

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

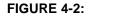
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f818-i-ptsl

Email: info@E-XFL.COM

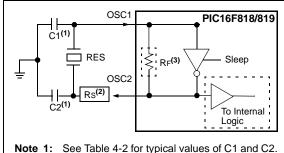
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 1											
80h ⁽¹⁾	INDF	Addressir	ng this locati	on uses conte	ents of FSR to	o address dat	ta memory (n	ot a physical	register)	0000 0000	23
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	17, 54
82h ⁽¹⁾	PCL	Program	Counter's (F	PC) Least Sig	nificant Byte			•	•	0000 0000	23
83h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
84h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poi	nter	•	•	•	•	xxxx xxxx	23
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽³⁾	PORTA Data	a Direction Re	egister (TRIS	A<4:0>		1111 1111	39
86h	TRISB	PORTB D	Data Directio	n Register						1111 1111	43
87h	—	Unimplen	nented							—	—
88h	—	Unimplen	nented							—	-
89h	—	Unimplen	nented							—	—
8Ah ^(1,2)	PCLATH	—	—	_	Write Buffer	for the upper	5 bits of the	PC		0 0000	23
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	19
8Dh	PIE2		_	_	EEIE			_	_	0	21
8Eh	PCON	—	—	_	—	—	—	POR	BOR	dd	22
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	—	IOFS	_	_	-000 -0	38
90h ⁽¹⁾	OSCTUNE	—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	36
91h	—	Unimplen	nented							—	—
92h	PR2		eriod Regist							1111 1111	68
93h	SSPADD	Synchron	ous Serial P	ort (I ² C™ mo	de) Address	Register	T	r	r	0000 0000	71, 76
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	72
95h	_	Unimplen	nented							_	
96h	_	Unimplen	nented							_	
97h		Unimplen	Unimplemented —						_	—	
98h	—	Unimplen	Unimplemented —						—	—	
99h	—	Unimplen	Unimplemented —						—		
9Ah	_	Unimplen	Unimplemented —						—	—	
9Bh	—	Unimplen	nented							—	—
9Ch	—	Unimplen	nented							—	—
9Dh	—	Unimplen	nented							—	—
9Eh	ADRESL	A/D Result Register Low Byte xxxx xxxx						81			
9Fh	ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	82


TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.


2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

CERAMIC RESONATOR OPERATION (HS OR XT

OSC CONFIGURATION)

- **2:** A series resistor (Rs) may be required.
- 3: RF varies with the resonator chosen (typically between 2 M Ω to 10 M Ω).

TABLE 4-2: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:						
Mode	Mode Freq OSC1 OSC2					
ХТ	455 kHz	56 pF	56 pF			
	2.0 MHz	47 pF	47 pF			
	4.0 MHz	33 pF	33 pF			
HS	8.0 MHz	27 pF	27 pF			
	16.0 MHz	22 pF	22 pF			

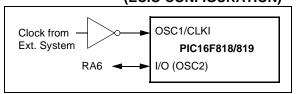
Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

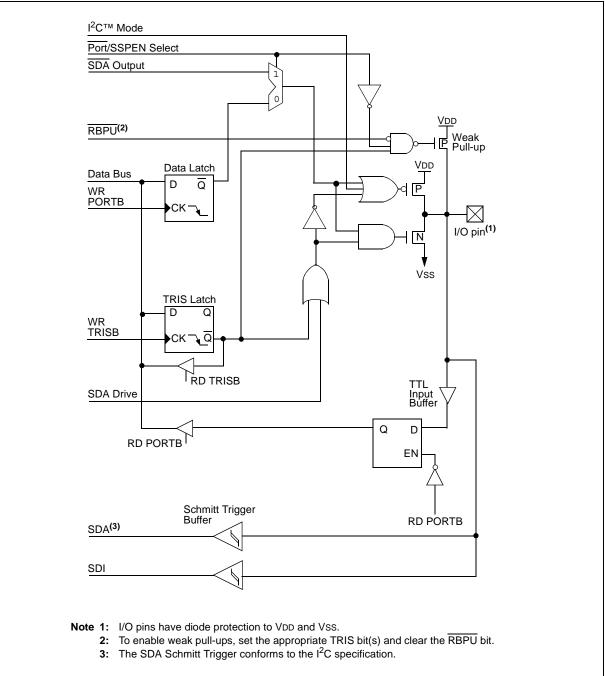
Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode rather than XT mode is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω .


4.3 External Clock Input

The ECIO Oscillator mode requires an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.


In the ECIO Oscillator mode, the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 4-3 shows the pin connections for the ECIO Oscillator mode.

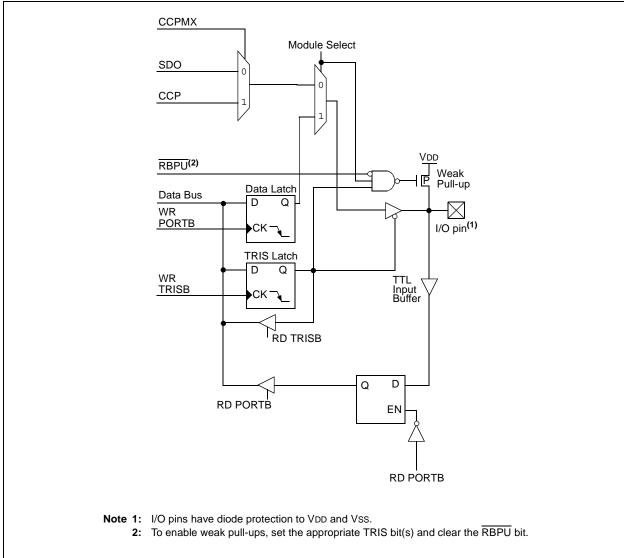

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

FIGURE 5-9: BLOCK DIAGRAM OF RB1 PIN

NOTES:

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register that can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Table 9-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match which will reset Timer1 and start an A/D conversion (if the A/D module is enabled). The CCP module's input/output pin (CCP1) can be configured as RB2 or RB3. This selection is set in bit 12 (CCPMX) of the Configuration Word register.

Additional information on the CCP module is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) and in Application Note AN594, "Using the CCP Module(s)" (DS00594).

TABLE 9-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 9-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	
bit 7							bit 0	
Unimpleme								
CCP1X:CCI	P1Y: PWM	Least Signi	ficant bits					
<u>Capture mo</u> Unused.	<u>de:</u>							
<u>Compare mo</u> Unused.	ode:							
<u>PWM mode:</u> These bits a	-	LSbs of the	PWM duty	cycle. The e	eight MSbs a	re found in (CCPRxL.	
CCP1M3:CO	CP1M0: CC	P1 Mode S	elect bits					
0000 = Cap	ture/Compa	are/PWM di	sabled (res	ets CCP1 m	odule)			
0100 = Cap	ture mode,	every fallin	g edge					
0101 = Capture mode, every rising edge								
0110 = Capture mode, every 4th rising edge								
0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCP1IF bit is set)								
1000 = Compare mode, set output on match (CCP11F bit is set) 1001 = Compare mode, clear output on match (CCP11F bit is set)								
1010 = Com				terrupt on ma		F bit is set,	CCP1 pin is	
1011 = Compare mode, trigger special event (CCP1IF bit is set, CCP1 pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)								
11xx = PWI					,		,	
Legend:								
Legend: R = Readab	le bit	W = V	Vritable bit	U = Uni	mplemented	l bit, read as	s 'O'	

NOTES:

10.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<4,1> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

Either or both of the following conditions will cause the SSP module not to give this ACK pulse:

- a) The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- b) The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF but bit, SSPIF (PIR1<3>), is set. Table 10-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, are shown in timing parameter #100 and parameter #101.

10.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The Buffer Full bit, BF, is set.
- c) An ACK pulse is generated.
- d) SSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) – on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.

10.3.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit, BF (SSPSTAT<0>), is set or bit, SSPOV (SSPCON<6>), is set.

An SSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

10.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RB4/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then pin RB4/SCK/SCL should be enabled by setting bit, CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 10-7).

13.2 Instruction Descriptions

ADDLW	Add Literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \le k \le 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.			

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.			

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are ANDed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow GIE$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is stored back in register 'f'.

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] RRF f,d
Operands: Operation:	$0 \le k \le 255$ k \rightarrow (W);	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
oporation	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is placed back in register 'f'.

