E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f818-i-sstsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F818/819 devices. Additional information may be found in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) which may be downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F818/819 belongs to the Mid-Range family of the PIC[®] devices. The devices differ from each other in the amount of Flash program memory, data memory and data EEPROM (see Table 1-1). A block diagram of the devices is shown in Figure 1-1. These devices contain features that are new to the PIC16 product line:

- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as the system clock via the configuration bits. Refer to Section 4.5 "Internal Oscillator Block" and Section 12.1 "Configuration Bits" for further details.
- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 6.0 "Timer0 Module" for further details.
- The amount of oscillator selections has increased. The RC and INTRC modes can be selected with an I/O pin configured as an I/O or a clock output (Fosc/4). An external clock can be configured with an I/O pin. Refer to **Section 4.0 "Oscillator Configurations"** for further details.

TABLE 1-1:AVAILABLE MEMORY INPIC16F818/819 DEVICES

Device	Program	Data	Data	
	Flash	Memory	EEPROM	
PIC16F818	1K x 14	128 x 8	128 x 8	

Device	Program	Data	Data	
	Flash	Memory	EEPROM	
PIC16F819	2K x14	256 x 8	256 x 8	

There are 16 I/O pins that are user configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External Interrupt
- Change on PORTB Interrupt
- Timer0 Clock Input
- Low-Power Timer1 Clock/Oscillator
- Capture/Compare/PWM
- 10-bit, 5-channel Analog-to-Digital Converter
- SPI/I²C
- MCLR (RA5) can be configured as an Input

Table 1-2 details the pinout of the devices with descriptions and details for each pin.

3.3 Reading Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available in the very next cycle in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

	L J-1.		.,	
BANKSEL	EEADR		;	Select Bank of EEADR
MOVF	ADDR, W		;	
MOVWF	EEADR		;	Data Memory Address
			;	to read
BANKSEL	EECON1		;	Select Bank of EECON1
BCF	EECON1,	EEPGD	;	Point to Data memory
BSF	EECON1,	RD	;	EE Read
BANKSEL	EEDATA		;	Select Bank of EEDATA
MOVF	EEDATA,	W	;	W = EEDATA

EXAMPLE 3-1: DATA EEPROM READ

3.4 Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then, the user must follow a specific write sequence to initiate the write for each byte.

The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2).

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- 10. At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set (EEIF must be cleared by firmware). If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to be clear, to indicate the end of the program cycle.

EXAMPLE 3-2: DATA EEPROM WRITE

	BANKSEL	EECON1		'	Select Bank of
				'	EECON1
		EECON1,	WR		Wait for write
	GOTO				to complete
	BANKSEL	EEADR		'	Select Bank of
				;	EEADR
	MOVF	ADDR, W		;	
	MOVWF	EEADR		;	Data Memory
				;	Address to write
	MOVF	VALUE, V	N.	;	
	MOVWF	EEDATA		;	Data Memory Value
				;	to write
	BANKSEL	EECON1		;	Select Bank of
				;	EECON1
	BCF	EECON1,	EEPGD	;	Point to DATA
				;	memory
	BSF	EECON1,	WREN	;	Enable writes
	BCF	INTCON,	GIE	;	Disable INTs.
	MOVLW	55h		;	
σg	MOVUR MOVUR MOVLW MOVWF	EECON2		;	Write 55h
uire	MOVLW	AAh		;	
ba	MOVWF	EECON2		;	Write AAh
ш о	BSF	EECON1,	WR	;	Set WR bit to
				;	begin write
	BSF	INTCON,	GIE	;	Enable INTs.
	BCF	EECON1,	WREN	;	Disable writes

An example of the complete four-word write sequence is shown in Example 3-5. The initial address is loaded into the EEADRH:EEADR register pair; the four words of data are loaded using indirect addressing, assuming that a row erase sequence has already been performed.

