

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f818-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTA is a bidirectional I/O port.
RA0/AN0	17	19	23			
RA0				I/O	TTL	Bidirectional I/O pin.
AN0					Analog	Analog input channel 0.
RA1/AN1	18	20	24			
RA1				1/0	TTL	Bidirectional I/O pin.
				1	Analog	Analog input channel 1.
RA2/AN2/VREF-	1	1	26	1/0		Didirectional I/O nin
				1/0		Analog input channel 2
VREE-					Analog	Analog input channel 2. A/D reference voltage (low) input
	2	2	27	•	, include	
RA3	2	2	21	1/0	тті	Bidirectional I/O pin
AN3					Analog	Analog input channel 3.
VREF+				I	Analog	A/D reference voltage (high) input.
RA4/AN4/T0CKI	3	3	28			
RA4				I/O	ST	Bidirectional I/O pin.
AN4				I	Analog	Analog input channel 4.
TOCKI				I	ST	Clock input to the TMR0 timer/counter.
RA5/MCLR/VPP	4	4	1			
RA5				I	ST	Input pin.
MCLR				I	SI	Master Clear (Reset). Input/programming
						to the device
Vpp				Р	_	Programming threshold voltage
	15	17	20	•		
RA6	15	17	20	1/0	ST	Bidirectional I/O pin
OSC2				0	-	Oscillator crystal output. Connects to crystal or
						resonator in Crystal Oscillator mode.
CLKO				0	-	In RC mode, this pin outputs CLKO signal
						which has 1/4 the frequency of OSC1 and
						denotes the instruction cycle rate.
RA7/OSC1/CLKI	16	18	21			
RA7				1/0	ST	Bidirectional I/O pin.
					SI/CIMOS()	Oscillator crystal input.
			0			
Legena: I = Input	ed	U : TTI :	= Outp _ TTI	out Innut	I/U = ст _	Input/Output P = Power
- = 1000	eu	1163		input	31 =	

TABLE 1-2:PIC16F818/819 PINOUT DESCRIPTIONS

 $\label{eq:Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.$

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (ADDRESS 0Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF
bi	it 7							bit 0

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = An A/D conversion completed
	0 = The A/D conversion is not complete
bit 5-4	Unimplemented: Read as '0'
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
	 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are a transmission/ reception has taken place. 0 = No SSP interrupt condition has occurred
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	<u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	<u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	<u>PWM mode:</u> Unused in this mode.
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	1 = TMR2 to PR2 match occurred (must be cleared in software)0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)0 = TMR1 register did not overflow
	l edeuq.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.6 **PIE2** Register

The PIE2 register contains the individual enable bit for the EEPROM write operation interrupt.

REGISTER 2-6: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (ADDRESS 8Dh)

	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
		—	—	EEIE	—		—	—
	bit 7							bit 0
bit 7-5	Unimplem	ented: Read	d as '0'					
bit 4	EEIE: EEP	ROM Write	Operation Ir	terrupt Enal	ole bit			
	1 = Enable 0 = Disable	EE write int	errupt terrupt					
bit 3-0	Unimplem	ented: Read	d as '0'					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit_read.as.'(0'

2.2.2.7 **PIR2** Register

The PIR2 register contains the flag bit for the EEPROM write operation interrupt.

-n = Value at POR

Note:	Interrupt flag bits are set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit, GIE (INTCON<7>).
	User software should ensure the appropri-
	ate interrupt flag bits are clear prior to
	enabling an interrupt.

x = Bit is unknown

'0' = Bit is cleared

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ADDRESS 0Dh)

'1' = Bit is set

					b : (: b : (b)		(/ .= =	
	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
		—	_	EEIF	—	_	—	_
	bit 7							bit 0
bit 7-5	Unimplem	ented: Rea	d as '0'					
bit 4	EEIF: EEP	ROM Write	Operation Ir	nterrupt Enal	ble bit			
	1 = Enable 0 = Disable	e EE write int e EE write in	errupt terrupt					
bit 3-0	Unimplem	ented: Rea	d as '0'					
	Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.5 Reading Flash Program Memory

