

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f818t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F818/819. These are the program memory and the data memory. Each block has its own bus, so access to each block can occur during the same oscillator cycle.

The data memory can be further broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The PIC16F818 device's 128 bytes of data EEPROM memory have the address range of 00h-7Fh and the PIC16F819 device's 256 bytes of data EEPROM memory have the address range of 00h-FFh. More details on the EEPROM memory can be found in Section 3.0 "Data EEPROM and Flash Program Memory".

Additional information on device memory may be found in the *"PIC[®] Mid-Range Reference Manual"* (DS33023).

2.1 **Program Memory Organization**

The PIC16F818/819 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F818, the first 1K x 14 (0000h-03FFh) is physically implemented (see Figure 2-1). For the PIC16F819, the first 2K x 14 is located at 0000h-07FFh (see Figure 2-2). Accessing a location above the physically implemented address will cause a wraparound. For example, the same instruction will be accessed at locations 020h, 420h, 820h, C20h, 1020h, 1420h, 1820h and 1C20h.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PROGRAM MEMORY MAP AND STACK FOR PIC16F819

FIGURE 2-4: PIC16F819 REGISTER FILE MAP

ŀ	File Address		File Address	ļ	File Address	А	Fi dd
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	18
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	18
PCL	02h	PCL	82h	PCL	102h	PCL	1
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	1
FSR	04h	FSR	84h	FSR	104h	FSR	1
PORTA	05h	TRISA	85h		105h		1
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	1
	07h		87h		107h		1
	08h		88h		108h		18
	09h		89h		109h		18
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18
T1CON	10h	OSCTUNE	90h		110h		19
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUE	13h	SSPADD	93h				
SSPCON	14n	SSPSTAT	94h				
	15h		95h				
	160		96h				
CCP1CON	170		97h				
	18n 10h		98h				
	1911		99n				
	1 A II 1 B b		9An ODh				
	1011 101		9BN				
			9011 00h				
	1Eh	ADRESI					
	1Fh		9En 9Fh		11Fh		19
ADCONU	20h				120h		1.
	2011		AUN				
General		General		General			
Purpose		Register		Register		Accesses	
Register		80 Bytes		80 Bytes		20h-7Fh	
96 Bytes				,			
		A a a a a a a a a a a	EFh	A.0000000	16Fh		
		ACCESSES 70h-7Fh	FUN	70h-7Fh			
Bank 0	J 7Fh	Rank 1	FFh	Bank 2	17Fh	Rank 3	1
Dalik U		Dalik I		Dank Z		Dank J	

3.7 Writing to Flash Program Memory

Flash program memory may only be written to if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT1:WRT0 of the device Configuration Word (Register 12-1). Flash program memory must be written in four-word blocks. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where EEADR<1:0> = 00. At the same time, all block writes to program memory are done as write-only operations. The program memory must first be erased. The write operation is edge-aligned and cannot occur across boundaries.

To write to the program memory, the data must first be loaded into the buffer registers. There are four 14-bit buffer registers and they are addressed by the low 2 bits of EEADR.

The following sequence of events illustrate how to perform a write to program memory:

- Set the EEPGD and WREN bits in the EECON1 register
- Clear the FREE bit in EECON1
- Write address to EEADRH:EEADR
- Write data to EEDATH:EEDATA
- Write 55 to EECON2
- Write AA to EECON2
- Set WR bit in EECON 1

The user must follow the same specific sequence to initiate the write for each word in the program block by writing each program word in sequence (00, 01, 10, 11).

There are 4 buffer register words and all four locations **MUST** be written to with correct data.

After the "BSF EECON1, WR" instruction, if EEADR \neq xxxxx11, then a short write will occur. This short write-only transfers the data to the buffer register. The WR bit will be cleared in hardware after one cycle.

After the "BSF EECON1, WR" instruction, if EEADR = xxxxx11, then a long write will occur. This will simultaneously transfer the data from EEDATH:EEDATA to the buffer registers and begin the write of all four words. The processor will execute the next instruction and then ignore the subsequent instruction. The user should place NOP instructions into the second words. The processor will then halt internal operations for typically 2 msec in which the write takes place. This is not a Sleep mode, as the clocks and peripherals will continue to run. After the write cycle, the processor will resume operation with the 3rd instruction after the EECON1 write instruction.

After each long write, the 4 buffer registers will be reset to 3FFF.

FIGURE 3-1: BLOCK WRITES TO FLASH PROGRAM MEMORY

3.8 Protection Against Spurious Write

There are conditions when the device should not write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents an EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

3.9 Operation During Code-Protect

When the data EEPROM is code-protected, the microcontroller can read and write to the EEPROM normally. However, all external access to the EEPROM is disabled. External write access to the program memory is also disabled.

