

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

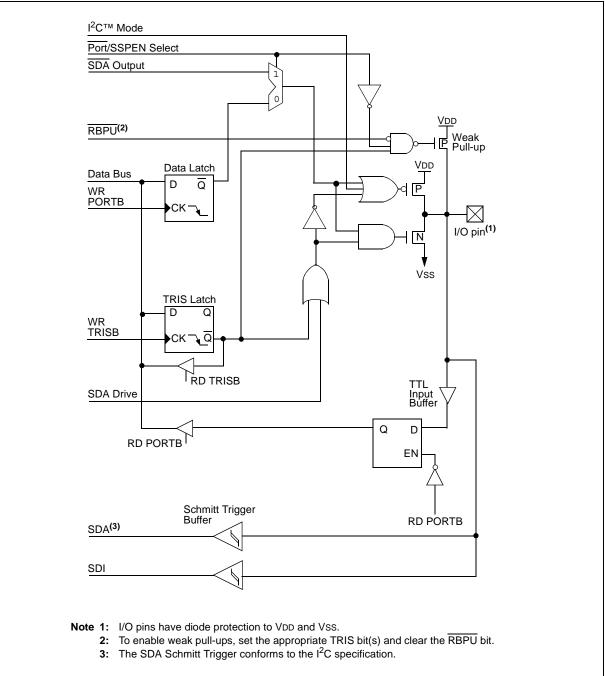
E·XFI

2 014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f819t-i-sstsl

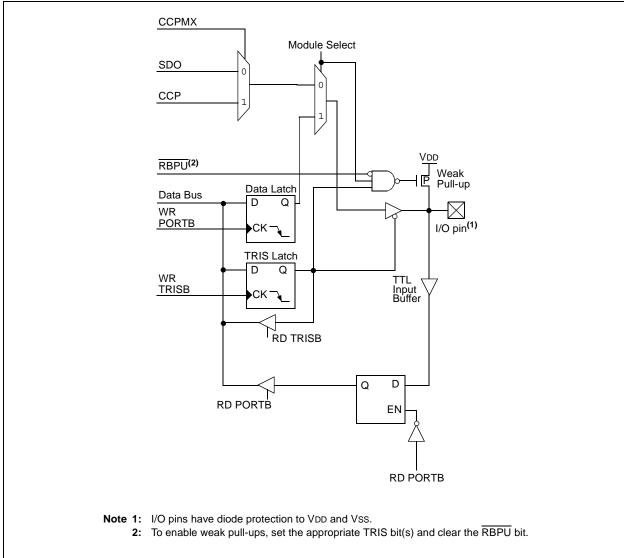
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	l/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up or all inputs.
RB0/INT RB0 INT	6	7	7	I/O I	TTL ST ⁽¹⁾	Bidirectional I/O pin. External interrupt pin.
RB1/SDI/SDA RB1 SDI SDA	7	8	8	I/O I I/O	TTL ST ST	Bidirectional I/O pin. SPI data in. I ² C™ data.
RB2/SDO/CCP1 RB2 SDO CCP1	8	9	9	I/O O I/O	TTL ST ST	Bidirectional I/O pin. SPI data out. Capture input, Compare output, PWM output.
RB3/CCP1/PGM RB3 CCP1 PGM	9	10	10	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Capture input, Compare output, PWM output. Low-Voltage ICSP™ Programming enable pir
RB4/SCK/SCL RB4 SCK SCL	10	11	12	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI Synchronous serial clock input for I ² C.
RB5/SS RB5 SS	11	12	13	I/O I	TTL TTL	Bidirectional I/O pin. Interrupt-on-change pin. Slave select for SPI in Slave mode.
RB6/T1OSO/T1CKI/PGC RB6 T1OSO T1CKI PGC	12	13	15	I/O O I I	TTL ST ST ST ⁽²⁾	Interrupt-on-change pin. Timer1 Oscillator output. Timer1 clock input. In-circuit debugger and ICSP programming clock pin.
RB7/T1OSI/PGD RB7 T1OSI PGD	13	14	16	I/O I I	TTL ST ST ⁽²⁾	Interrupt-on-change pin. Timer1 oscillator input. In-circuit debugger and ICSP programming data pin.
Vss	5	5, 6	3, 5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	15, 16	17, 19	Р	-	Positive supply for logic and I/O pins.


