

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf818t-i-mltsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 0											
00h ⁽¹⁾	INDF	Addressi	ng this locati	on uses conte	ents of FSR to	o address dat	a memory (n	ot a physical	register)	0000 0000	23
01h	TMR0	Timer0 M	lodule Regis	ter						xxxx xxxx	53, 17
02h ⁽¹⁾	PCL	Program	Counter's (F	PC) Least Sig	nificant Byte					0000 0000	23
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	16
04h ⁽¹⁾	FSR	Indirect D	Data Memory	Address Poi	nter					xxxx xxxx	23
05h	PORTA	PORTA D	Data Latch w	hen written; F	PORTA pins w	hen read				xxx0 0000	39
06h	PORTB	PORTB [Data Latch w	hen written; F	PORTB pins v	vhen read				XXXX XXXX	43
07h	—	Unimplen	nented							_	—
08h	—	Unimplen	nented							_	—
09h	—	Unimplen	nented							_	—
0Ah ^(1,2)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the	Program Cou	Inter	0 0000	23
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
0Ch	PIR1	_	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	20
0Dh	PIR2	_	_	_	EEIF	_	—	—	—	0	21
0Eh	TMR1L	Holding F	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx						57		
0Fh	TMR1H	Holding F	Register for t	he Most Sign	ificant Byte of	the 16-bit TM	/IR1 Register			XXXX XXXX	57
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	57
11h	TMR2	Timer2 M	lodule Regis	ter						0000 0000	63
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	64
13h	SSPBUF	Synchron	nous Serial F	ort Receive E	Buffer/Transm	it Register				XXXX XXXX	71, 76
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	73
15h	CCPR1L	Capture/0	Compare/PV	VM Register (LSB)					XXXX XXXX	66, 67, 68
16h	CCPR1H	Capture/0	Compare/PV	VM Register (MSB)					XXXX XXXX	66, 67, 68
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	65
18h	—	Unimplen	nented							_	—
19h	—	Unimplen	nented							_	—
1Ah	—	Unimplen	nented							_	—
1Bh	—	Unimplen	nented							—	_
1Ch	—	Unimplen	nented							—	—
1Dh	—	Unimplen	nented							—	—
1Eh	ADRESH	A/D Resu	ult Register H	ligh Byte						xxxx xxxx	81
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	81

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

IADLE	:z-1: 3	PECIA			JIJIER 3			INUED)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 1											
80h ⁽¹⁾	INDF	Addressi	ng this locati	ion uses cont	ents of FSR to	o address dat	ta memory (r	ot a physical	register)	0000 0000	23
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	17, 54
82h ⁽¹⁾	PCL	Program	Counter's (F	PC) Least Sig	nificant Byte	•	•	•	•	0000 0000	23
83h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
84h ⁽¹⁾	FSR	Indirect D	ata Memory	/ Address Poi	nter	•	•	•	•	xxxx xxxx	23
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽³⁾	PORTA Data	a Direction Re	egister (TRIS	A<4:0>		1111 1111	39
86h	TRISB	PORTB [Data Directio	n Register						1111 1111	43
87h	—	Unimpler	nented							—	_
88h	—	Unimpler	nented							—	_
89h	—	Unimpler	nented							—	_
8Ah ^(1,2)	PCLATH	—	_	—	Write Buffer	for the upper	5 bits of the	PC		0 0000	23
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
8Ch	PIE1	—	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	19
8Dh	PIE2	—	_	_	EEIE	—	_	_	_	0	21
8Eh	PCON	_	_	_	-	_	-	POR	BOR	dd	22
8Fh	OSCCON	—	IRCF2	IRCF1	IRCF0	_	IOFS	_	_	-000 -0	38
90h ⁽¹⁾	OSCTUNE	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	36
91h	—	Unimpler	nented							—	_
92h	PR2	Timer2 P	eriod Regist	er						1111 1111	68
93h	SSPADD	Synchror	nous Serial F	Port (l ² C™ mo	ode) Address	Register				0000 0000	71, 76
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	72
95h	_	Unimpler	nented							_	_
96h	—	Unimpler	nented							_	_
97h	—	Unimpler	nented							_	_
98h	—	Unimpler	nented							—	_
99h	—	Unimpler	nented							_	_
9Ah	—	Unimpler	nented							_	_
9Bh	—	Unimpler	nented							—	_
9Ch	—	Unimpler	nented							_	_
9Dh	_	Unimpler	nented							_	_
9Eh	ADRESL	A/D Resu	ult Register L	Low Byte						xxxx xxxx	81
9Fh	ADCON1	ADFM	ADCS2	—	-	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	82

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

2.2.2.1 Status Register

The Status register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the Status register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect the Z, C or DC bits from the Status register. For other instructions not affecting any status bits, see Section 13.0 "Instruction Set Summary".