To read a program memory location, the user must write two bytes of the address to the EEADR and EEADRH registers, set the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle in the EEDATA and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDATA and EEDATH registers will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 3-3:	FLASH PROGRAM READ

BANKSEL EEADRH		;	Select Bank of EEADRH
MOVF ADDRH,	W	;	
MOVWF EEADRH		;	MS Byte of Program
		;	Address to read
MOVF ADDRL,	W	;	
MOVWF EEADR		;	LS Byte of Program
		;	Address to read
BANKSEL EECON1		;	Select Bank of EECON1
BSF EECON1	, EEPGD	;	Point to PROGRAM
		;	memory
BSF EECON1	, RD	;	EE Read
		;	
NOP		;	Any instructions
		;	here are ignored as
NOP		;	program memory is
		;	read in second cycle
		;	after BSF EECON1,RD
BANKSEL EEDATA		;	Select Bank of EEDATA
MOVF EEDATA	, W	;	DATAL = EEDATA
MOVWF DATAL		;	
MOVF EEDATH	, W	;	DATAH = EEDATH
MOVWF DATAH		;	

3.6 Erasing Flash Program Memory

The minimum erase block is 32 words. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 32 words of program memory is erased. The Most Significant 11 bits of the EEADRH:EEADR point to the block being erased. EEADR< 4:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the erase takes place. This is not Sleep mode, as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

3.6.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load EEADRH:EEADR with address of row being erased.
- Set EEPGD bit to point to program memory; set WREN bit to enable writes and set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase.

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

The PIC16F818/819 can be operated in eight different oscillator modes. The user can program three configuration bits (FOSC2:FOSC0) to select one of these eight modes (modes 5-8 are new PIC16 oscillator configurations):

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. RC External Resistor/Capacitor with Fosc/4 output on RA6
- 5. RCIO External Resistor/Capacitor with I/O on RA6
- 6. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 7. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 8. ECIO External Clock with I/O on RA6

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (see Figure 4-1 and Figure 4-2). The PIC16F818/819 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

TABLE 4-1: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (FOR DESIGN GUIDANCE ONLY)

Osc Type	Crystal	Typical Capacitor Value Tested:			
	Fieq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	200 kHz	56 pF	56 pF		
	1 MHz	15 pF	15 pF		
	4 MHz	15 pF	15 pF		
HS	4 MHz	15 pF	15 pF		
	8 MHz	15 pF	15 pF		
	20 MHz	15 pF	15 pF		

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

- Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 2: Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

FIGURE 5-11: BLOCK DIAGRAM OF RB3 PIN

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt-on-overflow from FFh to 00h
- Edge select for external clock

Additional information on the Timer0 module is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

Figure 6-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

6.1 Timer0 Operation

Timer0 operation is controlled through the OPTION_REG register (see Register 2-2). Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/AN4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.3 "Using Timer0 with an External Clock".

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. **Section 6.4** "**Prescaler**" details the operation of the prescaler.

6.2 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit, TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit, TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Sleep since the timer is shut-off during Sleep.

FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

© 2001-2013 Microchip Technology Inc.