TABLE 1-2: PIC16F818/819 PINOUT DESCRIPTIONS (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.


2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

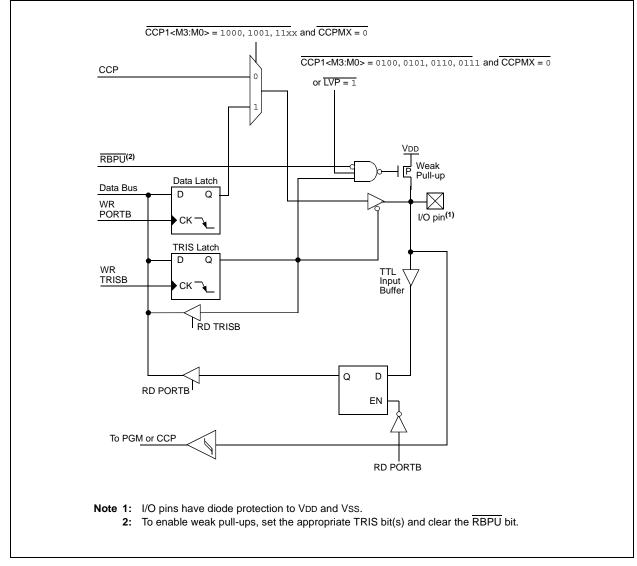

FIGURE 5-9: BLOCK DIAGRAM OF RB1 PIN

FIGURE 5-11: BLOCK DIAGRAM OF RB3 PIN

7.8 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" signal (CCP1M3:CCP1M0 = 1011), the signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

7.9 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other Reset, except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

7.10 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

7.11 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 7.6 "Timer1 Oscillator**"), gives users the option to include RTC functionality in their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 7-3, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow, triggers the interrupt and calls the routine which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it; the simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

REGISTER 8-1:	T2CON: TIM	ER2 CONTROL	REGISTER (ADDRESS	12h)		
	U-0 R/	/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	— TOL	JTPS3 TOUTPS	2 TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7						bit 0
bit 7	Unimplement	ed: Read as '0'					
bit 6-3	TOUTPS3:TO	UTPS0: Timer2 O	utput Postscale	e Select bits			
	0000 = 1:1 Pos 0001 = 1:2 Pos 0010 = 1:3 Pos	stscale					
	•						
	•						
	1111 = 1:16 P	ostscale					
bit 2	TMR2ON: Tim	er2 On bit					
	1 = Timer2 is 0 = Timer2 is						
bit 1-0	T2CKPS1:T2C	KPS0: Timer2 Cl	ock Prescale S	elect bits			
	00 = Prescaler 01 = Prescaler 1x = Prescaler	is 4					
	Legend:]
	R = Readable	bit W :	= Writable bit	U = Unim	plemented	bit. read as	'0'

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000
8Ch	PIE1	_	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000
11h	TMR2	R2 Timer2 Module Register								0000	0000	0000	0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h PR2 Timer2 Period Register									1111	1111	1111	1111	

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

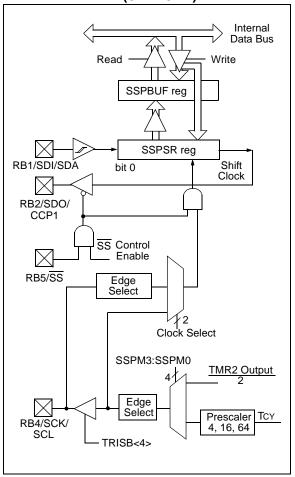
The Capture/Compare/PWM (CCP) module contains a 16-bit register that can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Table 9-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match which will reset Timer1 and start an A/D conversion (if the A/D module is enabled). The CCP module's input/output pin (CCP1) can be configured as RB2 or RB3. This selection is set in bit 12 (CCPMX) of the Configuration Word register.

