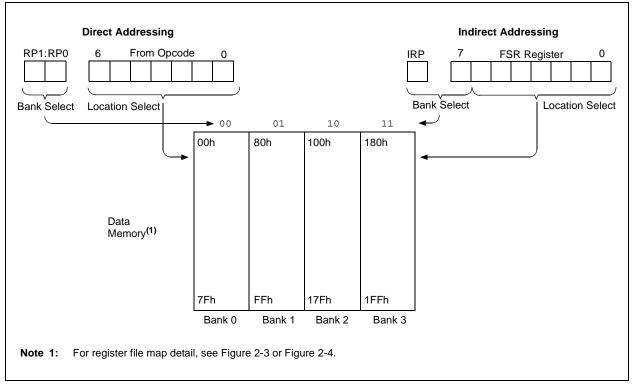
Register on our web site at www.microchip.com to receive the most current information on all of our products.

FIGURE 2-4: PIC16F819 REGISTER FILE MAP

Д	File ddress	ŀ	File Address		File Address	A	File ddres
ndirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
	18h		98h				
	19h		99h				
	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
4005011	1Dh 1Eb	ADRESL	9Dh				
ADRESH	1Eh 1Fh		9Eh		11Fh		19Fh
ADCON0		ADCON1	9Fh		120h		1A0ł
	20h		A0h		12011		17101
		General		General			
General Purpose		Purpose Register		Purpose		Accesses	
Register		80 Bytes		Register		20h-7Fh	
96 Bytes				80 Bytes			
,			EFh		16Fh		
		Accesses	F0h	Accesses	170h		
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
		ata memory locati	ons, read	as '0'.			
* Not a pł	nysical reg	jister.					

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 2	<2										
100h ⁽¹⁾	INDF	Addressin	ng this locatio	on uses conte	ents of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
101h	TMR0	Timer0 M	lodule Regist	ter						xxxx xxxx	53
102h ⁽¹	PCL	Program	Counter's (P	C) Least Sigr	ificant Byte					0000 0000	23
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
104h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	nter					xxxx xxxx	23
105h	—	Unimpler	nented							_	—
106h	PORTB	PORTB [Data Latch w	hen written; P	ORTB pins w	hen read				XXXX XXXX	43
107h	—	Unimplen	nented							—	_
108h	—	Unimplen	nented							—	—
109h	—	Unimplen	nented							—	—
10Ah ^(1,2)	PCLATH	_	—	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	23
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
10Ch	EEDATA	EEPROM	I/Flash Data	Register Low	Byte					xxxx xxxx	25
10Dh	EEADR	EEPROM	1/Flash Addre	ess Register L	ow Byte					xxxx xxxx	25
10Eh	EEDATH	_	— EEPROM/Flash Data Register High Byte							xx xxxx	25
10Fh	EEADRH	—	—	—	—	—	EEPROM/F High Byte	lash Address	Register	xxx	25
Bank 3											
180h ⁽¹⁾	INDF	Addressin	ng this locatio	on uses conte	ents of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	17, 54
182h ⁽¹⁾	PCL	Program	Counter's (P	C) Least Sigr	ificant Byte					0000 0000	23
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
184h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	nter					xxxx xxxx	23
185h	—	Unimplen	nented							—	_
186h	TRISB	PORTB [Data Direction	n Register						1111 1111	43
187h	_	Unimplen	nented							_	—
188h	_	Unimplen	nented								—
189h	_	Unimplen	Unimplemented							—	
18Ah ^(1,2)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter						0 0000	23		
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
18Ch	EECON1	EEPGD	_	_	FREE	WRERR	WREN	WR	RD	xx x000	26
	1		EPROM Control Register 2 (not a physical register)								25
18Dh	EECON2	LEFRON	eserved; maintain clear								
18Dh 18Eh	EECON2				p, e.e	,				0000 0000	—

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)


Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

EXAMPLE 3-4:	ERASING A FLASH PROGRAM MEMORY ROW
--------------	------------------------------------

	BANKSEL	EEADRH	;	Select Bank of EEADRH
	MOVF	ADDRH, W	;	
	MOVWF	EEADRH	;	MS Byte of Program Address to Erase
	MOVF	ADDRL, W	;	
	MOVWF	EEADR	;	LS Byte of Program Address to Erase
ERASE ROW				
_	BANKSEL	EECON1	;	Select Bank of EECON1
	BSF	EECON1, EEE	GD ;	Point to PROGRAM memory
	BSF	EECON1, WRE	EN ;	Enable Write to memory
	BSF	EECON1, FRE	EE ;	Enable Row Erase operation
;				
	BCF	INTCON, GIE	s;	Disable interrupts (if using)
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
	MOVLW	AAh	;	
	MOVWF	EECON2	;	Write AAh
	BSF	EECON1, WR	;	Start Erase (CPU stall)
	NOP		;	Any instructions here are ignored as processor
			;	halts to begin Erase sequence
	NOP		;	processor will stop here and wait for Erase complete
			;	after Erase processor continues with 3rd instruction
	BCF	EECON1, FRE	EE ;	Disable Row Erase operation
	BCF	EECON1, WRE	EN ;	Disable writes
	BSF	INTCON, GIE	· ; 2	Enable interrupts (if using)

4.5.2 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory but can be adjusted in the application. This is done by writing to the OSCTUNE register (Register 4-1). The tuning sensitivity is constant throughout the tuning range. The OSCTUNE register has a tuning range of $\pm 12.5\%$.

When the OSCTUNE register is modified, the INTOSC and INTRC frequencies will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately 8 * 32 μ s = 256 μ s); the INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred. Operation of features that depend on the 31.25 kHz INTRC clock source frequency, such as the WDT, Fail-Safe Clock Monitor and peripherals, will also be affected by the change in frequency.

REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER (ADDRESS 90h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	, R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

5.1 PORTA and the TRISA Register

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On	а	Pow	/er-or	n Reset,	the	pins
	POR	TA<	:4:0>	are	configured	as	analog
	input	ts ar	nd rea	ad as	'0'.		

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input and with an analog input to become the RA4/AN4/ T0CKI pin. The RA4/AN4/T0CKI pin is a Schmitt Trigger input and full CMOS output driver.

Pin RA5 is multiplexed with the Master Clear module input. The RA5/MCLR/VPP pin is a Schmitt Trigger input.

Pin RA6 is multiplexed with the oscillator module input and external oscillator output. Pin RA7 is multiplexed with the oscillator module input and external oscillator input. Pin RA6/OSC2/CLKO and pin RA7/OSC1/CLKI are Schmitt Trigger inputs and full CMOS output drivers.

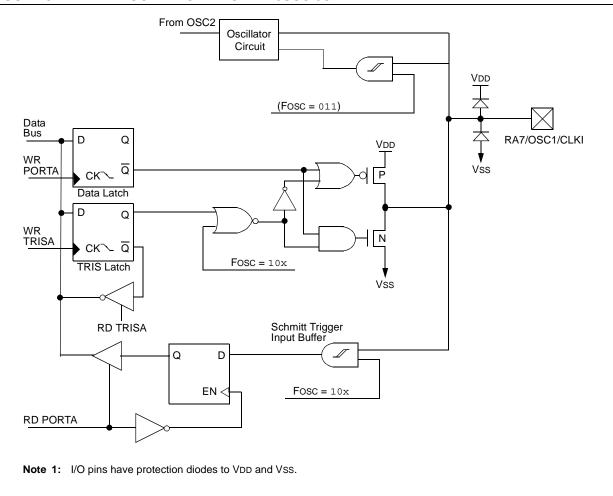
Pins RA<1:0> are multiplexed with analog inputs. Pins RA<3:2> are multiplexed with analog inputs and VREF inputs. Pins RA<3:0> have TTL inputs and full CMOS output drivers.

EXAMPLE 5-1:	INITIALIZING PORTA
$L \land A W \square L L J^{-} \square$	

BANKSEL	PORTA	; select bank of PORTA
CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
BANKSEL	ADCON1	; Select Bank of ADCON1
MOVLW	0x06	; Configure all pins
MOVWF	ADCON1	; as digital inputs
MOVLW	0xFF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<7:0> as inputs

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit 2	TTL	Input/output, analog input or VREF
RA3/AN3/VREF+	bit 3	TTL	Input/output, analog input or VREF+.
RA4/AN4/T0CKI	bit 4	ST	Input/output, analog input or external clock input for Timer0.
RA5/MCLR/VPP	bit 5	ST	Input, Master Clear (Reset) or programming voltage input.
RA6/OSC2/CLKO	bit 6	ST	Input/output, connects to crystal or resonator, oscillator output or 1/4 the frequency of OSC1 and denotes the instruction cycle in RC mode.
RA7/OSC1/CLKI	bit 7	ST/CMOS ⁽¹⁾	Input/output, connects to crystal or resonator or oscillator input.

