

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f819t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

```
FIGURE 2-3:
```

PIC16F818 REGISTER FILE MAP

A	File ddress		File Address		File Address	۵	File ddre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181
PCL	02h	PCI	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
	07h	ITTIOD	87h		107h		187
	08h		88h		108h		188
	09h		89h		109h		189
PCLATH	0Ah	PCI ATH	8Ah	PCLATH	10Ah	PCI ATH	184
INTCON	0Bh		8Bh	INTCON	10Bh		18F
PIR1	0Ch	PIF1	8Ch	FEDATA	10Ch	EFCON1	180
PIR2	0Dh	PIE2	8Dh	FEADR	10Dh	EECON2	180
TMR1I	0Eh	PCON	8Eh		10Eh	Reserved ⁽¹⁾	185
	0Eh	OSCCON	0EH		10Eh	Reserved(1)	100
	10h		00h		110h	Reserveu	100
	1011 11h	OSCIONE	9011 01h				190
	12h	DD2	9111 02h				
	1211 13h		9211 02h				
SSPCON	1/h		9311 04b				
	1 4 11 15h	55P5TAT	9411 05b				
	16h		9511 06b				
	17h		9011 07h				
CONTOON	18h		9711 09h				
	1011 10h		9011 00h				
	1Δh		9911 04b				
	1Rh		9AN 0Ph				
	1011 101		9011 00h				
	1011 1Dh		901 006				
	1011 1Eb		9DN				
ADCONO	1Eh		905h		11Fh		19F
ADCONU	20h	ADCON1	9711		120h		140
	2011	Purpose Register	A0h		12011		.7 (
General		32 Bytes	BFh				
Purpose			C0h	Accesses		Accesses	
Register		Accesses		20h-7Fh		20h-7Fh	
96 Bytes		40h-7Fh					
	7Fh		FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
Unimple * Not a ph lote 1: These re	mented d nysical reg egisters a	ata memory locati jister. re reserved; maint	ons, read ain these	as '0'. registers clear.			

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

3.3 Reading Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available in the very next cycle in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

		DA	• *	
BANKSEL	EEADR		;	Select Bank of EEADR
MOVF	ADDR, W		;	
MOVWF	EEADR		;	Data Memory Address
			;	to read
BANKSEL	EECON1		;	Select Bank of EECON1
BCF	EECON1,	EEPGD	;	Point to Data memory
BSF	EECON1,	RD	;	EE Read
BANKSEL	EEDATA		;	Select Bank of EEDATA
MOVF	EEDATA,	W	;	W = EEDATA

EXAMPLE 3-1: DATA EEPROM READ

3.4 Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then, the user must follow a specific write sequence to initiate the write for each byte.

The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2).

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - · Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- 10. At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set (EEIF must be cleared by firmware). If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to be clear, to indicate the end of the program cycle.

EXAMPLE 3-2: DATA EEPROM WRITE

		BANKSEL	EECON1		;	Select Bank of
		BTFSC GOTO BANKSEL	EECON1, \$-1 EEADR	WR	; ; ; ;	Wait for write to complete Select Bank of
		MOVF	ADDR, W		; ;	EEADR
		MOAME	EEADR		; ;	Data Memory Address to write
		MOVF MOVWF	VALUE, V EEDATA	1	; ; ;	Data Memory Value
		BANKSEL	EECON1		;;;	Select Bank of EECON1
		BCF	EECON1,	EEPGD	;	Point to DATA
		BSF	EECON1,	WREN	; ;	Enable writes
		BCF MOVLW	INTCON, 55h	GIE	;;	Disable INTs.
ed	nce	MOVWF	EECON2		;	Write 55h
equir	enbe	MOVLW MOVWF	AAh EECON2		;;	Write AAh
æ	ű	BSF	EECON1,	WR	;	Set WR bit to
L	•	BSF	INTCON,	GIE	; ;	Enable INTs.
		BCF	EECON1,	WREN	;	Disable writes