EXAMPLE 3-5: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. The 32 words in the erase block have already been erased. ; 2. A valid starting address (the least significant bits = '00') is loaded into EEADRH:EEADR ; 3. This example is starting at 0x100, this is an application dependent setting. ; 4. The 8 bytes (4 words) of data are loaded, starting at an address in RAM called ARRAY. ; 5. This is an example only, location of data to program is application dependent. ; 6. word_block is located in data memory. BANKSEL EECON1 ;prepare for WRITE procedure EECON1, EEPGD BSF ; point to program memory EECON1, WREN BSF ;allow write cycles BCF EECON1, FREE ;perform write only BANKSEL word block MOVLW .4 MOVWF word block ;prepare for 4 words to be written BANKSEL EEADRH ;Start writing at 0x100 MOVLW 0x01 MOVWF ;load HIGH address EEADRH MOVLW 0x00 MOVWF EEADR ;load LOW address BANKSEL ARRAY MOVLW ARRAY ; initialize FSR to start of data MOVWF FSR LOOP BANKSEL EEDATA MOVF INDF, W ; indirectly load EEDATA MOVWF EEDATA INCF FSR. F ; increment data pointer MOVF INDF, W ; indirectly load EEDATH MOVWF EEDATH INCE FSR, F ; increment data pointer BANKSEL EECON1 ;required sequence MOVLW 0x55 MOVWF EECON2 MOVIW 0xAA ner MOVWF EECON2 BSF EECON1, WR ;set WR bit to begin write NOP ; instructions here are ignored as processor NOP BANKSEL EEADR INCF EEADR, f ;load next word address BANKSEL word_block DECFSZ word_block, f ; have 4 words been written? GOTO loop ;NO, continue with writing BANKSEL EECON1 BCF EECON1, WREN ;YES, 4 words complete, disable writes BSF INTCON, GIE ;enable interrupts

5.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

5.1 PORTA and the TRISA Register

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On	а	Pow	/er-or	n Reset,	the	pins
	POR	RTA<	:4:0>	are	configured	as	analog
	input	ts ar	nd rea	ad as	'0'.		

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input and with an analog input to become the RA4/AN4/ T0CKI pin. The RA4/AN4/T0CKI pin is a Schmitt Trigger input and full CMOS output driver.

Pin RA5 is multiplexed with the Master Clear module input. The RA5/MCLR/VPP pin is a Schmitt Trigger input.

Pin RA6 is multiplexed with the oscillator module input and external oscillator output. Pin RA7 is multiplexed with the oscillator module input and external oscillator input. Pin RA6/OSC2/CLKO and pin RA7/OSC1/CLKI are Schmitt Trigger inputs and full CMOS output drivers.

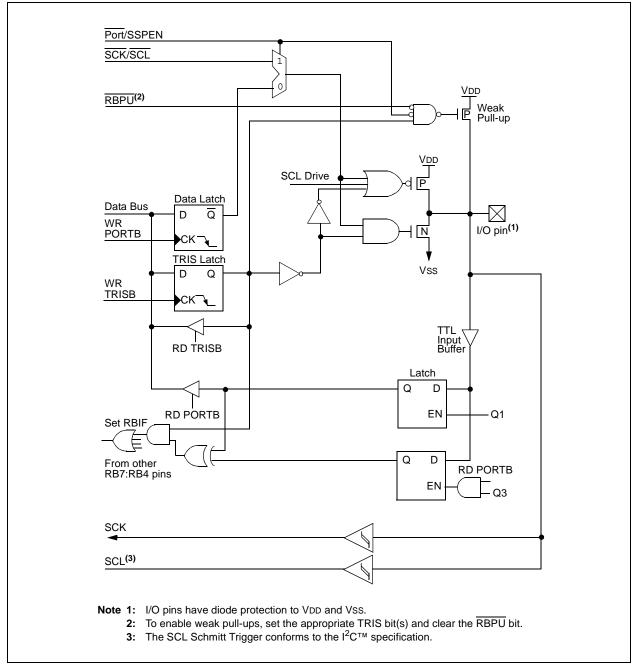
Pins RA<1:0> are multiplexed with analog inputs. Pins RA<3:2> are multiplexed with analog inputs and VREF inputs. Pins RA<3:0> have TTL inputs and full CMOS output drivers.