When program memory is code-protected, the microcontroller can read and write to program memory normally as well as execute instructions. Writes by the device may be selectively inhibited to regions of the memory depending on the setting of bits, WRT1:WRT0, of the Configuration Word (see **Section 12.1 "Configuration Bits"** for additional information). External access to the memory is also disabled.

TABLE 3-1:REGISTERS/BITS ASSOCIATED WITH DATA EEPROM AND
FLASH PROGRAM MEMORIES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
10Ch	EEDATA	EEPRON	1/Flash D	lash Data Register Low Byte							uuuu uuuu
10Dh	EEADR	EEPRON	1/Flash A	ddress Reg	gister Lov	xxxx xxxx	uuuu uuuu				
10Eh	EEDATH	_	_	EEPROM	/Flash Da	ata Registe	r High Byte			xx xxxx	uu uuuu
10Fh	EEADRH	—	_	—	—	—	EEPROM/ Register H	'Flash Addr ligh Byte	ess	xxx	uuu
18Ch	EECON1	EEPGD	_	_	FREE	WRERR	WREN	WR	RD	xx x000	xx q000
18Dh	EECON2	EEPROM	EEPROM Control Register 2 (not a physical register)								
0Dh	PIR2		—	—	EEIF	—	—	—	—		0
8Dh	PIE2	—	—	_	EEIE	_	—	—	—		

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM or Flash program memory.

5.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

PORTB is multiplexed with several peripheral functions (see Table 5-3). PORTB pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISB as the destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The maximum PWM resolution (bits) for a given PWM frequency is given by the following formula.

EQUATION 9-3:

Resolution =
$$\frac{\log(\frac{Fosc}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<x> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.
 - Note: The TRISB bit (2 or 3) is dependant upon the setting of configuration bit 12 (CCPMX).

TABLE 9-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Value all o Res	e on ther sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1		ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000
8Ch	PIE1		ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000
86h	TRISB	PORT	B Data Dire	ection Regis	ter					1111	1111	1111	1111
11h	TMR2	Timer ₂	2 Module Re	egister						0000	0000	0000	0000
92h	PR2	Timer ₂	2 Module Pe	riod Registe	er					1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Captu	Capture/Compare/PWM Register 1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Captu	Capture/Compare/PWM Register 1 (MSB)						uuuu	uuuu			
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

10.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<4,1> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

Either or both of the following conditions will cause the SSP module not to give this ACK pulse:

- a) The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- b) The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF but bit, SSPIF (PIR1<3>), is set. Table 10-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, are shown in timing parameter #100 and parameter #101.

10.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The Buffer Full bit, BF, is set.
- c) An ACK pulse is generated.
- d) SSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) – on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.

10.3.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit, BF (SSPSTAT<0>), is set or bit, SSPOV (SSPCON<6>), is set.

An SSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

10.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RB4/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then pin RB4/SCK/SCL should be enabled by setting bit, CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 10-7). The ADRESH:ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see **Section 11.1** "**A/D Acquisition Requirements**". After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 11-1:

A/D BLOCK DIAGRAM

© 2001-2013 Microchip Technology Inc.

NOTES:

12.12 Watchdog Timer (WDT)

For PIC16F818/819 devices, the WDT is driven by the INTRC oscillator. When the WDT is enabled, the INTRC (31.25 kHz) oscillator is enabled. The nominal WDT period is 16 ms and has the same accuracy as the INTRC oscillator.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer wake-up). The TO bit in the Status register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit, WDTEN (see **Section 12.1 "Configuration Bits**"). WDT time-out period values may be found in **Section 15.0** "**Electrical Characteristics**" under parameter #31. Values for the WDT prescaler (actually a postscaler but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- **Note 1:** The CLRWDT and SLEEP instructions clear the WDT and the postscaler if assigned to the WDT and prevent it from timing out and generating a device Reset condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared but the prescaler assignment is not changed.

FIGURE 12-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-5: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
2007h	Configuration bits ⁽¹⁾	LVP	BOREN	MCLRE	FOSC2	PWRTEN	WDTEN	FOSC1	FOSC0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of these bits.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial)