Additional information on the CCP module is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) and in Application Note AN594, "Using the CCP Module(s)" (DS00594).


TABLE 9-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 9-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0
Unimpleme							
CCP1X:CCI	P1Y: PWM	Least Signi	ficant bits				
<u>Capture mo</u> Unused.	<u>de:</u>						
<u>Compare mo</u> Unused.	ode:						
<u>PWM mode:</u> These bits a	-	LSbs of the	PWM duty	cycle. The e	eight MSbs a	re found in (CCPRxL.
CCP1M3:CO	CP1M0: CC	P1 Mode S	elect bits				
0000 = Cap	ture/Compa	are/PWM di	sabled (res	ets CCP1 m	odule)		
0100 = Cap	ture mode,	every fallin	g edge				
0101 = Cap							
0110 = Cap		•	•••				
0111 = Cap		•	• •	(CCP1IF bit	ic cot)		
		· ·		h (CCP1IF b	,		
1010 = Com				terrupt on ma		F bit is set,	CCP1 pin is
1011 = Compare mode, trigger special event (CCP1IF bit is set, CCP1 pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)							
11xx = PWI					,		,
Legend:							
Legend: R = Readab	le bit	W = V	Vritable bit	U = Uni	mplemented	l bit, read as	s 'O'

FIGURE 10-1: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear bit SSPEN, reinitialize the SSPCON register and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISB register) appropriately programmed. That is:

- SDI must have TRISB<1> set
- SDO must have TRISB<2> cleared
- SCK (Master mode) must have TRISB<4> cleared
- SCK (Slave mode) must have TRISB<4> set
- SS must have TRISB<5> set

Note 1: When the SPI is in Slave mode with the SS pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.

- **2:** If the SPI is used in Slave mode with CKE = 1, then the \overline{SS} pin control must be enabled.
- 3: When the SPI is in Slave mode with the SS pin control enabled (SSPCON<3:0> = 0100), the state of the SS pin can affect the state read back from the TRISB<2> bit. The peripheral OE signal from the SSP module into PORTB controls the state that is read back from the TRISB<2> bit. If read-modify-write instructions, such as BSF are performed on the TRISB register while the SS pin is high, this will cause the TRISB<2> bit to be set, thus disabling the SDO output.

TABLE 10-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
86h	TRISB	PORTB	Data Dire	ction Regis	ster					1111 1111	1111 1111
13h	SSPBUF	Synchro	nous Seria	al Port Red	ceive Buff	fer/Transr	nit Registe	er		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space which can be accessed only during programming.

12.18 Low-Voltage ICSP Programming

The LVP bit of the Configuration Word register enables Low-Voltage ICSP Programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin.

If Low-Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when Programming mode is entered with VIHH on MCLR. The LVP bit can only be changed when using high voltage on MCLR.

It should be noted that once the LVP bit is programmed to '0', only the High-Voltage Programming mode is available and only this mode can be used to program the device.

When using Low-Voltage ICSP, the part must be supplied at 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code-protect bits from an ON state to an OFF state. For all other cases of Low-Voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs or user code can be reprogrammed or added.

The following LVP steps assume the LVP bit is set in the Configuration Word register.

- 1. Apply VDD to the VDD pin.
- 2. Drive MCLR low.
- 3. Apply VDD to the RB3/PGM pin.
- 4. Apply VDD to the $\overline{\text{MCLR}}$ pin.
- 5. Follow with the associated programming steps.

