

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f819t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF				
	bit 7							bit 0				
oit 7	GIE: Globa 1 = Enable 0 = Disabl	al Interrupt En es all unmask les all interrup	able bit ed interrupts	;								
oit 6	PEIE: Peri 1 = Enable 0 = Disabl	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts 										
oit 5	TMROIE: T 1 = Enable 0 = Disabl	FMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
oit 4	INTE: RB0 1 = Enable 0 = Disabl	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt										
oit 3	RBIE: RB 1 = Enable 0 = Disabl	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt										
oit 2	TMROIF: T 1 = TMRO 0 = TMRO	 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow 										
oit 1	INTF: RB0 1 = The R 0 = The R	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur										
oit O	RBIF: RB A mismatcl condition a 1 = At leas 0 = None	 RBIF: RB Port Change Interrupt did not occur RBIF: RB Port Change Interrupt Flag bit A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state 										
	Legend: R = Reada	able bit	W = Wr	itable bit	U = Unim	plemented	bit, read as	·0'				

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

REGISTER 3-1:	EECON1:	EEPROM	ACCESS C	ONTROL	REGISTER	1 (ADDRI	ESS 18Ch)		
	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-0	R/S-0	R/S-0	
	EEPGD	—	_	FREE	WRERR	WREN	WR	RD	
	bit 7							bit 0	
bit 7	EEPGD: Pr	ogram/Data	EEPROM	Select bit					
	1 = Access 0 = Access Reads '0' a	es program es data mer fter a POR;	memory nory this bit canr	not be chang	ged while a v	write operati	on is in prog	ress.	
bit 6-5	Unimplem	ented: Read	d as '0'						
bit 4	FREE: EEF	PROM Force	ed Row Eras	se bit					
	 1 = Erase the program memory row addressed by EEADRH:EEADR on the next WR con 0 = Perform write-only 							R command	
bit 3	WRERR: EEPROM Error Flag bit								
	1 = A write operati 0 = The wr	operation is ion) ite operation	s premature	ly terminate	d (any MCLI	R or any WI	DT Reset du	ring normal	
bit 2	WREN: EEPROM Write Enable bit								
	1 = Allows write cycles0 = Inhibits write to the EEPROM								
bit 1	WR: Write Control bit								
	 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software. 0 = Write cycle to the EEPROM is complete 								
bit 0	RD: Read Control bit								
	 1 = Initiates an EEPROM read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 								
	0 = Does r	not initiate a	n EEPROM	read					
	Logond							1	

Legend:			
R = Readable bit	W = Writable bit	S = Set only	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 Interrupt Enable bit, TMR1IE (PIE1<0>).

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a timer
- as a synchronous counter
- · as an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.1** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB6/T1OSO/T1CKI/PGC and RB7/T1OSI/ PGD pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7-6	Unimplemented: Read	as '0'					
bit 5-4	T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits						
	11 = 1:8 Prescale value						
	10 = 1:4 Prescale value						
	01 = 1:2 Prescale value						
L H 0		llatar Enchla Control hit					
DILS		INALOF ENABLE CONTROL DIL					
	1 = Oscillator is enabled 0 = Oscillator is shut-off	(the oscillator inverter is	s turned off to eliminate power drain)				
hit 2	TISYNC: Timer1 Extern	al Clock Input Synchror	nization Control bit				
5112	TMR1CS = 1°						
	1 = Do not synchronize	external clock input					
	0 = Synchronize externa	I clock input					
	<u>TMR1CS = 0:</u>						
	This bit is ignored. Time	r1 uses the internal cloc	k when TMR1CS = 0.				
bit 1	TMR1CS: Timer1 Clock	Source Select bit					
	1 = External clock from 0 = Internal clock (Eosc	pin RB6/T1OSO/T1CKI	/PGC (on the rising edge)				
bit 0	TMR10N: Timer1 On bit	t i					
	1 = Enables Timer1						
	0 = Stops Timer1						
	Legend:						
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				

R = Readable bit $W = Writable bit$		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

7.5 Timer1 Operation in Asynchronous Counter Mode

If control bit, $\overline{\text{T1SYNC}}$ (T1CON<2>), is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow that will wake-up the processor. However, special precautions in software are needed to read/write the timer.

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

7.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. The example codes provided in Example 7-1 and Example 7-2 demonstrate how to write to and read Timer1 while it is running in Asynchronous mode.