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in
	subtraction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
	IRP	RP1	RP0	TO	PD	Z	DC	С			
	bit 7							bit 0			
bit 7	IRP: Regis	ter Bank Sele 2. 3 (100h-1F	ect bit (used f Fh)	or indirect ac	dressing)						
	0 = Bank (), 1 (00h-FFh)								
bit 6-5	RP<1:0>: F 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	Register Bank 3 (180h-1FF 2 (100h-17Fr 1 (80h-FFh) 0 (00h-7Fh) is 128 bytes.	x Select bits (n) n)	used for dire	ect addressir	ng)					
bit 4	TO: Time-c 1 = After p	out bit ower-up, CLF	WDT instruct	ion or SLEEF	o instruction						
bit 3	0 = A WD PD: Power 1 = After p	T time-out occ -down bit oower-up or by	y the CLRWD	r instruction							
	0 = By execution of the SLEEP instruction										
bit 2	Z: Zero bit 1 = The re 0 = The re	sult of an arit	hmetic or log hmetic or log	ic operation ic operation	is zero is not zero						
bit 1	DC: Digit c 1 = A carry 0 = No car	arry/borrow b y-out from the rry-out from th	it (ADDWF, AD 4th low orde a 4th low orde	DLW, SUBLW or bit of the re der bit of the	and SUBWF esult occurre result	instruction ed	s) ⁽¹⁾				
bit 0	 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW and SUBWF instructions)^(1,2) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 										
	Note 1:	For borrow, complement	the polarity is of the secon	s reversed. A d operand.	subtractior	n is execute	ed by addin	g the two's			
	2:	For rotate (R bit of the sou	RF, RLF) inst urce register.	ructions, this	bit is loade	d with eithe	er the high c	or low-order			
	Legend:										
	R = Reada	able bit	W = Wr	itable bit	U = Unimp	lemented	bit, read as	'0'			

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: OPTION REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	
	bit 7	·		·				bit 0	
bit 7	RBPU : PO 1 = PORT 0 = PORT	RTB Pull-up I B pull-ups are B pull-ups are	Enable bit e disabled e enabled by	individual po	ort latch valu	ies			
bit 6	INTEDG: I 1 = Interru 0 = Interru	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin							
bit 5	TOCS: TM 1 = Transi 0 = Interna	TOCS: TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO)							
bit 4	T0SE: TMI 1 = Increm 0 = Increm	TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin							
bit 3	PSA: Pres 1 = Presca 0 = Presca	PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module							
bit 2-0	Bit Value TMR0 Rate WDT Rate 000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128								
	Legend:								
	R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is$						bit, read as x = Bit is ι	'0' unknown	

3.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The data EEPROM and Flash program memory are readable and writable during normal operation (over the full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are six SFRs used to read and write this memory:

- EECON1
- EECON2
- EEDATA
- EEDATH
- EEADR
- EEADRH

This section focuses on reading and writing data EEPROM and Flash program memory during normal operation. Refer to the appropriate device programming specification document for serial programming information.

When interfacing the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 128 or 256 bytes of data EEPROM, with an address range from 00h to 0FFh. Addresses from 80h to FFh are unimplemented on the PIC16F818 device and will read 00h. When writing to unimplemented locations, the charge pump will be turned off.

When interfacing the program memory block, the EEDATA and EEDATH registers form a two-byte word that holds the 14-bit data for read/write and the EEADR and EEADRH registers form a two-byte word that holds the 13-bit address of the EEPROM location being accessed. These devices have 1K or 2K words of program Flash, with an address range from 0000h to 03FFh for the PIC16F818 and 0000h to 07FFh for the PIC16F819. Addresses above the range of the respective device will wraparound to the beginning of program memory.