- Note 1: The High-Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP mode (LVP = 1), the RB3 pin can no longer be used as a general purpose I/O pin.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.
 - 4: RB3 should not be allowed to float if LVP is enabled. An external pull-down device should be used to default the device to normal operating mode. If RB3 floats high, the PIC16F818/819 device will enter Programming mode.
 - 5: LVP mode is enabled by default on all devices shipped from Microchip. It can be disabled by clearing the LVP bit in the Configuration Word register.
 - 6: Disabling LVP will provide maximum compatibility to other PIC16CXXX devices.

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow GIE$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is stored back in register 'f'.

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] RRF f,d
Operands: Operation:	$0 \le k \le 255$ k \rightarrow (W);	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
oporation	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is placed back in register 'f'.

─→ C →	Register f	

RETURN	Return from Subroutine	SLEEP	Enter Sleep mode		
Syntax:	[label] RETURN	Syntax:	[label] SLEEP		
Operands:	None	Operands:	None		
Operation:	$TOS \rightarrow PC$	Operation:	$00h \rightarrow WDT$,		
Status Affected:	None		$0 \rightarrow WDT$ prescaler, $1 \rightarrow TO$,		
Description:	Return from subroutine. The stack		$0 \rightarrow PD$		
	is POPed and the top of the stack (TOS) is loaded into the program	Status Affected:	TO, PD		
	counter. This is a two-cycle instruction.	Description:	The Power-Down status bit, PD, is cleared. Time-out status bit, TO, is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.		

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial)

PIC16LF (Indus	818/819 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F818/819 (Industrial, Extended)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Device	Тур	Max	Units	Conditions				
	Power-Down Current (IPD)	(1)							
	PIC16LF818/819	0.1	0.4	μΑ	-40°C	VDD = 2.0V			
		0.1	0.4	μΑ	+25°C				
		0.4	1.5	μΑ	+85°C				
	PIC16LF818/819	0.3	0.5	μΑ	-40°C				
		0.3	0.5	μΑ	+25°C	VDD = 3.0V			
		0.7	1.7	μΑ	+85°C				
	All devices	0.6	1.0	μΑ	-40°C				
		0.6	1.0	μΑ	+25°C	VDD = 5.0V			
		1.2	5.0	μΑ	+85°C	VDD = 3.0V			
	Extended devices	6.0	28	μΑ	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

PIC16LF8 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC16F81 (Indus	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \mbox{ for industrial} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C} \mbox{ for extended} \end{array}$								
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	All devices	1.8	2.3	mA	-40°C				
		1.6	2.2	mA	+25°C	VDD = 4.0V			
		1.3	2.2	mA	+85°C				
	All devices	3.0	4.2	mA	-40°C		Fosc = 20 MHz (HS Oscillator)		
		2.5	4.0	mA	+25°C	VDD = 5.0V			
		2.5	4.0	mA	+85°C	vuu ≅ 5.0v			
	Extended devices	3.0	5.0	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

15.3 DC Characteristics: Internal RC Accuracy PIC16F818/819, PIC16F818/819 TSL (Industrial, Extended) PIC16LF818/819, PIC16LF818/819 TSL (Industrial)

PIC16LF818/819 ⁽³⁾ PIC16LF818/819 TSL ⁽³⁾ (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC16F818/819 ⁽³⁾ PIC16F818/819 TSL ⁽³⁾ (Industrial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Device	Min Typ Max Units Conditions								
	INTOSC Accuracy @ F	req = 8 MHz,	4 MHz, 2 M	Hz, 1 MHz,	500 kHz, 2	50 kHz, 125 kHz ⁽¹⁾				
	PIC16LF818/819	-5	±1	5	%	+25°C				
		-25	—	25	%	-10°C to +85°C	VDD = 2.7-3.3V			
		-30	_	30	%	-40°C to +85°C				
	PIC16F818/819 ⁽⁴⁾	-5	±1	5	%	+25°C				
		-25	—	25	%	-10°C to +85°C	VDD = 4.5-5.5V			
		-30	—	30	%	-40°C to +85°C	VDD = 4.5-5.5V			
		-35	—	35	%	-40°C to +125°C				
	PIC16LF818/819 TSL	-2	±1	2	%	+25°C				
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V			
		-10	—	10	%	-40°C to +85°C				
	PIC16F818/819 TSL ⁽⁵⁾	-2	±1	2	%	+25°C				
		-5	—	5	%	-10°C to +85°C	VDD = 4.5-5.5V			
		-10	—	10	%	-40°C to +85°C	VDD = 4.5-5.5V			
		-15	—	15	%	-40°C to +125°C				
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾									
	PIC16LF818/819	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V			
	PIC16F818/819 ⁽⁴⁾	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V			
	PIC16LF818/819 TSL	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V			
	PIC16F818/819 TSL ⁽⁵⁾	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