EXAMPLE 5-1:	INITIALIZING PORTA
$L \land A W \square L L J^{-} \square$	

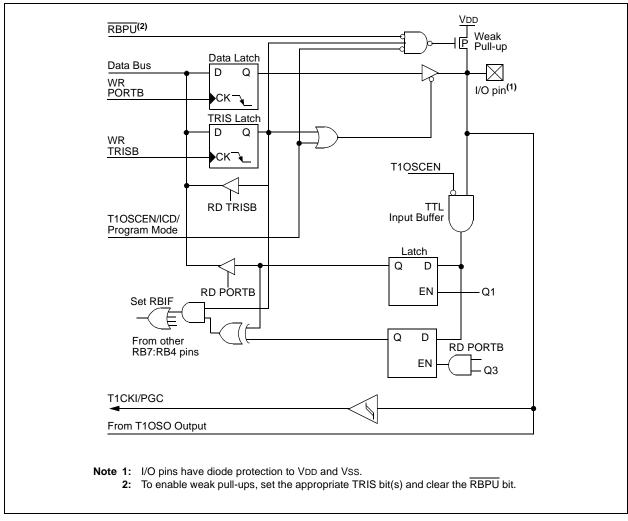
BANKSEL	PORTA	; select bank of PORTA
CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
BANKSEL	ADCON1	; Select Bank of ADCON1
MOVLW	0x06	; Configure all pins
MOVWF	ADCON1	; as digital inputs
MOVLW	0xFF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<7:0> as inputs

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit 2	TTL	Input/output, analog input or VREF
RA3/AN3/VREF+	bit 3	TTL	Input/output, analog input or VREF+.
RA4/AN4/T0CKI	bit 4	ST	Input/output, analog input or external clock input for Timer0.
RA5/MCLR/VPP	bit 5	ST	Input, Master Clear (Reset) or programming voltage input.
RA6/OSC2/CLKO	bit 6	ST	Input/output, connects to crystal or resonator, oscillator output or 1/4 the frequency of OSC1 and denotes the instruction cycle in RC mode.
RA7/OSC1/CLKI	bit 7	ST/CMOS ⁽¹⁾	Input/output, connects to crystal or resonator or oscillator input.

TABLE 5-1: PORTA FUNCTIONS

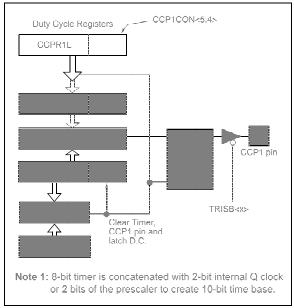

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxx0 0000	uuu0 0000
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽¹⁾	PORTA	Data Dire	ection Reg	gister		1111 1111	1111 1111
9Fh	ADCON1	ADFM	ADCS2			PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Note 1: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

9.3 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<x> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTB I/O data
	latch.

Figure 9-3 shows a simplified block diagram of the CCP module in PWM mode.

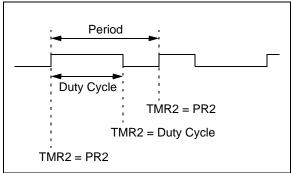

For a step by step procedure on how to set up the CCP module for PWM operation, see **Section 9.3.3 "Setup for PWM Operation"**.

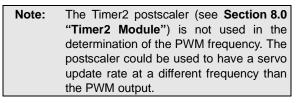
FIGURE 9-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 9-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 9-4: PWM OUTPUT

9.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula.


EQUATION 9-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 9-2:

CCPR1L and CCP1CON<5:4> can be written to at any time but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for 18/20 pin devices.