FIGURE 5-11: BLOCK DIAGRAM OF RB3 PIN

EXAMPLE 6-1: CHANGING THE PRESCALER ASSIGNMENT FROM TIMER0 TO WDT

BANKSEL	OPTION_REG	;	Select Bank of OPTION_REG
MOVLW	b'xx0x0xxx'	;	Select clock source and prescale value of
MOVWF	OPTION_REG	;	other than 1:1
BANKSEL	TMR0	;	Select Bank of TMR0
CLRF	TMR0	;	Clear TMR0 and prescaler
BANKSEL	OPTION_REG	;	Select Bank of OPTION_REG
MOVLW	b'xxxx1xxx'	;	Select WDT, do not change prescale value
MOVWF	OPTION_REG		
CLRWDT		;	Clears WDT and prescaler
MOVLW	b'xxxx1xxx'	;	Select new prescale value and WDT
MOVWF	OPTION_REG		

EXAMPLE 6-2: CHANGING THE PRESCALER ASSIGNMENT FROM WDT TO TIMER0

CLRWDT		;	Clear WDT and prescaler
BANKSEL	OPTION_REG	;	Select Bank of OPTION_REG
MOVLW	b'xxxx0xxx'	;	Select TMR0, new prescale
MOVWF	OPTION_REG	;	value and clock source
	· · _ ·	'	

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
01h,101h	01h,101h TMR0 Timer0 Module Register									XXXX XXXX	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

7.2 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit, $\overline{T1SYNC}$ (T1CON<2>), has no effect since the internal clock is always in sync.

7.3 Timer1 Counter Operation

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RB7/T1OSI/PGD when bit T1OSCEN is set, or on pin RB6/T1OSO/T1CKI/PGC when bit T1OSCEN is cleared.

If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 7-1: TIMER1 INCREMENTING EDGE

7.6 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 32.768 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 7-3. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper oscillator start-up.

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.

When using the Timer1 oscillator, In-Circuit Serial Programming[™] (ICSP[™]) may not function correctly (high-voltage or lowvoltage) or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.

If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead) or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

FIGURE 7-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 7-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2	
LP	LP 32 kHz		33 pF	

- **Note 1:** Microchip suggests this value as a starting point in validating the oscillator circuit.
 - 2: Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

7.7 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 7-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator, a grounded guard ring around the oscillator circuit, as shown in Figure 7-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. The seven possible options for TAD are:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than 1.6 μ s and not greater than 6.4 μ s.

Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

11.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current out of the device specification.

TABLE 11-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (F))

	Maximum Device Frequency		
Operation	ADCS<2>	ADCS<1:0>	
2 Tosc	0	00	1.25 MHz
4 Tosc	1	00	2.5 MHz
8 Tosc	0	01	5 MHz
16 Tosc	1	01	10 MHz
32 Tosc	0	10	20 MHz
64 Tosc	1	10	20 MHz
RC ^(1,2,3)	Х	11	(Note 1)

Note 1: The RC source has a typical TAD time of 4 μ s but can vary between 2-6 μ s.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for Sleep operation.

3: For extended voltage devices (LF), please refer to Section 15.0 "Electrical Characteristics".

12.9 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. Bit $\overline{\text{BOR}}$ is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if

bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-u	p	Brown-out R	Wake-up	
Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	TPWRT + 1024 • TOSC	1024 • Tosc	TPWRT + 1024 • TOSC	1024 • Tosc	1024 • Tosc
EXTRC, EXTCLK, INTRC	TPWRT	5-10 μs (1)	Tpwrt	5-10 μs ⁽¹⁾	5-10 μs (1)

Note 1: CPU start-up is always invoked on POR, BOR and wake-up from Sleep.

TABLE 12-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD			
0	x	1	1	Power-on Reset		
0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$		
0	x	x	0	Illegal, PD is set on POR		
1	0	1	1	Brown-out Reset		
1	1	0	1	WDT Reset		
1	1	0	0	WDT wake-up		
1	1	u	u	MCLR Reset during normal operation		
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep		

Legend: u = unchanged, x = unknown

TABLE 12-3: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

12.18 Low-Voltage ICSP Programming

The LVP bit of the Configuration Word register enables Low-Voltage ICSP Programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin.