The EEPROM data memory allows single byte read and write. The Flash program memory allows singleword reads and four-word block writes. Program memory writes must first start with a 32-word block erase, then write in 4-word blocks. A byte write in data EEPROM memory automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory. Depending on the settings of the write-protect bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed. When code-protected, the device programmer can no longer access data or program memory; this does NOT inhibit internal reads or writes.

3.1 EEADR and EEADRH

The EEADRH:EEADR register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program EEPROM. When selecting a data address value, only the LSB of the address is written to the EEADR register. When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADR register.

If the device contains less memory than the full address reach of the address register pair, the Most Significant bits of the registers are not implemented. For example, if the device has 128 bytes of data EEPROM, the Most Significant bit of EEADR is not implemented on access to data EEPROM.

3.2 EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses.

Control bit, EEPGD, determines if the access will be a program or data memory access. When clear, as it is when Reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory.

Control bits, RD and WR, initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write or erase operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write (or erase) operation is interrupted by a $\overline{\text{MCLR}}$ or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

CERAMIC RESONATOR OPERATION (HS OR XT

OSC CONFIGURATION)

- **2:** A series resistor (Rs) may be required.
- 3: RF varies with the resonator chosen (typically between 2 M Ω to 10 M Ω).

TABLE 4-2: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:						
Mode	Freq	OSC1	OSC2			
ХТ	455 kHz	56 pF	56 pF			
	2.0 MHz	47 pF	47 pF			
	4.0 MHz	33 pF	33 pF			
HS	8.0 MHz	27 pF	27 pF			
	16.0 MHz	22 pF	22 pF			

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode rather than XT mode is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω .

4.3 External Clock Input

The ECIO Oscillator mode requires an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the ECIO Oscillator mode, the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 4-3 shows the pin connections for the ECIO Oscillator mode.

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

FIGURE 4-6: PIC16F818/819 CLOCK DIAGRAM

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

U-0	R/W-0	R/W-0	R/W-0	U-0	R-0	U-0	U-0
—	IRCF2	IRCF1	IRCF0	—	IOFS	_	—
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6-4	IRCF2:IRCF0: Internal Oscillator Frequency Select bits						
	111 = 8 MHz (8 MHz source drives clock directly)						
	110 = 4 MHz						
	101 = 2 MHz						
	100 = 1 MHz						
	011 = 500 kHz						
	010 = 250 kHz						
	001 = 125 kHz						
	000 = 31.25 kHz (INTRC source drives clock directly)						
bit 3	Unimplemented: Read as '0'						
bit 2	IOFS: INTOSC Frequency Stable bit						
	1 = Frequency is stable						
	0 = Frequency is not stable						
bit 1-0	Unimplemented: Read as '0'						
	Legend:						

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

5.1 PORTA and the TRISA Register

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On	а	Power-o	n Reset,	the	e pins
	POR	RTA<	:4:0> are	configured	as	analog
	input	ts ar	nd read as	· '0'.		

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input and with an analog input to become the RA4/AN4/ T0CKI pin. The RA4/AN4/T0CKI pin is a Schmitt Trigger input and full CMOS output driver.

Pin RA5 is multiplexed with the Master Clear module input. The RA5/MCLR/VPP pin is a Schmitt Trigger input.

Pin RA6 is multiplexed with the oscillator module input and external oscillator output. Pin RA7 is multiplexed with the oscillator module input and external oscillator input. Pin RA6/OSC2/CLKO and pin RA7/OSC1/CLKI are Schmitt Trigger inputs and full CMOS output drivers.

Pins RA<1:0> are multiplexed with analog inputs. Pins RA<3:2> are multiplexed with analog inputs and VREF inputs. Pins RA<3:0> have TTL inputs and full CMOS output drivers.

EXAMPLE 5-1:	INITIALIZING PORTA

BANKSEL	PORTA	;	select bank of PORTA
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BANKSEL	ADCON1	;	Select Bank of ADCON1
MOVLW	0x06	;	Configure all pins
MOVWF	ADCON1	;	as digital inputs
MOVLW	0xFF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<7:0> as inputs

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit 2	TTL	Input/output, analog input or VREF
RA3/AN3/VREF+	bit 3	TTL	Input/output, analog input or VREF+.
RA4/AN4/T0CKI	bit 4	ST	Input/output, analog input or external clock input for Timer0.
RA5/MCLR/VPP	bit 5	ST	Input, Master Clear (Reset) or programming voltage input.
RA6/OSC2/CLKO	bit 6	ST	Input/output, connects to crystal or resonator, oscillator output or 1/4 the frequency of OSC1 and denotes the instruction cycle in RC mode.
RA7/OSC1/CLKI	bit 7	ST/CMOS ⁽¹⁾	Input/output, connects to crystal or resonator or oscillator input.

