

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75КВ (1К х 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f818-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	l/O/P Type	Buffer Type	Description
						PORTA is a bidirectional I/O port.
RA0/AN0	17	19	23			
RA0				I/O	TTL	Bidirectional I/O pin.
AN0				I	Analog	Analog input channel 0.
RA1/AN1	18	20	24			
RA1				I/O	TTL	Bidirectional I/O pin.
AN1				I	Analog	Analog input channel 1.
RA2/AN2/VREF-	1	1	26			
RA2				I/O	TTL	Bidirectional I/O pin.
AN2				I	Analog	Analog input channel 2.
VREF-				I	Analog	A/D reference voltage (low) input.
RA3/AN3/VREF+	2	2	27			
RA3				I/O	TTL	Bidirectional I/O pin.
AN3				I	Analog	Analog input channel 3.
VREF+				I	Analog	A/D reference voltage (high) input.
RA4/AN4/T0CKI	3	3	28			
RA4				I/O	ST	Bidirectional I/O pin.
AN4				I	Analog	Analog input channel 4.
TOCKI				I	ST	Clock input to the TMR0 timer/counter.
RA5/MCLR/Vpp	4	4	1			
RA5				I	ST	Input pin.
MCLR				I	ST	Master Clear (Reset). Input/programming
						voltage input. This pin is an active-low Reset
Vpp				Р		to the device.
		. –		Р	_	Programming threshold voltage.
RA6/OSC2/CLKO	15	17	20		07	
RA6				I/O	ST	Bidirectional I/O pin.
OSC2				0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0		In RC mode, this pin outputs CLKO signal
OLINO				Ŭ		which has 1/4 the frequency of OSC1 and
						denotes the instruction cycle rate.
RA7/OSC1/CLKI	16	18	21			······································
RA7	10	10	21	I/O	ST	Bidirectional I/O pin.
OSC1				1/C	ST/CMOS(3)	Oscillator crystal input.
CLKI				I	_	External clock source input.
Legend: I = Input		0 =	= Outp	but	I/O =	Input/Output P = Power
- = Not us	sed		= TTL			Schmitt Trigger Input

TABLE 1-2:PIC16F818/819 PINOUT DESCRIPTIONS

 $\label{eq:Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.$

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	l/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up or all inputs.
RB0/INT RB0 INT	6	7	7	I/O I	TTL ST ⁽¹⁾	Bidirectional I/O pin. External interrupt pin.
RB1/SDI/SDA RB1 SDI SDA	7	8	8	I/O I I/O	TTL ST ST	Bidirectional I/O pin. SPI data in. I ² C™ data.
RB2/SDO/CCP1 RB2 SDO CCP1	8	9	9	I/O O I/O	TTL ST ST	Bidirectional I/O pin. SPI data out. Capture input, Compare output, PWM output.
RB3/CCP1/PGM RB3 CCP1 PGM	9	10	10	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Capture input, Compare output, PWM output. Low-Voltage ICSP™ Programming enable pir
RB4/SCK/SCL RB4 SCK SCL	10	11	12	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI Synchronous serial clock input for I ² C.
RB5/SS RB5 SS	11	12	13	I/O I	TTL TTL	Bidirectional I/O pin. Interrupt-on-change pin. Slave select for SPI in Slave mode.
RB6/T1OSO/T1CKI/PGC RB6 T1OSO T1CKI PGC	12	13	15	I/O O I I	TTL ST ST ST ⁽²⁾	Interrupt-on-change pin. Timer1 Oscillator output. Timer1 clock input. In-circuit debugger and ICSP programming clock pin.
RB7/T1OSI/PGD RB7 T1OSI PGD	13	14	16	I/O I I	TTL ST ST ⁽²⁾	Interrupt-on-change pin. Timer1 oscillator input. In-circuit debugger and ICSP programming data pin.
Vss	5	5, 6	3, 5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	15, 16	17, 19	Р	-	Positive supply for logic and I/O pins.