TABLE 5-1: PORTA FUNCTIONS


Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxx0 0000	uuu0 0000
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽¹⁾	PORTA	Data Dire	ection Reg	gister		1111 1111	1111 1111
9Fh	ADCON1	ADFM	ADCS2			PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Note 1: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

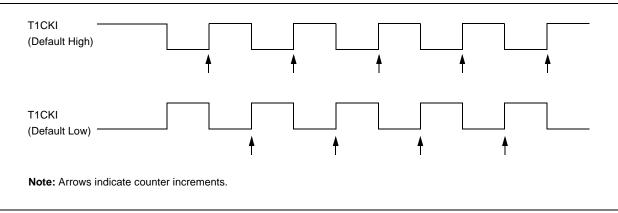
NOTES:

7.2 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

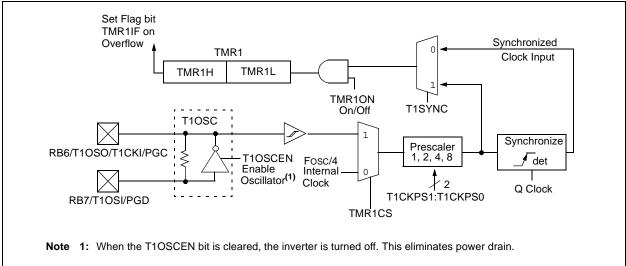
7.3 Timer1 Counter Operation

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.


When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RB7/T1OSI/PGD when bit T1OSCEN is set, or on pin RB6/T1OSO/T1CKI/PGC when bit T1OSCEN is cleared.


If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 7-1: TIMER1 INCREMENTING EDGE

RTCinit	BANKSEL MOVLW MOVWF CLRF MOVLW	TMR1H 0x80 TMR1H TMR1L b'00001111'	; Preload TMR1 register pair ; for 1 second overflow ; Configure for external clock,
	MOVWF	TICON	; Asynchronous operation, external oscillator
	CLRF CLRF	secs mins	; Initialize timekeeping registers
	MOVLW	mins .12	
	MOVLW	.12 hours	
	BANKSEL	PIE1	
	BSF		; Enable Timer1 interrupt
	RETURN	,	,
RTCisr	BANKSEL	TMR1H	
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVF	secs, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	seconds	; Clear seconds
	INCF MOVF	mins, f mins, w	; Increment minutes
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN	511105, 2	; No, done
	CLRF	mins	; Clear minutes
	INCF	hours, f	; Increment hours
	MOVF	hours, w	
	SUBLW	.24	
	BTFSS	STATUS, Z	; 24 hours elapsed?
	RETURN		; No, done
	CLRF	hours	; Clear hours
	RETURN		; Done

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		all c	e on other sets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000
0Eh	TMR1L	Holding	lolding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu										
0Fh	TMR1H	Holding	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register										
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register that can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Table 9-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match which will reset Timer1 and start an A/D conversion (if the A/D module is enabled). The CCP module's input/output pin (CCP1) can be configured as RB2 or RB3. This selection is set in bit 12 (CCPMX) of the Configuration Word register.

Additional information on the CCP module is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) and in Application Note AN594, "Using the CCP Module(s)" (DS00594).

TABLE 9-1: CCP MODE – TIMER RESOURCE

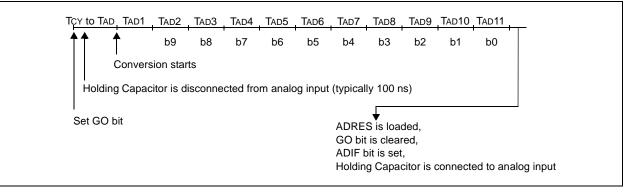
CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 9-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