FXAMPI F 7-1 .	WRITING & 16-BIT FREE BUINN	
EARIVIFLE (-I.	WATTING A TO-DIT FREE AUNIN	

EXAMPLE 7-2: READING A 16-BIT FREE RUNNING TIMER

; All interrupts are	disabled
MOVF TMR1H, W	; Read high byte
MOVWF TMPH	
MOVF TMR1L, W	; Read low byte
MOVWF TMPL	
MOVF TMR1H, W	; Read high byte
SUBWF TMPH, W	; Sub 1st read with 2nd read
BTFSC STATUS, Z	; Is result = 0
GOTO CONTINUE	; Good 16-bit read
; TMR1L may have rol	led over between the read of the high and low bytes.
; Reading the high a	nd low bytes now will read a good value.
MOVF TMR1H, W	; Read high byte
MOVWF TMPH	
MOVF TMR1L, W	; Read low byte
MOVWF TMPL	; Re-enable the Interrupt (if required)
CONTINUE	; Continue with your code

10.3 SSP I²C Mode Operation

The SSP module in I²C mode fully implements all slave functions, except general call support and provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RB4/SCK/SCL pin, which is the clock (SCL) and the RB1/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISB<4,1> bits.

To ensure proper communication of the I²C Slave mode, the TRIS bits (TRISx [SDA, SCL]) corresponding to the I²C pins must be set to '1'. If any TRIS bits (TRISx<7:0>) of the port containing the I²C pins (PORTx [SDA, SCL]) are changed in software during I²C communication using a Read-Modify-Write instruction (BSF, BCF), then the I²C mode may stop functioning properly and I²C communication may suspend. Do not change any of the TRISx bits (TRIS bits of the port containing the I²C pins) using the instruction BSF or BCF during I²C communication. If it is absolutely necessary to change the TRISx bits during communication, the following method can be used:

EXAMPLE 10-1:

MOVF IORLW	TRISC, W 0x18	; Example for an 18-pin part such as the PIC16F818/819 ; Ensures <4:3> bits are `11′
ANDLW	B'11111001'	; Sets <2:1> as output, but will not alter other bits
MOVWF	TRISC	; USET CAN USE CHEIT OWN TOGIC HELE, SUCH as TORLW, AORLW AND AND W

The SSP module functions are enabled by setting SSP Enable bit, SSPEN (SSPCON<5>).

FIGURE 10-5: SSP BLOCK DIAGRAM (I²C™ MODE)

The SSP module has five registers for I²C operation:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Firmware Controlled Master mode with Start and Stop bit interrupts enabled, slave is Idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISB bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation may be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

NOTES:

The ADRESH:ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see **Section 11.1** "**A/D Acquisition Requirements**". After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 11-1:

A/D BLOCK DIAGRAM

© 2001-2013 Microchip Technology Inc.

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space which can be accessed only during programming.

12.9 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. Bit $\overline{\text{BOR}}$ is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if

bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-u	p	Brown-out R	Wake-up	
Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	TPWRT + 1024 • TOSC	1024 • Tosc	TPWRT + 1024 • TOSC	1024 • Tosc	1024 • Tosc
EXTRC, EXTCLK, INTRC	TPWRT	5-10 μs (1)	Tpwrt	5-10 μs ⁽¹⁾	5-10 μs (1)

Note 1: CPU start-up is always invoked on POR, BOR and wake-up from Sleep.

TABLE 12-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

Legend: u = unchanged, x = unknown

TABLE 12-3: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \leq f \leq 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow GIE$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is stored back in register 'f'. $\begin{array}{c} \hline \hline$

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	$d \in [0, 1]$ See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is placed back in register 'f'.

 Register f	

RETURN	Return from Subroutine	SLEEP	Enter Sleep mode
Syntax:	[label] RETURN	Syntax:	[label] SLEEP
Operands:	None	Operands:	None
Operation:	$TOS \to PC$	Operation:	00h \rightarrow WDT,
Status Affected:	None		$0 \rightarrow WDT$ prescaler,
Description:	Return from subroutine. The stack		$0 \rightarrow PD$
	is POPed and the top of the stack	Status Affected:	TO, PD
	counter. This is a two-cycle instruction.	Description:	The Power-Down status bit, PD, is cleared. Time-out status bit, TO, is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

14.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

14.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

14.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 15-9:A/D CONVERTER CHARACTERISTICS: PIC16F818/819 (INDUSTRIAL, EXTENDED)PIC16LF818/819 (INDUSTRIAL)

Param No.	Sym	Charac	cteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		—	—	10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral Linearity Error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential Linear	rity Error	_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset Error		_		<±2	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A07	Egn	Gain Error		—	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	_	Monotonicity		—	guaranteed ⁽³⁾	—	_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage (VREF+ - VREF-)		2.0	—	VDD + 0.3	V	
A21	Vref+	Reference Voltag	e High	AVDD - 2.5V		AVDD + 0.3V	V	
A22	Vref-	Reference Voltag	e Low	AVss-0.3V		VREF + -2.0V	V	
A25	Vain	Analog Input Volt	age	Vss - 0.3V	—	Vref + 0.3V	V	
A30	ZAIN	Recommended Ir Analog Voltage S	npedance of ource	—	—	2.5	kΩ	(Note 4)
A40	IAD	A/D Conversion	PIC16F818/819	—	220	—	μA	Average current
		Current (VDD)	PIC16 LF 818/819	—	90	—	μA	consumption when A/D is on (Note 1)
A50	VREF Input Current (Note 2)		_	_	5	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 11.1 "A/D Acquisition Requirements". During A/D conversion avelo	
						150	μл	During A/D conversion cycle

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
 - 4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition time.