TABLE 1-2: PIC16F818/819 PINOUT DESCRIPTIONS (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 2											
100h ⁽¹⁾	INDF	Addressin	ng this locatio	egister)	0000 0000	23					
101h	TMR0	Timer0 M	lodule Regist	ter						xxxx xxxx	53
102h ⁽¹	PCL	Program	Counter's (P	C) Least Sigr	ificant Byte					0000 0000	23
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
104h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	nter					xxxx xxxx	23
105h	—	Unimpler	nented							_	—
106h	PORTB	PORTB [Data Latch w	hen written; P	ORTB pins w	hen read				XXXX XXXX	43
107h	—	Unimplen	nented							—	_
108h	—	Unimplen	nented							—	—
109h	—	Unimplen	nented							—	—
10Ah ^(1,2)	PCLATH	_	—	_	Write Buffer	for the upper	5 bits of the F	Program Cou	nter	0 0000	23
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
10Ch	EEDATA	EEPROM	I/Flash Data	Register Low	Byte					xxxx xxxx	25
10Dh	EEADR	EEPROM	1/Flash Addre	ess Register L	ow Byte					xxxx xxxx	25
10Eh	EEDATH	_	—	EEPROM/Fla	ash Data Reg	ister High Byt	е			xx xxxx	25
10Fh	EEADRH	—	—	—	—	—	EEPROM/F High Byte	lash Address	Register	xxx	25
Bank 3											
180h ⁽¹⁾	INDF	Addressin	ng this locatio	on uses conte	ents of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	17, 54
182h ⁽¹⁾	PCL	Program	Counter's (P	C) Least Sigr	ificant Byte					0000 0000	23
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
184h ⁽¹⁾	FSR	Indirect D	Indirect Data Memory Address Pointer								23
185h	—	Unimplen	nented							—	_
186h	TRISB	PORTB [PORTB Data Direction Register								43
187h	_	Unimplen	Unimplemented								—
188h	_	Unimplen	Unimplemented								—
189h	_	Unimplemented									—
18Ah ^(1,2)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter							0 0000	23	
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
18Ch	EECON1	EEPGD	_	_	FREE	WRERR	WREN	WR	RD	xx x000	26
	1		EEPROM Control Register 2 (not a physical register)								25
18Dh	EECON2	LEFRON	1 0011001100								
18Dh 18Eh	EECON2		l; maintain cl		p, e.e	,				0000 0000	—

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

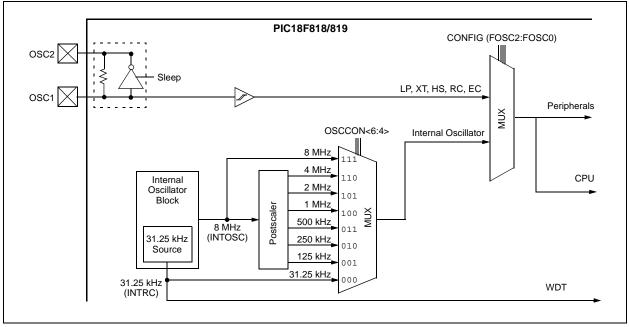
2.2.2.4 PIE1 Register

This register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

-n = Value at POR

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch)


EN 2-4 .	FIEL. FERI	FHERAL	INTERNU		REGIST		RE33 00	11)			
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
		ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE			
	bit 7 bit 0										
bit 7	Unimplemer	nted: Read	d as '0'								
bit 6	ADIE: A/D C	onverter Ir	nterrupt Enab	ole bit							
 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt 											
bit 5-4	Unimplemer	nted: Read	d as '0'								
bit 3	SSPIE: Sync	hronous S	erial Port Int	errupt Enable	e bit						
	1 = Enables the SSP interrupt										
	0 = Disables	s the SSP i	nterrupt								
bit 2	CCP1IE: CC	P1 Interru	ot Enable bit								
	1 = Enables the CCP1 interrupt										
	0 = Disables										
bit 1	TMR2IE: TM				bit						
	1 = Enables the TMR2 to PR2 match interrupt										
h :+ 0	0 = Disables the TMR2 to PR2 match interrupt										
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit										
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 										
				unupt							
	Legend:										
	R = Readab	ole bit	W = W	Vritable bit	U = Unin	nplemented	bit, read as	ʻ0'			