3: The only specification difference between a non-TSL device and a TSL device is the internal RC oscillator specifications listed above. All other specifications are maintained.

4: Example part number for the specifications listed above: PIC16F818-I/SS (PIC16F818 device, Industrial temperature, SSOP package).

5: Example part number for the specifications listed above: PIC16F818-I/SSTSL (PIC16F818 device, Industrial temperature, SSOP package).

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock High Time	100 kHz mode	4.0		μS	
			400 kHz mode	0.6		μs	
			SSP Module	1.5 TCY			
101*	TLOW	Clock Low Time	100 kHz mode	4.7		μS	
			400 kHz mode	1.3	_	μS	
			SSP Module	1.5 TCY	_		
102*	Tr	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF
103* TF	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μs	Only relevant for Repeated
			400 kHz mode	0.6		μs	Start condition
91*	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first
			400 kHz mode	0.6		μS	clock pulse is generated
106*	Thd:dat	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data Input Setup	100 kHz mode	250	_	ns	(Note 2)
		Time	400 kHz mode	100		ns	
92*	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μs	
		Setup Time	400 kHz mode	0.6	_	μs	
109*	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	_	ns	
110*	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
	Св	Bus Capacitive Load	ling	—	400	pF	

TABLE 15-8: I²C™ BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

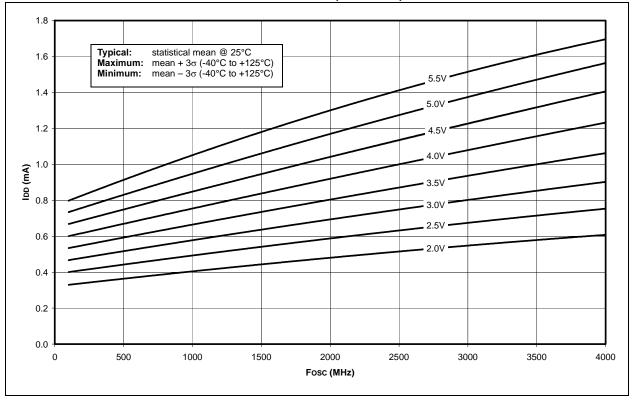
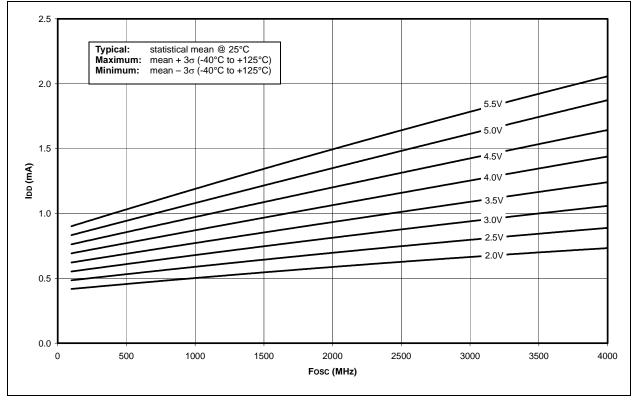

2: A Fast mode (400 kHz) I²CTM bus device can be used in a Standard mode (100 kHz) I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