If Low-Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when Programming mode is entered with VIHH on MCLR. The LVP bit can only be changed when using high voltage on MCLR.

It should be noted that once the LVP bit is programmed to '0', only the High-Voltage Programming mode is available and only this mode can be used to program the device.

When using Low-Voltage ICSP, the part must be supplied at 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code-protect bits from an ON state to an OFF state. For all other cases of Low-Voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs or user code can be reprogrammed or added.

The following LVP steps assume the LVP bit is set in the Configuration Word register.

- 1. Apply VDD to the VDD pin.
- 2. Drive MCLR low.
- 3. Apply VDD to the RB3/PGM pin.
- 4. Apply VDD to the $\overline{\text{MCLR}}$ pin.
- 5. Follow with the associated programming steps.

- Note 1: The High-Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP mode (LVP = 1), the RB3 pin can no longer be used as a general purpose I/O pin.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.
 - 4: RB3 should not be allowed to float if LVP is enabled. An external pull-down device should be used to default the device to normal operating mode. If RB3 floats high, the PIC16F818/819 device will enter Programming mode.
 - LVP mode is enabled by default on all devices shipped from Microchip. It can be disabled by clearing the LVP bit in the Configuration Word register.
 - 6: Disabling LVP will provide maximum compatibility to other PIC16CXXX devices.

15.1 DC Characteristics: Supply Voltage PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial)

PIC16LF818/819 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
PIC16F818/819 (Industrial, Extended)			Standard Operating Condition			Conditio	ons (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended	
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions			Conditions		
	Vdd	Supply Voltage						
D001		PIC16LF818/819	2.0	_	5.5	V	HS, XT, RC and LP Oscillator mode	
D001		PIC16F818/819	4.0		5.5	V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	_	V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	—	0.7	V	See Section 12.4 "Power-on Reset (POR)" for details	
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	—	V/ms	See Section 12.4 "Power-on Reset (POR)" for details	
	VBOR	Brown-out Reset Voltage						
D005		PIC16LF818/819	3.65	_	4.35	V		
D005		PIC16F818/819	3.65	_	4.35	V	FMAX = 14 MHz ⁽²⁾	

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data

2: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.4 DC Characteristics: PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extendedOperating voltage VDD range as described in Section 15.1 "DCCharacteristics: Supply Voltage".					
Param No.	Sym	Characteristic Min Typ† Max Units Conditions					Conditions	
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range	
D030A			Vss	—	0.8V	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2 Vdd	V	(Note 1)	
D033		OSC1 (in XT and LP mode)	Vss	—	0.3V	V		
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V		
		Ports RB1 and RB4:						
D034		with Schmitt Trigger buffer VSS — 0.3 VDD V For		For entire VDD range				
	Vih	Input High Voltage						
		I/O ports:						
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8V	—	Vdd	V	For entire VDD range	
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range	
D042		MCLR	0.8 Vdd	—	Vdd	V		
D042A		OSC1 (in XT and LP mode)	1.6V	—	Vdd	V		
		OSC1 (in HS mode)	0.7 Vdd	—	Vdd	V		
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V	(Note 1)	
		Ports RB1 and RB4:						
D044		with Schmitt Trigger buffer	0.7 Vdd	—	Vdd	V	For entire VDD range	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS	
II∟ Input Leakage Current (Notes 2, 3)		n						
D060		I/O ports	—	—	±1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance	
D061		MCLR	—	—	±5	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	—	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F818/819 be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.