FIGURE 16-7: TYPICAL IDD vs. VDD, -40°C TO +125°C, 1 MHz TO 8 MHz (RC_RUN MODE, ALL PERIPHERALS DISABLED)

FIGURE 16-8: MAXIMUM IDD vs. VDD, -40°C TO +125°C, 1 MHz TO 8 MHz (RC_RUN MODE, ALL PERIPHERALS DISABLED)

FIGURE 16-21: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

17.0 **PACKAGING INFORMATION**

17.1 **Package Marking Information**

18-Lead PDIP (300 mil)

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		18	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.880	.900	.920
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.014
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

Program Memory	
Interrupt Vector	9
Map and Stack	
PIC16F818	9
PIC16F819	9
Reset Vector	9
Program Verification	
PUSH	

R

R/W Bit	77
RA0/AN0 Pin	7
RA1/AN1 Pin	7
RA2/AN2/Vref- Pin	7
RA3/AN3/Vref+ Pin	7
RA4/AN4/T0CKI Pin	7
RA5/(MCLR/Vpp Pin	7
RA6/OSC2/CLKO Pin	7
RA7/OSC1/CLKI Pin	7
RB0/INT Pin	8
RB1/SDI/SDA Pin	8
RB2/SDO/CCP1 Pin	8
RB3/CCP1/PGM Pin	8
RB4/SCK/SCL Pin	8
RB5/SS Pin	8
RB6/T10S0/T1CKI/PGC Pin	8
RB7/T10SI/PGD Pin	8
RBIF Bit	
RCIO Oscillator Mode	
Reader Response	174
Receive Overflow Indicator Bit, SSPOV	73
Register File Map	
PIC16F818	
PIC16F819	
Registers	
ADCONU (A/D Control 0)	81
ADCON1 (A/D Control 1)	
CCP1CON (Capture/Compare/PVVM Control 1) .	
EECON1 (Data EEPROM Access Control 1)	
Initialization Conditions (table)	
	. 17, 54
DSCTUNE (Oscillator Tuning)	00
PCON (Power Control)	
PIET (Peripheral Interrupt Enable 1)	19 24
PIEZ (Peripheral Interrupt Enable 2)	ا کے
PIRT (Felipheral Interrupt Request (Flag) 1)	20 ⊇1
SSPCON (Synchronous Sorial Part Control 1)	21 72
SSPSTAT (Synchronous Serial Port Status)	73 72
Statue	2 / 16
T1CON (Timer1 Control)	10
T2CON (Timer? Control)	
Reset	04 80 01
Brown-out Reset (BOR) See Brown-out	. 05, 51
Reset (BOR)	
MCLR Reset See MCLR	
Power-on Reset (POR) See Power-on	
Reset (POR)	
Reset Conditions for All Registers	Q/I
Reset Conditions for PCON Register	94 Q3
Reset Conditions for Program Counter	 מס
Reset Conditions for Status Register	 ຊາ
WDT Reset. See Watchdog Timer (WDT).	

Revision History 10	65
RP0 Bit	10
RP1 Bit	10
S	
Sales and Support	75
SCI Clock	77
Sloop 90.01 (00
Seep	10
	13
Special Event Trigger	87
Special Features of the CPU	89
Special Function Register Summary	13
Special Function Registers	13
SPI Mode	
Associated Registers	74
Serial Clock	71
Serial Data In	71
Serial Data Out	71
Slave Select	71
SSP	• •
ACK	77
1 ² C	•••
I ² C Operation	76
SSPADD Pogistor	11
	20
	20
	13
SSPSTAT Register	14
Stack	23
Overflow	23
Underflow	23
Status Register	15
DC Bit	16
IRP Bit	16
PD Bit	91
TO Bit16, 9	91
Z Bit	16
Synchronous Serial Port (SSP)	71
Overview	71
SPI Mode	71
Synchronous Serial Port Interrupt	20
-	

Т

T1CKPS0 Bit	57
T1CKPS1 Bit	57
T1OSCEN Bit	57
T1SYNC Bit	57
T2CKPS0 Bit	64
T2CKPS1 Bit	64
Tad	85
Time-out Sequence	
Timer0	53
Associated Registers	55
Clock Source Edge Select (T0SE Bit)	17
Clock Source Select (T0CS Bit)	
External Clock	
Interrupt	53
Operation	53
Overflow Enable (TMR0IE Bit)	
Overflow Flag (TMR0IF Bit)	
Overflow Interrupt	
Prescaler	
Т0СКІ	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support