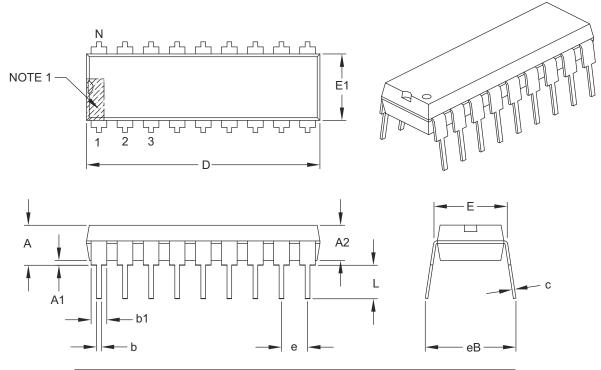
TABLE 15-9:A/D CONVERTER CHARACTERISTICS: PIC16F818/819 (INDUSTRIAL, EXTENDED)PIC16LF818/819 (INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution		_	—	10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	Eı∟	Integral Linearity	Error	_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential Linear	ity Error		—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset Error		—	—	<±2	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A07	Egn	Gain Error		_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	_	Monotonicity		_	guaranteed ⁽³⁾	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage (VREF+ - VREF-)		2.0	—	Vdd + 0.3	V	
A21	Vref+	Reference Voltag	e High	AVdd - 2.5V		AVDD + 0.3V	V	
A22	Vref-	Reference Voltag	e Low	AVss-0.3V		VREF+ - 2.0V	V	
A25	VAIN	Analog Input Volta	age	Vss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended Ir Analog Voltage S		_	—	2.5	kΩ	(Note 4)
A40	IAD	A/D Conversion	PIC16 F 818/819	_	220	—	μΑ	Average current
		Current (VDD)	PIC16 LF 818/819		90	—	μA	consumption when A/D is on (Note 1)
A50	IREF	VREF Input Current (Note 2)		_		5	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 11.1 "A/D Acquisition Requirements".
			_	—	150	μΑ	During A/D conversion cycle	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
 - 4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition time.

FIGURE 16-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)



NOTES:

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

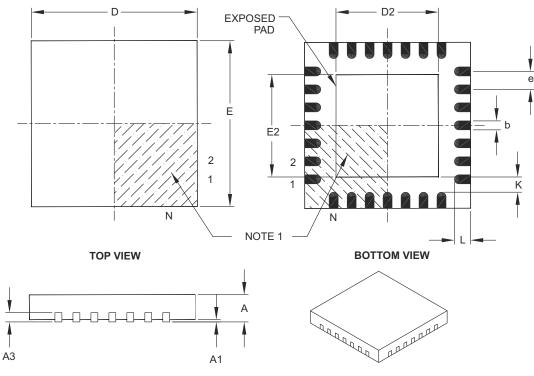
	Units			INCHES			
]	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		18				
Pitch	е		.100 BSC				
Top to Seating Plane	А	-	-	.210			
Molded Package Thickness	A2	.115	.130	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.300	.310	.325			
Molded Package Width	E1	.240	.250	.280			
Overall Length	D	.880	.900	.920			
Tip to Seating Plane	L	.115	.130	.150			
Lead Thickness	С	.008	.010	.014			
Upper Lead Width	b1	.045	.060	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	;		
Dimensio	on Limits	MIN	NOM	MAX		
Number of Pins	Ν	28				
Pitch	е		0.65 BSC			
Overall Height	Α	0.80 0.90 1.00				
Standoff	A1 0.00 0.02					
Contact Thickness	A3	0.20 REF				
Overall Width	Е	6.00 BSC				
Exposed Pad Width	E2	3.65 3.70 4.20				
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.20		
Contact Width	b	0.23	0.30	0.35		
Contact Length	L	0.50 0.55 0.7				
Contact-to-Exposed Pad	К	K 0.20 – –				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B