The conversion of an analog input signal results in a corresponding 10-bit digital number. The A/D module has a high and low-voltage reference input that is software selectable to some combination of VDD, VSS, RA2 or RA3.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/Os.

Additional information on using the A/D module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
	bit 7							bit 0			
bit 7-6	ADCS1:AD	DCS0: A/D C	onversion C	lock Select b	oits						
	If ADCS2 =										
	00 = FOSC/ 01 = FOSC/	00 = Fosc/2									
	10 = FOSC	-									
		clock derived	from the in	ternal A/D m	odule RC o	scillator)					
	If ADCS2 =	<u>= 1:</u>									
	00 = FOSC	-									
	01 = FOSC 10 = FOSC	-									
		• •	from the in	ternal A/D m	odule RC o	scillator)					
bit 5-3	11 = FRC (clock derived from the internal A/D module RC oscillator) CHS2:CHS0: Analog Channel Select bits										
		nnel 0 (RA0/		01 0110							
		nnel 1 (RA1/	,								
		nnel 2 (RA2/	,								
		nnel 3 (RA3/ nnel 4 (RA4/									
bit 2		: A/D Conve	•	hit							
	If ADON =		SION Status	DIL							
			progress (se	tting this bit	starts the A	D conversion)					
						cleared by ha	rdware wh	en the			
	A/D co	onversion is o	complete)								
bit 1	Unimplem	ented: Read	l as '0'								
bit 0	ADON: A/I										
		onverter mod									
	0 = A/D cc	onverter mod	ule is snut-o	m and consu	mes no ope	erating current					
	Legend:										
	R = Reada	able bit	W = W	/ritable bit	U = Unir	nplemented bit	, read as '()'			

'1' = Bit is set

'0' = Bit is cleared

REGISTER 11-1: ADCON0: A/D CONTROL REGISTER 0 (ADDRESS 1Fh)

-n = Value at POR

x = Bit is unknown

11.5 A/D Operation During Sleep

The A/D module can operate during Sleep mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in Sleep, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in Sleep, ensure the SLEEP instruction immediately <u>follows</u> the instruction that sets the GO/DONE bit.

11.6 Effects of a Reset

A device Reset forces all registers to their Reset state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

11.7 Use of the CCP Trigger

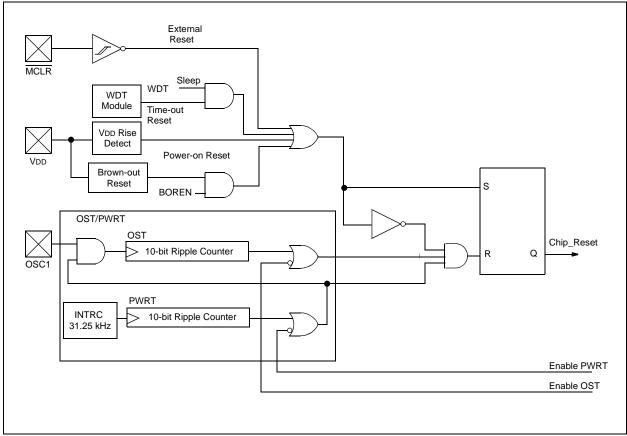
An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF		—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRESH	A/D Res	ult Regist	er High By	/te					xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Res	ult Regist	er Low By	te					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxx0 0000	uuu0 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	PORTA	Data Di	rection Regis	ster		1111 1111	1111 1111

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.