PIC16LF (Indus	818/819 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F8 [,] (Indus	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units		Condi	tions		
	Power-Down Current (IPD)	(1)							
	PIC16LF818/819	0.1	0.4	μΑ	-40°C				
		0.1	0.4	μΑ	+25°C	VDD = 2.0V			
		0.4	1.5	μΑ	+85°C				
	PIC16LF818/819	0.3	0.5	μA	-40°C				
		0.3	0.5	μΑ	+25°C	VDD = 3.0V			
		0.7	1.7	μΑ	+85°C				
	All devices	0.6	1.0	μΑ	-40°C				
		0.6	1.0	μA	+25°C				
			5.0	μA	+85°C	VDD = 5.0V			
	Extended devices	6.0	28	μA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKI Frequency (Note 1)	DC		1	MHz	XT and RC Oscillator mode
			DC	—	20	MHz	HS Oscillator mode
			DC	_	32	kHz	LP Oscillator mode
		Oscillator Frequency (Note 1)	DC		4	MHz	RC Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			4	—	20	MHz	HS Oscillator mode
			5	_	200	kHz	LP Oscillator mode
1	Tosc	External CLKI Period (Note 1)	1000	—	_	ns	XT and RC Oscillator mode
			50	—		ns	HS Oscillator mode
			5	_		ms	LP Oscillator mode
		Oscillator Period (Note 1)	250		_	ns	RC Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	250	ns	HS Oscillator mode
			5	_	—	ms	LP Oscillator mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High	500	_	_	ns	XT Oscillator
	TosH	or Low Time	2.5	—	—	ms	LP Oscillator
			15	—	—	ns	HS Oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT Oscillator
	TosF	Fall Time	—	—	50	ns	LP Oscillator
			—	—	15	ns	HS Oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 15-2:	CLKO AND I/O TIMING REQUIREMENTS
-------------	---

Param No.	Symbol	Characterist	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1 ↑ to CLKO ↓		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12*	TCKR	CLKO Rise Time		—	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TcĸL2ıoV	CLKO \downarrow to Port Out Valid		—	_	0.5 TCY + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO 1		Tosc + 200	-	—	ns	(Note 1)
16*	TCKH2IOI	Port In Hold after CLKO ↑		0	_	—	ns	(Note 1)
17*	TosH2ıoV	OSC1 ↑ (Q1 cycle) to Port Out	Valid	—	100	255	ns	
18*	TosH2ıol	OSC1 ↑ (Q2 cycle) to Port	PIC16 F 818/819	100	_	—	ns	
		Input Invalid (I/O in hold time)	PIC16 LF 818/819	200	-	—	ns	
19*	TIOV20SH	Port Input Valid to OSC1 \uparrow (I/O	in setup time)	0	—	—	ns	
20*	TIOR	Port Output Rise Time	PIC16 F 818/819	—	10	40	ns	
			PIC16 LF 818/819	—	-	145	ns	
21*	TIOF	Port Output Fall Time	PIC16 F 818/819	_	10	40	ns	
			PIC16 LF 818/819	—	_	145	ns	
22††*	TINP	INT pin High or Low Time		Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 Change INT High or	Low Time	Тсү	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic			Тур†	Max	Units	Conditions		
40*	T⊤0H	T0CKI High Pulse	e Width	No Prescaler	0.5 Tcy + 20	_	_	ns	Must also meet		
				With Prescaler	10	_	_	ns	parameter 42		
41*	T⊤0L	T0CKI Low Pulse	Width	No Prescaler	0.5 Tcy + 20		_	ns	Must also meet		
				With Prescaler	10		_	ns	parameter 42		
42*	T⊤0P	T0CKI Period		No Prescaler	Tcy + 40		_	ns			
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)		
45*	T⊤1H	T1CKI High	Synchronous, Pre	scaler = 1	0.5 Tcy + 20	-	_	ns	Must also meet		
		Time	Synchronous,	PIC16 F 818/819	15	_	_	ns	parameter 47		
			Prescaler = 2,4,8	PIC16LF818/819	25	_	_	ns			
			Asynchronous	PIC16 F 818/819	30	-	_	ns			
				PIC16LF818/819	50	_	_	ns			
46*	T⊤1L	T1CKI Low Time	CKI Low Time Synchronous, Prescaler = 1				_	ns	Must also meet		
			Synchronous,	PIC16 F 818/819	15	—	_	ns	parameter 47		
			Prescaler = 2,4,8	PIC16LF818/819	25	_	_	ns			
			Asynchronous	PIC16 F 818/819	30	_	_	ns			
				PIC16LF818/819	50	-	_	ns			
47*	TT1P	T1CKI Input Period	Synchronous	PIC16 F 818/819	Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)		
				PIC16 LF 818/819	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)		
			Asynchronous	PIC16 F 818/819	60		_	ns			
				PIC16LF818/819	100		_	ns			
	FT1	Timer1 Oscillator (Oscillator enable	Input Frequency R d by setting bit T10	nput Frequency Range I by setting bit T1OSCEN)			32.768	kHz			
48	TCKEZTMR1	Delay from Extern	nal Clock Edge to T	imer Increment	2 Tosc	—	7 Tosc	—			

TABLE 15-4:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-10: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-11: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

FIGURE 16-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

17.0 **PACKAGING INFORMATION**

17.1 **Package Marking Information**

18-Lead PDIP (300 mil)

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensi	ion Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B