TABLE 5-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 5-2: SUMMART OF REGISTERS ASSOCIATED WITH PORT	TABLE 5-2:
--	------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxx0 0000	uuu0 0000
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽¹⁾	PORTA	Data Dire	ection Reg	gister		1111 1111	1111 1111
9Fh	ADCON1	ADFM	ADCS2	—		PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Note 1: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

FIGURE 5-15: BLOCK DIAGRAM OF RB7 PIN

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register that can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Table 9-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match which will reset Timer1 and start an A/D conversion (if the A/D module is enabled). The CCP module's input/output pin (CCP1) can be configured as RB2 or RB3. This selection is set in bit 12 (CCPMX) of the Configuration Word register.

Additional information on the CCP module is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) and in Application Note AN594, "Using the CCP Module(s)" (DS00594).

TABLE 9-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource
Capture Compare	Timer1 Timer1
PWM	Timer2

REGISTER 9-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

							•	,					
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0					
	bit 7							bit 0					
bit 7-6	Unimpleme	ented: Read	as '0'										
bit 5-4	CCP1X:CC	CCP1X:CCP1Y: PWM Least Significant bits											
	Capture mode: Unused.												
	<u>Compare mode:</u> Unused.												
	<u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.												
bit 3-0	CCP1M3:CCP1M0: CCP1 Mode Select bits												
	0000 = Capture/Compare/PWM disabled (resets CCP1 module)												
	0100 = Capture mode, every falling edge												
	0101 = Capture mode, every rising edge												
	0110 = Capture mode, every 4th rising edge												
	0111 = Capture mode, every 16th rising edge												
	1000 = Compare mode, set output on match (CCP1IF bit is set)												
	1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)												
	1011 = Compare mode, trigger special event (CCP1IF bit is set, CCP1 pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)												
	11xx = PWM mode												
	Legend:												
	R = Reada	ble bit	W = V	Vritable bit	U = Uni	implemented	l bit, read as	; '0'					
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit	is cleared	x = Bit is	unknown					

NOTES:

The ADRESH:ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see **Section 11.1** "**A/D Acquisition Requirements**". After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 11-1:

© 2001-2013 Microchip Technology Inc.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

PIC16LF8 (Indus	818/819 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F81 (Indus	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	am Device Typ Max Units Conditions						tions		
	Supply Current (IDD) ^(2,3)								
	PIC16LF818/819	9	20	μΑ	-40°C				
		7	15	μΑ	+25°C	VDD = 2.0V			
		7	15	μA	+85°C				
	PIC16LF818/819	16	30	μA	-40°C				
		14	25	μA	+25°C	VDD = 3.0V	Fosc = 32 kHz		
		14	25	μA	+85°C		(LP Oscillator)		
	All devices	32	40	μA	-40°C				
		26	35	μA	+25°C				
		26	35	μΑ	+85°C	VDD = 5.0V			
	Extended devices	35	53	μA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

15.4 DC Characteristics: PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial)

DC CHA	ARACTI	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports:							
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range		
D030A			Vss	—	0.8V	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2 Vdd	V	(Note 1)		
D033		OSC1 (in XT and LP mode)	Vss	—	0.3V	V			
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V			
		Ports RB1 and RB4:							
D034		with Schmitt Trigger buffer	Vss	—	0.3 Vdd	V	For entire VDD range		
	Vih	Input High Voltage							
		I/O ports:							
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$		
D040A			0.25 VDD + 0.8V	—	Vdd	V	For entire VDD range		
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range		
D042		MCLR	0.8 Vdd	—	Vdd	V			
D042A		OSC1 (in XT and LP mode)	1.6V	—	Vdd	V			
		OSC1 (in HS mode)	0.7 Vdd	—	Vdd	V			
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V	(Note 1)		
		Ports RB1 and RB4:							
D044		with Schmitt Trigger buffer	0.7 Vdd	—	Vdd	V	For entire VDD range		
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
	lı∟	Input Leakage Current (Notes	2, 3)		I	1	I		
D060		I/O ports	—	—	±1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance		
D061		MCLR	—	—	±5	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1	_	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F818/819 be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.