─→ C →	Register f	

RETURN	Return from Subroutine	SLEEP	Enter Sleep mode
Syntax:	[label] RETURN	Syntax:	[label] SLEEP
Operands:	None	Operands:	None
Operation:	$TOS \rightarrow PC$	Operation:	$00h \rightarrow WDT$,
Status Affected:	None		$0 \rightarrow WDT$ prescaler, 1 $\rightarrow TO$,
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program		$0 \rightarrow PD$
		Status Affected:	TO, PD
	counter. This is a two-cycle instruction.	Description:	The Power-Down status bit, PD, is cleared. Time-out status bit, TO, is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

14.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

14.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

14.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

14.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

14.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

14.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

14.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

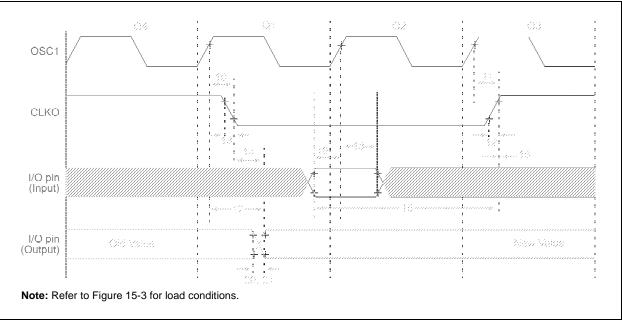
In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

15.4 DC Characteristics: PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

DC CHA	ARACTI	ERISTICS	Operating temp	perature	-40° 40° range as	C ≤ TA C ≤ TA descril	ess otherwise stated) ≤ +85°C for industrial ≤ +125°C for extended bed in Section 15.1 "DC
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKO (RC oscillator config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C
	Vон	Output High Voltage					
D090		I/O ports (Note 3)	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +125°C
D092		OSC2/CLKO (RC oscillator config)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +125°С
		Capacitive Loading Specs on	Output Pins				
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF	
D102	Св	SCL, SDA in I ² C™ mode		—	400	pF	
		Data EEPROM Memory					
D120	ED	Endurance	100K	1M	_	E/W	-40°C to +85°C
			10K	100K	_	E/W	+85°C to +125°C
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage
D122	TDEW	Erase/write cycle time		4	8	ms	
		Program Flash Memory	1				
D130	Eр	Endurance	10K 1K	100K 10K	_	E/W E/W	-40°C to +85°C +85°C to +125°C
D131	Vpr	VDD for read	VMIN	_	5.5	V	
D132A		VDD for erase/write	Vmin	-	5.5	V	Using EECON to read/write, VMIN = min. operating voltage
D133	Тре	Erase cycle time	—	2	4	ms	
D134	TPW	Write cycle time	—	2	4	ms	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F818/819 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

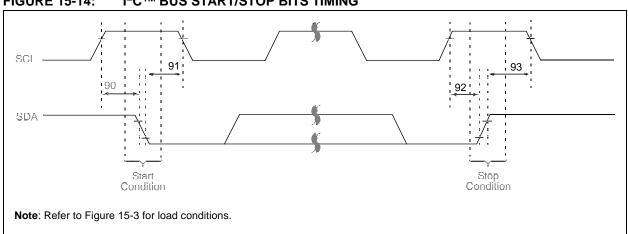
TABLE 15-2:	CLKO AND I/O TIMING REQUIREMENTS
-------------	----------------------------------

Param No.	Symbol	Characterist	ic	Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 \uparrow to CLKO \downarrow		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		_	75	200	ns	(Note 1)
12*	ТскR	CLKO Rise Time		_	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TCKL2IOV	CLKO ↓ to Port Out Valid			_	0.5 TCY + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO 1		Tosc + 200	_	—	ns	(Note 1)
16*	TCKH2IOI	Port In Hold after CLKO ↑		0	—	—	ns	(Note 1)
17*	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out	Valid	_	100	255	ns	
18*	TosH2iol	OSC1 ↑ (Q2 cycle) to Port	PIC16F818/819	100	_	—	ns	
		Input Invalid (I/O in hold time)	PIC16LF818/819	200	—	_	ns	
19*	TIOV20sH	Port Input Valid to OSC1 1 (I/O	in setup time)	0	_	—	ns	
20*	TIOR	Port Output Rise Time	PIC16 F 818/819		10	40	ns	
			PIC16LF818/819	_	—	145	ns	
21*	TIOF	Port Output Fall Time	PIC16 F 818/819		10	40	ns	
			PIC16 LF 818/819		_	145	ns	
22††*	TINP	INT pin High or Low Time		Тсү	-	—	ns	
23††*	Trbp	RB7:RB4 Change INT High or	Low Time	Тсү	-	—	ns	