TABLE 15-2:	CLKO AND I/O TIMING REQUIREMENTS
-------------	---

Param No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 \uparrow to CLKO \downarrow		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12*	TCKR	CLKO Rise Time		—	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TcĸL2ıoV	CLKO \downarrow to Port Out Valid		—	_	0.5 TCY + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO ↑		Tosc + 200	-	—	ns	(Note 1)
16*	TCKH2IOI	Port In Hold after CLKO ↑		0	_	—	ns	(Note 1)
17*	TosH2ıoV	OSC1 ↑ (Q1 cycle) to Port Out Valid		—	100	255	ns	
18*	TosH2iol OSC1 ↑ (Q2 cycle) to Port		PIC16 F 818/819	100	_	—	ns	
		Input Invalid (I/O in hold time)	PIC16 LF 818/819	200	-	—	ns	
19*	TIOV20SH	Port Input Valid to OSC1 \uparrow (I/O	in setup time)	0	—	—	ns	
20*	TIOR	Port Output Rise Time	PIC16 F 818/819	—	10	40	ns	
			PIC16 LF 818/819	—	-	145	ns	
21*	TIOF	Port Output Fall Time	PIC16 F 818/819	_	10	40	ns	
			PIC16 LF 818/819	—	_	145	ns	
22††*	TINP	INT pin High or Low Time		Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 Change INT High or	Low Time	Тсү	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

TABLE 15-9:A/D CONVERTER CHARACTERISTICS: PIC16F818/819 (INDUSTRIAL, EXTENDED)PIC16LF818/819 (INDUSTRIAL)

Param No.	Sym	Charac	cteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		—	—	10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral Linearity	Error	_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential Linear	rity Error	_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset Error		_	—	<±2	LSb	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A07	Egn	Gain Error		—	—	<±1	LSb	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A10	—	Monotonicity		—	guaranteed ⁽³⁾	_	_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage (VREF+ - VREF-)		2.0	—	Vdd + 0.3	V	
A21	Vref+	Reference Voltag	e High	AVDD - 2.5V		AVDD + 0.3V	V	
A22	Vref-	Reference Voltag	e Low	AVss-0.3V		VREF+-2.0V	V	
A25	VAIN	Analog Input Volt	age	Vss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source		_	—	2.5	kΩ	(Note 4)
A40	IAD	A/D Conversion	PIC16 F 818/819	—	220	—	μΑ	Average current
		Current (VDD)	PIC16 LF 818/819	_	90	—	μA	consumption when A/D is on (Note 1)
A50	IREF	VREF Input Curren	nt (Note 2)		_	5	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 11.1 "A/D Acquisition Requirements". During A/D conversion curcle
						150	μл	During A/D conversion cycle

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
 - 4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition time.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (May 2002)

Original version of this data sheet.

Revision B (August 2002)

Added INTRC section. PWRT and BOR are independent of each other. Revised program memory text and code routine. Added QFN package. Modified PORTB diagrams.

Revision C (November 2002)

Added various new feature descriptions. Added internal RC oscillator specifications. Added low-power Timer1 specifications and RTC application example.

Revision D (November 2003)

Updated IRCF bit modification information and changed the INTOSC stabilization delay from 1 ms to 4 ms in Section 4.0 "Oscillator Configurations". Updated Section 12.17 "In-Circuit Serial Programming" to clarify LVP programming. In Section 15.0 "Electrical Characteristics", the DC Characteristics (Section 15.2 and Section 15.3) have been updated to include the Typ, Min and Max values and Table 15-1 "External Clock Timing Requirements" has been updated.

Revision E (September 2004)

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in Section 16.0 "DC and AC Characteristics Graphs and Tables" have been updated and there have been minor corrections to the data sheet text.

Revision F (November 2011)

This revision updated **Section 17.0** "Packaging Information".

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

TABLE B-1: DIFFERENCES BETWEEN THE PIC16F818 AND PIC16F819

Features	PIC16F818	PIC16F819
Flash Program Memory (14-bit words)	1K	2K
Data Memory (bytes)	128	256
EEPROM Data Memory (bytes)	128	256

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Applie	cation (optional):	
Would	d you like a reply?YN	
Devic	e: PIC16F818/819	Literature Number: DS39598F
Ques	tions:	
1. V	/hat are the best features of this document?	
_		
2. H	ow does this document meet your hardware and s	oftware development needs?
_		
3. D	o you find the organization of this document easy	to follow ? If not, why ?
4. W	/hat additions to the document do you think would	enhance the structure and subject?
5. V	/hat deletions from the document could be made w	vithout affecting the overall usefulness?
6. Is	there any incorrect or misleading information (what	at and where)?
_		
7. H	low would you improve this document?	