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

FIGURE 4-6: PIC16F818/819 CLOCK DIAGRAM

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

U-0	R/W-0	R/W-0	R/W-0	U-0	R-0	U-0	U-0
—	IRCF2	IRCF1	IRCF0	—	IOFS	_	_
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6-4	IRCF2:IRCF0: Internal Oscillator Frequency Select bits
	111 = 8 MHz (8 MHz source drives clock directly)
	110 = 4 MHz
	101 = 2 MHz
	100 = 1 MHz
	011 = 500 kHz
	010 = 250 kHz
	001 = 125 kHz
	000 = 31.25 kHz (INTRC source drives clock directly)
bit 3	Unimplemented: Read as '0'
bit 2	IOFS: INTOSC Frequency Stable bit
	1 = Frequency is stable
	0 = Frequency is not stable
bit 1-0	Unimplemented: Read as '0'
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 5-1: BLOCK DIAGRAM OF RA0/AN0:RA1/AN1 PINS

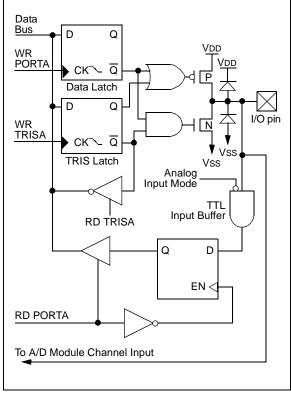
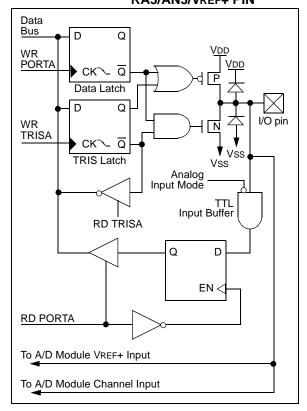



FIGURE 5-2:

BLOCK DIAGRAM OF RA3/AN3/VREF+ PIN

FIGURE 5-3: BLOCK DIAGRAM OF RA2/AN2/VREF- PIN

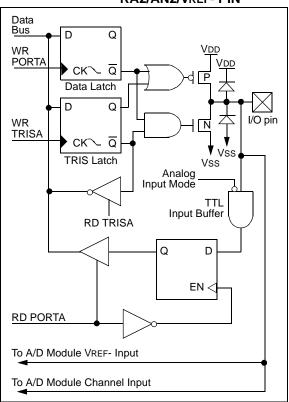
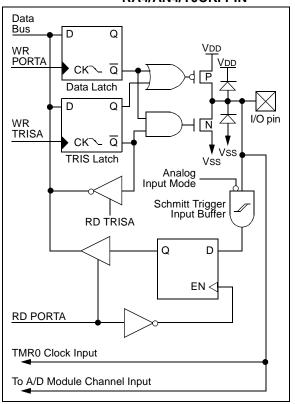



FIGURE 5-4:

BLOCK DIAGRAM OF RA4/AN4/T0CKI PIN

5.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

PORTB is multiplexed with several peripheral functions (see Table 5-3). PORTB pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISB as the destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1/SDI/SDA	bit 1	TTL/ST ⁽⁵⁾	Input/output pin, SPI data input pin or I ² C™ data I/O pin. Internal software programmable weak pull-up.
RB2/SDO/CCP1	bit 2	TTL/ST ⁽⁴⁾	Input/output pin, SPI data output pin or Capture input/Compare output/PWM output pin. Internal software programmable weak pull-up.
RB3/CCP1/PGM ⁽³⁾	bit 3	TTL/ST ⁽²⁾	Input/output pin, Capture input/Compare output/PWM output pin or programming in LVP mode. Internal software programmable weak pull-up.
RB4/SCK/SCL	bit 4	TTL/ST ⁽⁵⁾	Input/output pin or SPI and I ² C clock pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/SS	bit 5	TTL	Input/output pin or SPI slave select pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/T1OSO/T1CKI/ PGC	bit 6	TTL/ST ⁽²⁾	Input/output pin, Timer1 oscillator output pin, Timer1 clock input pin or serial programming clock (with interrupt-on-change). Internal software programmable weak pull-up.
RB7/T1OSI/PGD	bit 7	TTL/ST ⁽²⁾	Input/output pin, Timer1 oscillator input pin or serial programming data (with interrupt-on-change). Internal software programmable weak pull-up.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: Low-Voltage ICSP[™] Programming (LVP) is enabled by default which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 18-pin mid-range devices.