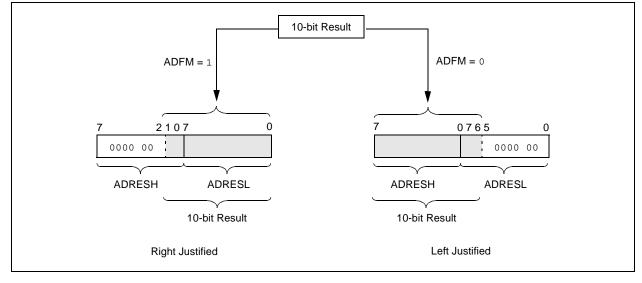
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0			
bit 7							bit 0			
Unimpleme										
CCP1X:CCI	P1Y: PWM	Least Signi	ficant bits							
<u>Capture mo</u> Unused.	<u>de:</u>									
<u>Compare mode:</u> Unused.										
<u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.										
CCP1M3:CCP1M0: CCP1 Mode Select bits										
0000 = Capture/Compare/PWM disabled (resets CCP1 module)										
0100 = Cap	ture mode,	every fallin	g edge							
0101 = Cap										
0110 = Capture mode, every 4th rising edge										
0111 = Capture mode, every 16th rising edge										
1000 = Compare mode, set output on match (CCP1IF bit is set) 1001 = Compare mode, clear output on match (CCP1IF bit is set)										
1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)										
1011 = Compare mode, trigger special event (CCP1IF bit is set, CCP1 pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)										
11xx = PWM mode										
Legend:										
Legend: R = Readab	le bit	W = V	Vritable bit	U = Uni	mplemented	l bit, read as	s 'O'			

11.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2-TAD wait is required before the next acquisition is started. After this 2-TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.


In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.


11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16 bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-3: A/D CONVERSION TAD CYCLES

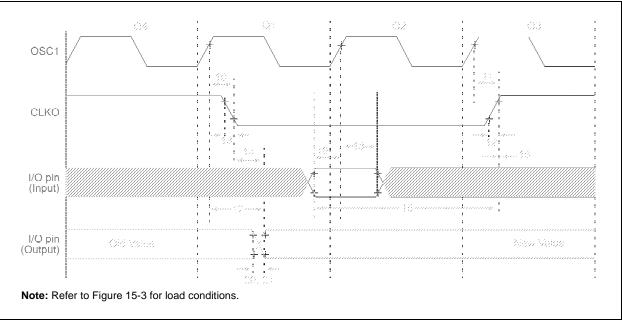
FIGURE 11-4: A/D RESULT JUSTIFICATION

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

PIC16LF8 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC16F81 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units		Condit	ions		
	Supply Current (IDD) ^(2,3)								
	PIC16LF818/819	.950	1.3	mA	-40°C				
		.930	1.2	mA	+25°C	VDD = 3.0V			
		.930	1.2	mA	+85°C		Fosc = 8 MHz		
	All devices	1.8	3.0	mA	-40°C		(RC_RUN mode,		
		1.7	2.8	mA	+25°C	VDD = 5.0V	Internal RC Oscillator)		
			2.8	mA	+85°C	י0.0∨ ≅ 5.0∨			
	Extended devices	Extended devices 2.0 4.		mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

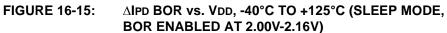

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

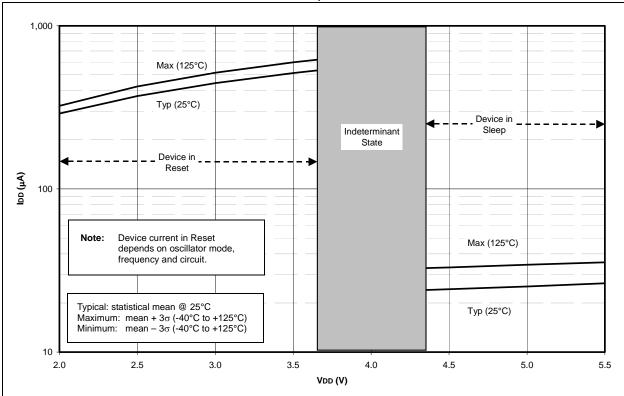
The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

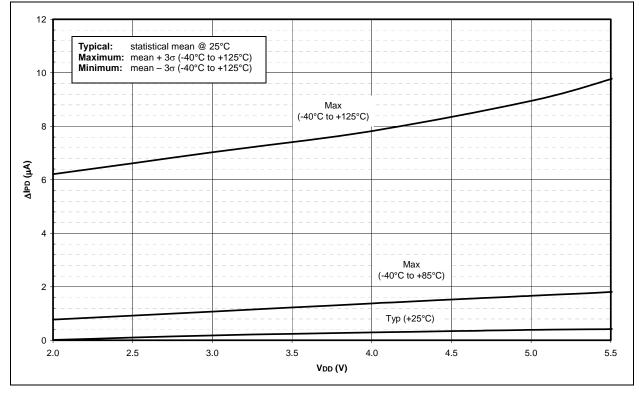
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