12.2 Reset

The PIC16F818/819 differentiates between various kinds of Reset:

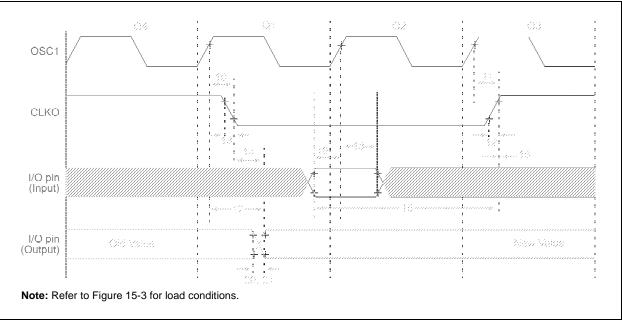
- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 12-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR wake-up from Sleep, the CPU requires or approximately 5-10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 12-4 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 12-1.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

15.0 ELECTRICAL CHARACTERISTICS


Absolute Maximum Ratings †

Ambient temperature under bias	40°C to +125°C
Ambient temperature under bias Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.3 to +14V
Total power dissipation (Note 1)	1W
Maximum current out of Vss pin	200 mA
Maximum current into VDD pin	200 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	100 mA
Maximum current sourced by PORTA	100 mA
Maximum current sunk by PORTB	100 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-V$	ЭН) x IOH} + ∑(VOL x IOL)
 Voltage spikes at the MCLR pin may cause latch-up. A series resistor of greater th to pull MCLR to VDD, rather than tying the pin directly to VDD. 	an 1 k Ω should be used

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F818/819

TABLE 15-2:	CLKO AND I/O TIMING REQUIREMENTS
-------------	----------------------------------

Param No.	Symbol	Characterist	ic	Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 \uparrow to CLKO \downarrow		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		_	75	200	ns	(Note 1)
12*	ТскR	CLKO Rise Time		_	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TCKL2IOV	CLKO ↓ to Port Out Valid			_	0.5 TCY + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO ↑		Tosc + 200	_	—	ns	(Note 1)
16*	TCKH2IOI	Port In Hold after CLKO ↑		0	—	—	ns	(Note 1)
17*	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out Valid		_	100	255	ns	
18*	TosH2iol	OSC1 ↑ (Q2 cycle) to Port	PIC16F818/819	100	_	—	ns	
	TosH2iOI OSC1 1 (Q2 cycle) to Port Input Invalid (I/O in hold time)	PIC16LF818/819	200	—	_	ns		
19*	TIOV20sH	Port Input Valid to OSC1 1 (I/O	in setup time)	0	_	—	ns	
20*	TIOR	Port Output Rise Time	PIC16 F 818/819		10	40	ns	
			PIC16LF818/819	_	—	145	ns	
21*	TIOF	Port Output Fall Time	PIC16 F 818/819		10	40	ns	
			PIC16 LF 818/819		_	145	ns	
22††*	TINP	INT pin High or Low Time		Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 Change INT High or	Low Time	Тсү	-	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

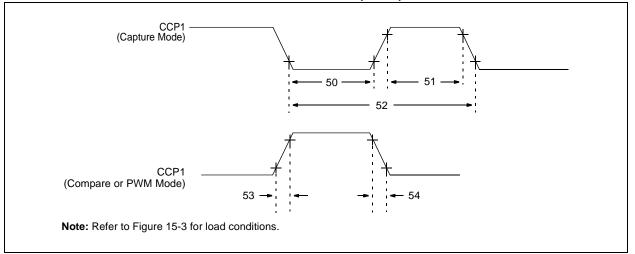
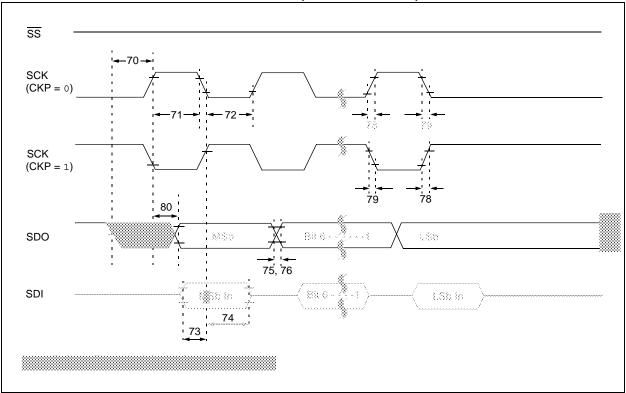
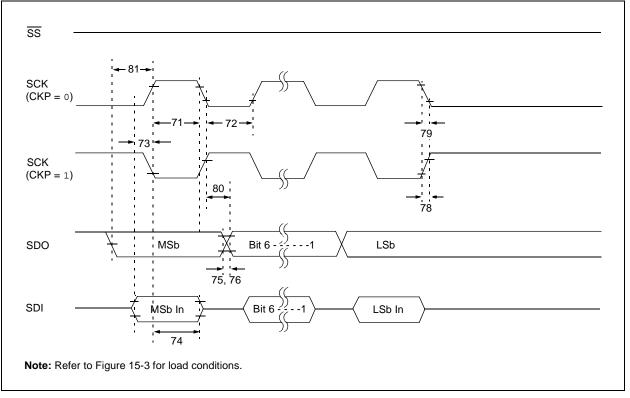



TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

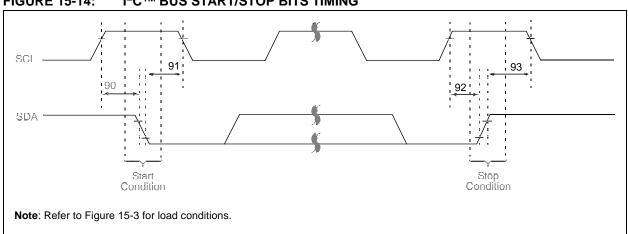
Param No.	Symbol		Characteristic			Тур†	Max	Units	Conditions
50*	TCCL	CCP1	No Prescaler		0.5 Tcy + 20	—	—	ns	
	Input Lov	Input Low Time		PIC16F818/819	10	—	—	ns	
			With Prescaler	PIC16 LF 818/819	20	—	—	ns	
51* TCCH CCP1		CCP1	No Prescaler		0.5 TCY + 20		_	ns	
	Input High Time		PIC16F818/819	10		_	ns		
		With Prescaler	PIC16 LF 818/819	20		—	ns		
52*	TCCP	CCP1 Input Per	CCP1 Input Period		<u>3 Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)
53*	TCCR	CCP1 Output R	ise Time	PIC16F818/819	—	10	25	ns	
				PIC16 LF 818/819	—	25	50	ns	
54*	TccF	CCP1 Output Fa	all Time	PIC16F818/819	—	10	25	ns	
				PIC16 LF 818/819	—	25	45	ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-10: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-11: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)



Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү	-	-	ns	
71*	TscH	SCK Input High Time (Slave mode)		Tcy + 20	-	_	ns	
72*	TscL	SCK Input Low Time (Slave mode)		Tcy + 20	-	-	ns	
73*	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SC	Setup Time of SDI Data Input to SCK Edge				ns	
74*	TSCH2DIL, TSCL2DIL	Hold Time of SDI Data Input to SCK Edge		100	—	—	ns	
75*	TDOR	SDO Data Output Rise Time	PIC16 F 818/819 PIC16 LF 818/819		10 25	25 50	ns ns	
76*	TDOF	SDO Data Output Fall Time	SDO Data Output Fall Time			25	ns	
77*	TssH2doZ	SS ↑ to SDO Output High-Impedan	се	10	_	50	ns	
78*	TscR	SCK Output Rise Time (Master mode)	•		10 25	25 50	ns ns	
79*	TscF	SCK Output Fall Time (Master mod	e)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC16 F 818/819 PIC16 LF 818/819	_	_	50 145	ns ns	
81*	TDOV2scH, TDOV2scL	SDO Data Output Setup to SCK Edge		Тсү	—	—	ns	
82*	TssL2doV	SDO Data Output Valid after $\overline{SS} \downarrow E$	Edge	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	—	—	ns	

TABLE 15-6: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-14: I²C[™] BUS START/STOP BITS TIMING