REGISTER 10-2:	SSPCON:	: SYNCHRO	DNOUS SE	RIAL PORT	CONTROL	REGISTE	R 1 (ADDF	RESS 14h)
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0
bit 7	WCOL: W	rite Collision	Detect bit					
	1 = An atte (must	 An attempt to write the SSPBUF register failed because the SSP module is busy (must be cleared in software) 						
	0 = No co	llision						
bit 6	SSPOV: R	eceive Over	flow Indicato	or bit				
	1 - A new	<u>10:</u> / byte is rece	ived while th	e SSPRI IF re	aister is still	holding the	nrevious da	ata. In case
	of ove must r	erflow, the da read the SSI	ata in SSPSF PBUF, even i	R is lost. Over f only transmi	flow can on tting data, to	ly occur in avoid sett	Slave mode	e. The user
	mode, writing	, the overflow to the SSP erflow	v bit is not se BUF register	t since each r	iew receptio	n (and trans	smission) is	initiated by
	In l^2C mod	le:						
	1 = A byte "don't	e is received care" in Trai	while the SS nsmit mode.	PBUF registe SSPOV must	r is still hold be cleared	ing the preving the preving the preving the previous section of the previous s	vious byte. S in either mo	SSPOV is a ode.
6.4 C	0 = INO OV			·				
DIT 5	55PEN: 5	ynchronous	Senal Port E	nable bitty				
	1 = Enable	<u>s serial port</u>	and configu	res SCK. SD0) and SDI a	s serial port	pins	
	0 = Disables serial port and configures these pins as I/O port pins $\frac{\ln l^2 C \text{ mode:}}{l^2 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins$							
							5	
	Note 1:	In both mo output.	des, when e	nabled, these	pins must l	be properly	configured	as input or
bit 4	CKP: Cloc	k Polarity Se	elect bit					
	In SPI mod	<u>de:</u>	f - II'				l l - '	hinh laval
	1 = Transn0 = Transn	nit nappens (nit happens	on failing edg	je, receive on ie receive on	falling edge	. Idle state f	or clock is a for clock is a	i nign ievei. a low level
	In I ² C Slav	ve mode:	on noing oug		rainig ougo			
	SCK release control.							
	1 = Enable	e clock		/11 1/		<i></i> 、		
			OCK Stretch).	(Used to ens	ure data set	up time.)		
bit 3-0	SSPM<3:0	>: Synchror	nous Serial F	ort Mode Sel	ect dits			
	0000 = SP 0001 = SP	PI Master mo	ide, clock = (ide. clock = (DSC/4 DSC/16				
	0010 = SP	PI Master mo	de, clock = $($	DSC/64				
	0011 = SP	PI Master mo	de, clock =]	MR2 output/2	2			
	0100 = SP	PI Slave mod	le, clock = S(CK pin. <u>SS</u> pii CK pin. <u>SS</u> pii	n control ena	abled.	on he used	aa I/O nin
	0101 = 3P $0110 = I^2C$	C Slave mod	e, Clock = Si e. 7-bit addre	or pin. 55 pii ess	1 CONTROL OIS	ableu. 55 d	an be used	as i/O pin.
	$0111 = I^2C$	Slave mod	e, 10-bit add	ress				
	$1011 = I^2C$	Firmware (Controlled Ma	aster mode (S	lave Idle)			
	$1110 = I^2C$	C Slave mod	e, 7-bit addre	ess with Start	and Stop bit	interrupts e	enabled	
	1111 = 10	01. 1010.	1100. 11	01 = Reserve	anu Siop u ed	ni interrupis	enableu	
	1000, 10	, -0-0,	,					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unimp	lemented b	oit, read as '	0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

NOTES:

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for 18/20 pin devices.

The conversion of an analog input signal results in a corresponding 10-bit digital number. The A/D module has a high and low-voltage reference input that is software selectable to some combination of VDD, VSS, RA2 or RA3.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/Os.

Additional information on using the A/D module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON		
	bit 7							bit 0		
bit 7-6	ADCS1:AD	DCS0: A/D C	onversion C	lock Select I	oits					
	If ADCS2 =	= 0:								
	00 = Fosc/	/2								
	01 = Fosc/	01 = FOSC/8								
	10 = Fosc/	10 = Fosc/32								
	11 = FRC (11 = FRC (clock derived from the internal A/D module RC oscillator)								
	If ADCS2 =	<u>= 1:</u>								
	00 = FOSC	/4								
	01 = FOSC	/16 /c/								
	10 = FUSU 11 = FRC (0)	04 clock derived	I from the in	ternal A/D m	odule RC o	scillator)				
hit 5-3	CHS2·CHS		hannel Sele	ct hits		Sometor,				
DII 0-0	000 - Cha	nnal Ω (RA Ω /								
	000 – Cha	nnel 1 (RA1/	ANO) AN1)							
	010 = Cha	nnel 2 (RA2/	AN2)							
	011 = Cha	nnel 3 (RA3/	AN3)							
	100 = Cha	nnel 4 (RA4/	AN4)							
bit 2	GO/DONE	: A/D Conver	rsion Status	bit						
	If ADON =	<u>1:</u>								
	1 = A/D co	onversion in p	progress (se	tting this bit	starts the A	/D conversion)				
	0 = A/D co A/D co	onversion not onversion is c	t in progress complete)	(this bit is a	utomatically	cleared by ha	rdware who	en the		
bit 1	Unimplem	ented: Read	l as '0'							
bit 0	ADON: A/I) On bit								
	1 = A/D co	onverter mod	ule is operat	ting						
	0 = A/D converter module is shut-off and consumes no operating current									
	Legend:									
	R = Reada	able bit	W = W	/ritable bit	U = Unir	nplemented bit	, read as '()'		