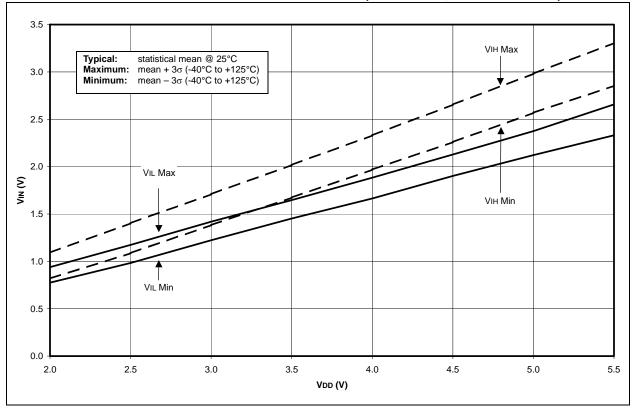
TABLE 15-2:	CLKO AND I/O TIMING REQUIREMENTS
-------------	----------------------------------

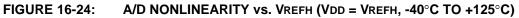

Param No.	Symbol	Characterist	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1 \uparrow to CLKO \downarrow		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		_	75	200	ns	(Note 1)
12*	ТскR	CLKO Rise Time		_	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TCKL2IOV	CLKO ↓ to Port Out Valid			_	0.5 TCY + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO 1	Tosc + 200	_	—	ns	(Note 1)	
16*	TCKH2IOI	Port In Hold after CLKO ↑	0	—	—	ns	(Note 1)	
17*	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out	_	100	255	ns		
18*	TosH2iol	OSC1 ↑ (Q2 cycle) to Port	PIC16F818/819	100	_	—	ns	
		Input Invalid (I/O in hold time)	PIC16LF818/819	200	—	_	ns	
19*	TIOV20SH	Port Input Valid to OSC1 1 (I/O	in setup time)	0	_	—	ns	
20*	TIOR	Port Output Rise Time	PIC16 F 818/819		10	40	ns	
			PIC16LF818/819	_	—	145	ns	
21*	TIOF	Port Output Fall Time	PIC16 F 818/819		10	40	ns	
			PIC16 LF 818/819		_	145	ns	
22††*	TINP	INT pin High or Low Time	Тсү	—	—	ns		
23††*	Trbp	RB7:RB4 Change INT High or	Low Time	Тсү	-	—	ns	

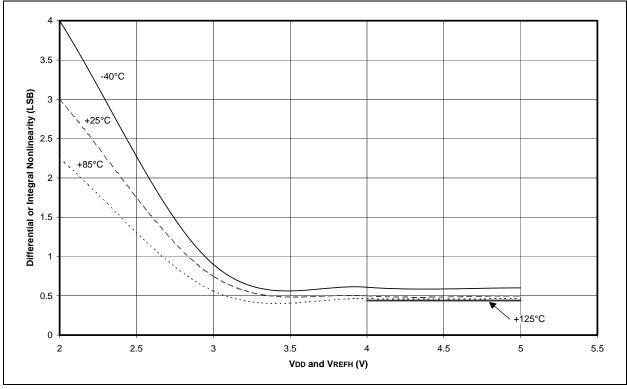

* These parameters are characterized but not tested.

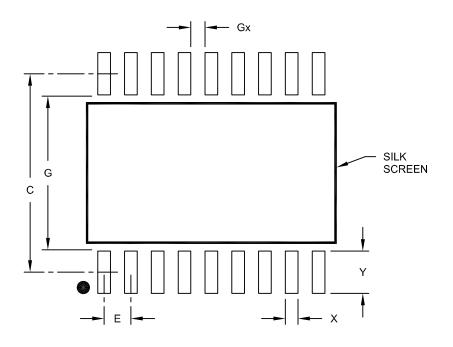
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


tt These parameters are asynchronous events, not related to any internal clock edges.


Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.






FIGURE 16-23: MINIMUM AND MAXIMUM VIN vs. VDD (I²C[™] INPUT, -40°C TO +125°C)

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
	cation (optional):	
Would	d you like a reply?YN	
Devic	e: PIC16F818/819	Literature Number: DS39598F
Ques	tions:	
1. V	/hat are the best features of this document?	
_		
2. H	ow does this document meet your hardware and s	oftware development needs?
_		
_		
3. D	o you find the organization of this document easy	to follow? If not, why?
4 10	/hat additions to the document do you think would	enhance the structure and subject?
4. V		
_		
5. V	/hat deletions from the document could be made w	vithout affecting the overall usefulness?
6. Is	there any incorrect or misleading information (what	at and where)?
7. H	low would you improve this document?	
_		