PIC16F818/819

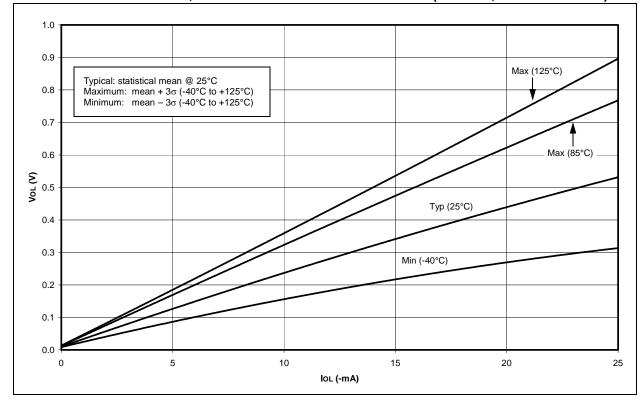
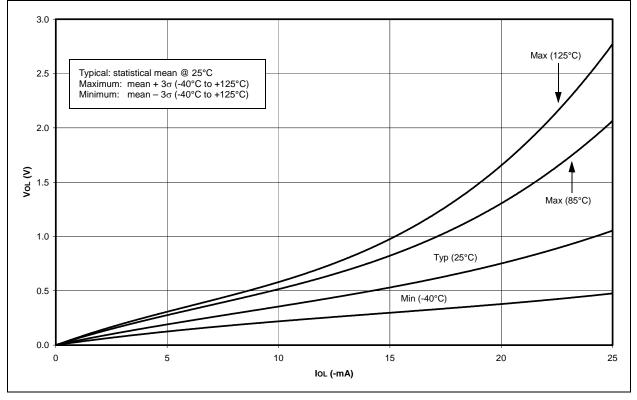
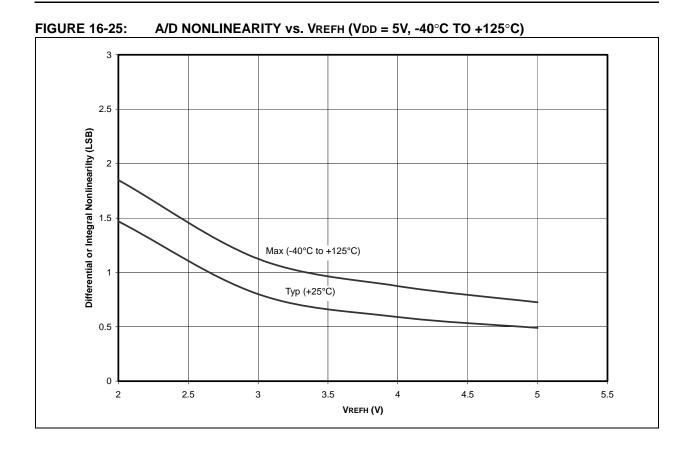
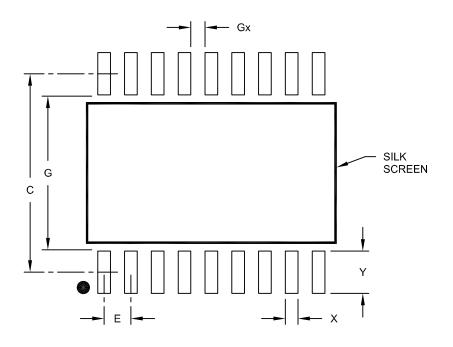




FIGURE 16-19: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C)



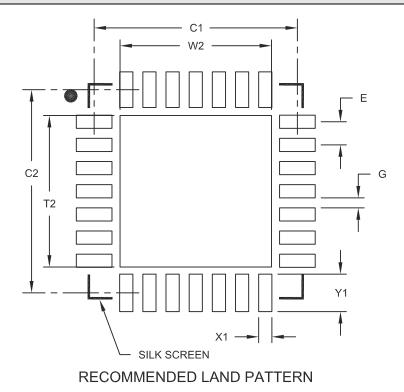
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	S		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Dimension Limits			MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support