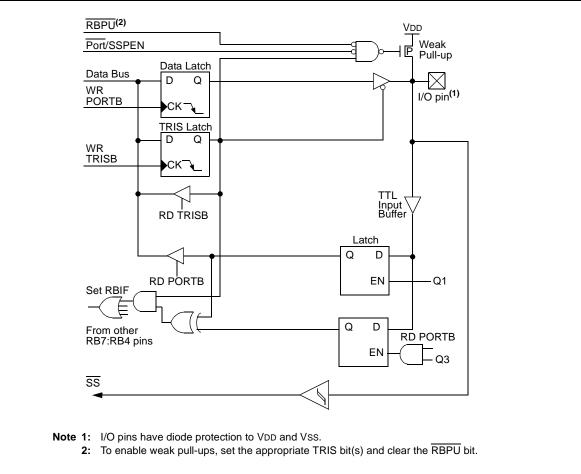

- 4: This buffer is a Schmitt Trigger input when configured for CCP or SSP mode.
- **5:** This buffer is a Schmitt Trigger input when configured for SPI or I²C mode.

TABLE 5-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

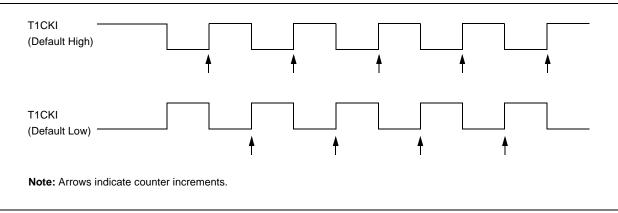
FIGURE 5-13: BLOCK DIAGRAM OF RB5 PIN

7.2 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

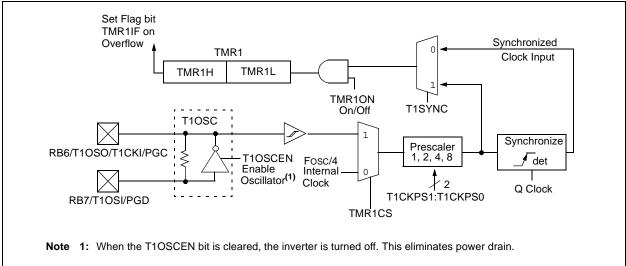
7.3 Timer1 Counter Operation

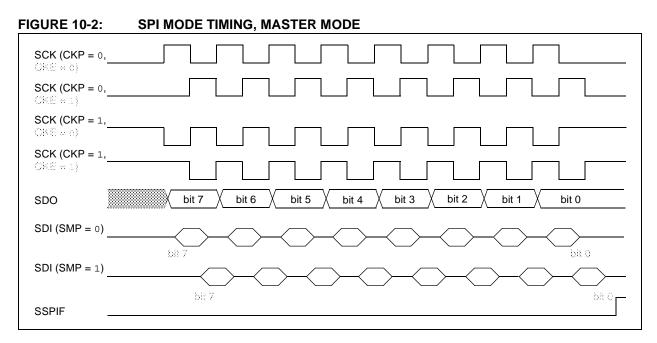
Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