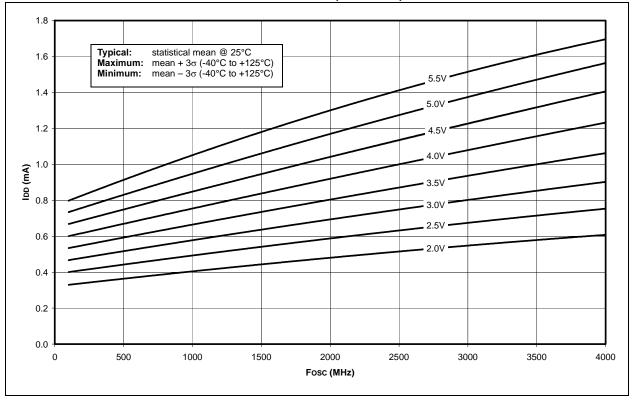
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events, not related to any internal clock edges.


Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү	-	-	ns	
71*	TscH	SCK Input High Time (Slave mode)		Tcy + 20	_	_	ns	
72*	TscL	SCK Input Low Time (Slave mode)		Tcy + 20	-	—	ns	
73*	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SC	K Edge	100	_	-	ns	
74*	TSCH2DIL, TSCL2DIL	Hold Time of SDI Data Input to SCK Edge		100	—	-	ns	
75*	TDOR	SDO Data Output Rise Time	PIC16 F 818/819 PIC16 LF 818/819		10 25	25 50	ns ns	
76*	TDOF	SDO Data Output Fall Time		_	10	25	ns	
77*	TssH2doZ	SS ↑ to SDO Output High-Impedan	се	10	_	50	ns	
78*	TscR	SCK Output Rise Time (Master mode)	PIC16 F 818/819 PIC16 LF 818/819	_	10 25	25 50	ns ns	
79*	TscF	SCK Output Fall Time (Master mod	e)	—	10	25	ns	
80*	TSCH2DOV, TSCL2DOV	SDO Data Output Valid after SCK Edge	PIC16 F 818/819 PIC16 LF 818/819	_	_	50 145	ns ns	
81*	TDOV2scH, TDOV2scL	SDO Data Output Setup to SCK Edge		Тсү	—	-	ns	
82*	TssL2doV	SDO Data Output Valid after $\overline{SS} \downarrow Edge$		—	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	—	-	ns	