'1' = Bit is set

0' = Bit is cleared

REGISTER 11-1: ADCON0: A/D CONTROL REGISTER 0 (ADDRESS 1Fh)

-n = Value at POR

x = Bit is unknown

REGISTER 11-2: ADCON1: A/D CONTROL REGISTER 1 (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified, 6 Most Significant bits of ADRESH are read as '0'

 $_{\rm 0}$ = Left justified, 6 Least Significant bits of ADRESL are read as '0'

bit 6 ADCS2: A/D Clock Divide by 2 Select bit

1 = A/D clock source is divided by 2 when system clock is used 0 = Disabled

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG<3:0>: A/D Port Configuration Control bits

PCFG	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	AVdd	AVss	5/0
0001	Α	VREF+	A	Α	A	AN3	AVss	4/1
0010	Α	A	A	Α	A	AVdd	AVss	5/0
0011	Α	VREF+	A	Α	A	AN3	AVss	4/1
0100	D	A	D	Α	Α	AVdd	AVss	3/0
0101	D	VREF+	D	Α	Α	AN3	AVss	2/1
011x	D	D	D	D	D	AVdd	AVss	0/0
1000	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1001	Α	A	А	Α	Α	AVdd	AVss	5/0
1010	Α	VREF+	A	Α	A	AN3	AVss	4/1
1011	Α	VREF+	Vref-	Α	Α	AN3	AN2	3/2
1100	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	VREF+	Vref-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	A	AVdd	AVss	1/0
1111	D	VREF+	Vref-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = Number of analog input channels/Number of A/D voltage references

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

12.9 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. Bit $\overline{\text{BOR}}$ is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if

bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-u	p	Brown-out R	Wake-up	
Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	TPWRT + 1024 • TOSC	1024 • Tosc	TPWRT + 1024 • TOSC	1024 • Tosc	1024 • Tosc
EXTRC, EXTCLK, INTRC	TPWRT	5-10 μs (1)	Tpwrt	5-10 μs ⁽¹⁾	5-10 μs (1)

Note 1: CPU start-up is always invoked on POR, BOR and wake-up from Sleep.

TABLE 12-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

Legend: u = unchanged, x = unknown

TABLE 12-3: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

13.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are ANDed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

PIC16LF8 (Indus	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
PIC16F81 (Indus	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	All devices	1.8	2.3	mA	-40°C	VDD = 4.0V VDD = 5.0V			
		1.6	2.2	mA	+25°C				
		1.3	2.2	mA	+85°C				
	All devices	3.0	4.2	mA	-40°C		FOSC = 20 MHZ (HS Oscillator)		
		2.5	4.0	mA	+25°C				
		2.5	4.0	mA	+85°C				
	Extended devices	3.0	5.0	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

Param No.	Symbol	Characteristic			Тур	Max	Units	Conditions
90*	TSU:STA	Start Condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_			Start condition
91*	THD:STA	Start Condition	100 kHz mode	4000	_		ns	After this period, the first clock
		Hold Time	400 kHz mode	600	—	—		pulse is generated
92*	TSU:STO	Stop Condition	100 kHz mode	4700	_		ns	
		Setup Time	400 kHz mode	600	_			
93	THD:STO	Stop Condition	100 kHz mode	4000	—	—	ns	
		Hold Time	400 kHz mode	600		_		

TABLE 15-7: I²C[™] BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

FIGURE 15-15: I²C[™] BUS DATA TIMING

FIGURE 16-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

NOTES:

	3
Internal Oscillator Block	5
INTRC Modes	5
Internet Address 173	3
Interrupt Sources	5
RB0/INT Pin, External97	7
TMR0 Overflow97	7
Interrupts	
RB7:RB4 Port Change	3
Synchronous Serial Port Interrupt)
Interrupts. Context Saving During	7
Interrupts, Enable Bits	
Global Interrupt Enable (GIE Bit)	5
Interrupt-on-Change (RB7:RB4) Enable	
(RBIE Bit) 97	7
RB0/INT Enable (INTE Bit)	3
TMR0 Overflow Enable (TMR0IE Bit)	Ŕ
Interrupts Enable hits	,
Global Interrupt Enable (GIE Bit)	R
Interrupte Flag Bite	,
Interrupts, Flag Dits	
	7
(RDIF DI()	, ,
TMP0 Overflow Flog (TMP0IE Bit)	> 7
TMRU OVERIOW Flag (TMRUIF BIL)	1
INTRO Madaa	
INTRC Modes	,
INTRC Modes Adjustment	3
INTRC Modes Adjustment	5
INTRC Modes Adjustment	5
INTRC Modes Adjustment	5
INTRC Modes Adjustment	32
INTRC Modes Adjustment	3
INTRC Modes Adjustment	32
INTRC Modes Adjustment	5
INTRC Modes Adjustment	5 3 2 1
INTRC Modes Adjustment	
INTRC Modes Adjustment	5 32 1 1 2
INTRC Modes Adjustment	
INTRC Modes Adjustment	
INTRC Modes Adjustment	
INTRC Modes Adjustment	5 32 1129)93
INTRC Modes Adjustment	5 32 11290932
INTRC Modes Adjustment	

0

Oncode Field Descriptions	103
PS2:PS0 Bits	17
PSA Bit	
RBPU Bit	17, 54
TOCS Bit	17
T0SE Bit	
Oscillator Configuration	
ECIO	
EXTCLK	
EXTRC	
HS	33, 93
INTIO1	
INTIO2	
INTRC	
LP	33, 93
RC	33, 35

RCIO		33
XT	33,	93
Oscillator Control Register		37
Modifying IRCE Bits		37
Clock Transition Sequence		37
Oscillator Start-up Timer (OST)	80	07
Oscillator Start-up Timer (OST)	09,	92
	•••••	90
Р		
	ا۱	55
	1	55
PCFG0 Bit	•••••	82
PCFG1 Bit		82
PCFG2 Bit		82
PCFG3 Bit		82
PCL Register	14, 15,	23
PCLATH Register	14, 15,	23
PCON Register		93
POR Bit		22
Pinout Descriptions		~~
		7
FICTOF010/019		. 1
	•••••	23
	•••••	23
POR. See Power-on Reset.		
PORTA		. 7
Associated Register Summary		39
Functions		39
PORTA Register		39
TRISA Register		39
PORTA Register		13
PORTB		8
Associated Register Summary		. О ЛЛ
Functions		 //
	•••••	44
	·····	43
	17,	54
RB0/INT Edge Select (INTEDG Bit)	17,	54
RB0/INT Pin, External		97
RB7:RB4 Interrupt-on-Change		97
RB7:RB4 Interrupt-on-Change Enable		
(RBIE Bit)		97
RB7:RB4 Interrupt-on-Change Flag		
(RBIF Bit)	18.	97
TRISB Register	- /	43
PORTB Register	13	15
Postscalar WDT		
Assignment (DSA Bit)		17
Assignment (FSA Dit)	•••••	17
		17
Power-Down Mode. See Sleep.		
Power-on Reset (POR) 89, 91, 9	92, 93,	94
POR Status (POR Bit)		22
Power Control (PCON) Register		93
Power-Down (PD Bit)		91
Time-out (TO Bit)	16,	91
Power-up Timer (PWRT)	89.	92
PR2 Register	,	63
Prescaler Timer()		20
Assignment (PSA Bit)		17
Pata Salact (DS2:DS0 Dita)		17
Drogrom Countor		17
Program Counter		<u></u>
		ჟპ