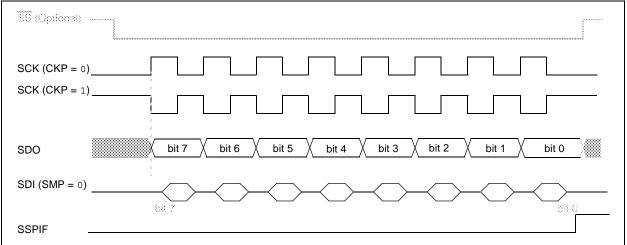

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

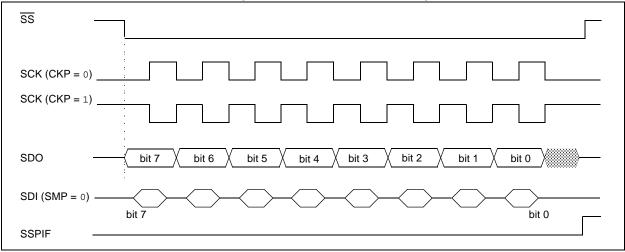
7.4 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RB7/T1OSI/PGD when bit T1OSCEN is set, or on pin RB6/T1OSO/T1CKI/PGC when bit T1OSCEN is cleared.


If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.


In this configuration, during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.


FIGURE 7-1: TIMER1 INCREMENTING EDGE



11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. The seven possible options for TAD are:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than 1.6 μ s and not greater than 6.4 μ s.

Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

11.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current out of the device specification.

TABLE 11-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (F))

	AD Clock Source (TAD)						
Operation	ADCS<2>	ADCS<1:0>	Maximum Device Frequency				
2 Tosc	0	00	1.25 MHz				
4 Tosc	1	00	2.5 MHz				
8 Tosc	0	01	5 MHz				
16 Tosc	1	01	10 MHz				
32 Tosc	0	10	20 MHz				
64 Tosc	1	10	20 MHz				
RC ^(1,2,3)	Х	11	(Note 1)				

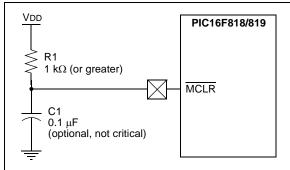
Note 1: The RC source has a typical TAD time of 4 μ s but can vary between 2-6 μ s.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for Sleep operation.

3: For extended voltage devices (LF), please refer to Section 15.0 "Electrical Characteristics".

NOTES:

12.3 MCLR


PIC16F818/819 device has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested.

The RA5/MCLR/VPP pin can be configured for $\overline{\text{MCLR}}$ (default) or as an I/O pin (RA5). This is configured through the MCLRE bit in the Configuration Word register.

FIGURE 12-2: RECOMMENDED MCLR CIRCUIT

12.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V-1.7V). To take advantage of the POR, tie the \underline{MCLR} pin to VDD as described in Section 12.3 "MCLR". A maximum rise time for VDD is specified. See Section 15.0 "Electrical Characteristics" for details.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For more information, see Application Note *AN607, "Power-up Trouble Shooting"* (DS00607).

12.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) of the PIC16F818/819 is a counter that uses the INTRC oscillator as the clock input. This yields a count of 72 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC and will vary from chip-to-chip due to temperature and process variation. See DC parameter #33 for details.

The PWRT is enabled by clearing configuration bit, PWRTEN.

12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

12.7 Brown-out Reset (BOR)

The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter #D005, about 4V) for longer than TBOR (parameter #35, about 100 μ s), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a Reset may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer (if enabled) will keep the device in Reset for TPWRT (parameter #33, about 72 ms). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. Unlike previous PIC16 devices, the PWRT is no longer automatically enabled when the Brown-out Reset circuit is enabled. The PWRTEN and BOREN configuration bits are independent of each other.

12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of Reset.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F818/819 device operating in parallel.

Table 12-3 shows the Reset conditions for the Status, PCON and PC registers, while Table 12-4 shows the Reset conditions for all the registers.