TABLE 15-6: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

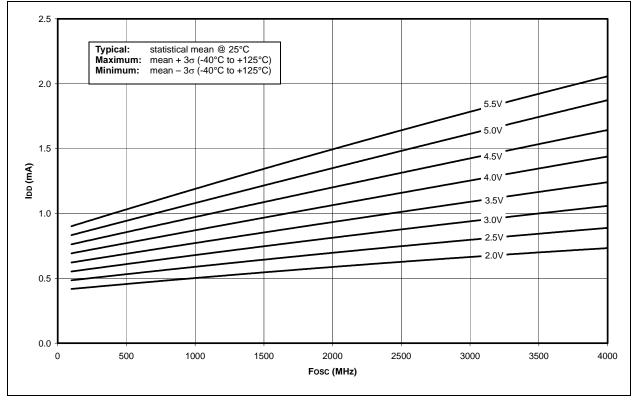


FIGURE 15-14: I²C[™] BUS START/STOP BITS TIMING

FIGURE 16-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

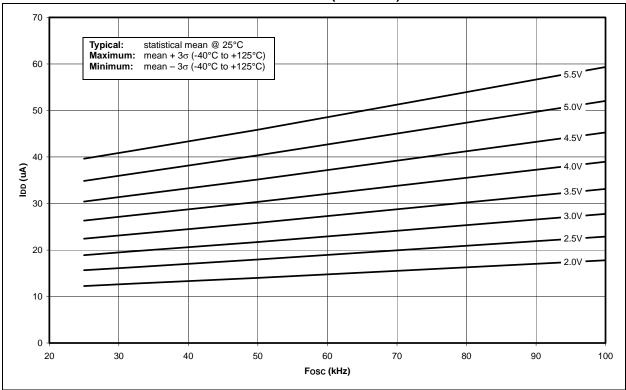
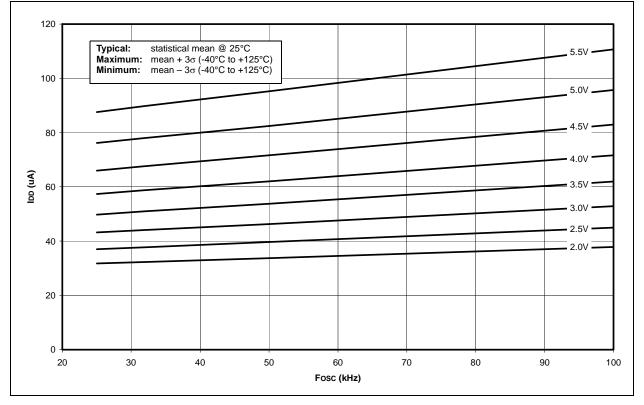
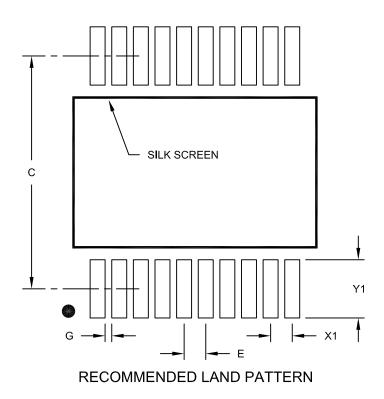



FIGURE 16-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)



NOTES:

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

Writing to Flash Program Memory	31
Code Protection	. 89, 100
Computed GOTO	23
Configuration Bits	
Crystal Oscillator and Ceramic Resonators	
Customer Change Notification Service	173
Customer Notification Service	173
Customer Support	173

D

Data EEPROM Memory	25
Associated Registers	
EEADR Register	
EEADRH Register	
EECON1 Register	
EECON2 Register	
EEDATA Register	
EEDATH Register	
Operation During Code-Protect	
Protection Against Spurious Writes	
Reading	
Write Interrupt Enable Flag (EEIF Bit)	
Writing	
Data Memory	
Special Function Registers	13
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Internal RC Accuracy	125
PIC16F818/819, PIC16LF818/819	126
Power-Down and Supply Current	
Supply Voltage	
Development Support	111
Device Differences	165
Device Overview	
Direct Addressing	24

Е

EEADR Register25
EEADRH Register25
EECON1 Register25
EECON2 Register25
EEDATA Register25
EEDATH Register25
Electrical Characteristics115
Endurance1
Errata3
External Clock Input34
External Interrupt Input (RB0/INT). See Interrupt Sources.

F

	~~
Flash Program Memory	.25
Associated Registers	. 32
EEADR Register	.25
EEADRH Register	.25
EECON1 Register	.25
EECON2 Register	.25
EEDATA Register	.25
EEDATH Register	.25
Erasing	.28
Reading	.28
Writing	.30
FSR Register13, 14, 15,	23
G	
General Purpose Register File	.10

I

/O Ports	2
² C	
Associated Registers)
Master Mode Operation79)
Mode Selection	
Multi-Master Mode Operation	
Slave Mode	
Addressing	
Reception	
SCL, SDA Pins	
Transmission	
D Locations	
n-Circuit Debugger	
n-Circuit Serial Programming	
n-Circuit Serial Programming (ICSP)	
NDF Register	
ndirect Addressing	
Instruction Format	
Instruction Set	
Descriptions	
Read-Modify-Write Operations	
Summary Table 104	
ADDLW 105	
ADDWF 105	
ANDLW 105	5
ANDWF 105	5
BCF 105	5
BSF 105	5
BTFSC 106	3
BTFSS	3
CALL	
CLRF	
CLRW	
CLRWDT	
COMF	
DECF	
DECFSZ	
GOTO	
INCF	
INCF	
IORLW	
IORUV	
MOVF	
MOVWF	
NOP	
RETFIE	
RETLW	
RETURN	
RLF 109	
RRF 109	
SLEEP 109	
SUBLW 110	
SUBWF 110)
SWAPF 110)
XORLW 110	
XORWF 110)
NT Interrupt (RB0/INT). See Interrupt Sources.	
NTCON Register	5
GIE Bit	
INTE Bit	
INTF Bit	
RBIF Bit	