14.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

14.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

14.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

14.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

14.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

14.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

14.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

14.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

15.1 DC Characteristics: Supply Voltage PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial)

PIC16LF818/819 (Industrial)			Standard Operating Condition				ons (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial		
PIC16F818/819 (Industrial, Extended)			Operating temperature				ons (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Param No. Symbol Characteristic		Min	Тур	Max	Units	Conditions			
	Vdd	Supply Voltage							
D001		PIC16LF818/819	2.0		5.5	V	HS, XT, RC and LP Oscillator mode		
D001		PIC16F818/819	4.0		5.5	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	_	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	0.7	V	See Section 12.4 "Power-on Reset (POR)" for details		
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See Section 12.4 "Power-on Reset (POR)" for details		
	VBOR	Brown-out Reset Voltage				•			
D005		PIC16LF818/819	3.65	_	4.35	V			
D005		PIC16F818/819	3.65		4.35	V	FMAX = 14 MHz ⁽²⁾		

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data

2: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

PIC16LF818/819 (Industrial) PIC16F818/819 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Device	Typ Max Units Conditions								
	Supply Current (IDD) ^(2,3)									
	PIC16LF818/819	8	20	μA	-40°C					
		7	15	μA	+25°C	VDD = 2.0V				
		7	15	μA	+85°C					
	PIC16LF818/819	16	30	μA	-40°C					
		14	25	μΑ	+25°C	VDD = 3.0V	Fosc = 31.25 kHz			
		14	25	μΑ	+85°C		(RC_RUN mode, Internal RC Oscillator)			
	All devices	32	40	μA	-40°C					
		29	35	μA	+25°C					
		29	35	μA	+85°C	VDD = 5.0V				
	Extended devices	35	45	μA	+125°C					
	PIC16LF818/819	132	160	μA	-40°C		Fosc = 1 MHz (RC_RUN mode, Internal RC Oscillator)			
		126	155	μA	+25°C	VDD = 2.0V				
		126	155	μA	+85°C					
	PIC16LF818/819	260	310	μA	-40°C					
		230	300	μA	+25°C	VDD = 3.0V				
		230	300	μA	+85°C					
	All devices	560	690	μA	-40°C					
		500	650	μA	+25°C					
		500	650	μA	+85°C	VDD = 5.0V				
	Extended devices	570	710	μA	+125°C					
	PIC16LF818/819	310	420	μA	-40°C					
		300	410	μA	+25°C	VDD = 2.0V				
		300	410	μΑ	+85°C					
	PIC16LF818/819	550	650	μA	-40°C		Fosc = 4 MHz (RC_RUN mode, Internal RC Oscillator)			
		530	620	μA	+25°C	VDD = 3.0V				
		530	620	μA	+85°C					
	All devices	1.2	1.5	mA	-40°C					
		1.1	1.4	mA	+25°C					
		1.1	1.4	mA	+85°C	VDD = 5.0V				
	Extended devices	1.3	1.6	mA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

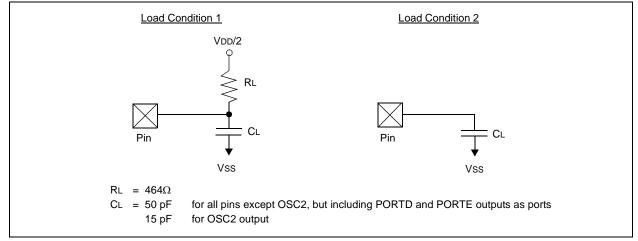
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.


3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

15.5 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

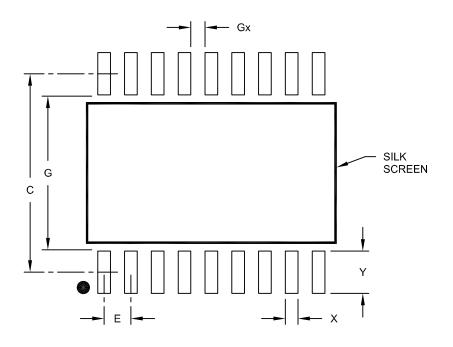

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:	·	
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st ((I ² C specifications only)	·	
CC	• • •		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

FIGURE 15-3: LOAD CONDITIONS

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A