Param No.	Symbol	Characte	eristic	Min	Тур†	Max	Units	Conditions
130	TAD	A/D Clock Period	PIC16F818/819	1.6	—	_	μS	Tosc based, VREF $\ge 3.0V$
			PIC16LF818/819	3.0	_		μs	Tosc based, VREF $\ge 2.0V$
			PIC16F818/819	2.0	4.0	6.0	μs	A/D RC mode
			PIC16LF818/819	3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion Time (not i (Note 1)		—	12	TAD		
132	TACQ	Acquisition Time		(Note 2)	40	—	μS	
				10*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D Clock Start		_	Tosc/2 §	_	—	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

TABLE 15-10: A/D CONVERSION REQUIREMENTS

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.1 "A/D Acquisition Requirements" for minimum conditions.

FIGURE 16-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

FIGURE 16-17: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

FIGURE 16-19: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C)

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensi	ion Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	K	0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

Program Memory	
Interrupt Vector	9
Map and Stack	
PIC16F818	9
PIC16F819	9
Reset Vector	9
Program Verification	
PUSH	

R

R/W Bit	77
RA0/AN0 Pin	7
RA1/AN1 Pin	7
RA2/AN2/Vref- Pin	7
RA3/AN3/Vref+ Pin	7
RA4/AN4/T0CKI Pin	7
RA5/(MCLR/Vpp Pin	7
RA6/OSC2/CLKO Pin	7
RA7/OSC1/CLKI Pin	7
RB0/INT Pin	8
RB1/SDI/SDA Pin	8
RB2/SDO/CCP1 Pin	8
RB3/CCP1/PGM Pin	8
RB4/SCK/SCL Pin	8
RB5/SS Pin	8
RB6/T10S0/T1CKI/PGC Pin	8
RB7/T10SI/PGD Pin	8
RBIF Bit	
RCIO Oscillator Mode	
Reader Response	174
Receive Overflow Indicator Bit, SSPOV	73
Register File Map	
PIC16F818	
PIC16F819	
Registers	
ADCONU (A/D Control 0)	81
ADCON1 (A/D Control 1)	
CCP1CON (Capture/Compare/PVVM Control 1) .	
EECON1 (Data EEPROM Access Control 1)	
Initialization Conditions (table)	
	. 17, 54
DSCTUNE (Oscillator Tuning)	
PCON (Power Control)	
PIET (Peripheral Interrupt Enable 1)	19 24
PIEZ (Peripheral Interrupt Enable 2)	ا کے
PIRT (Felipheral Interrupt Request (Flag) 1)	20 ⊇1
SSPCON (Synchronous Sorial Part Control 1)	21 72
SSPSTAT (Synchronous Serial Port Status)	73 72
Statue	2 / 16
T1CON (Timer1 Control)	10
T2CON (Timer? Control)	
Reset	04 80 01
Brown-out Reset (BOR) See Brown-out	. 05, 51
Reset (BOR)	
MCLR Reset See MCLR	
Power-on Reset (POR) See Power-on	
Reset (POR)	
Reset Conditions for All Registers	Q/I
Reset Conditions for PCON Register	94 Q3
Reset Conditions for Program Counter	 מס
Reset Conditions for Status Register	 ຊາ
WDT Reset. See Watchdog Timer (WDT).	

Revision History 165
RP0 Bit 10
RP1 Bit 10
S
Sales and Support 175
SCI Clock 77
Sloop 80.01.00
Siecep
Soliwale Simulator (MFLAB SIM)
Special Event Trigger
Special Features of the CPU
Special Function Register Summary
Special Function Registers
SPI Mode
Associated Registers74
Serial Clock71
Serial Data In71
Serial Data Out71
Slave Select
SSP
ACK
l ² C
I ² C Operation
SSPADD Register 14
SSPIF 20
SSPOV 73
SSPOV Bit 77
SSPSTAT Register 14
Stack 23
Undernow
Status Register
DC Bit
IRP Bit
PD Bit
TO Bit16, 91
Z Bit 16
Synchronous Serial Port (SSP)71
Overview
SPI Mode71
Synchronous Serial Port Interrupt 20
т

Т

T1CKPS0 Bit	57
T1CKPS1 Bit	57
T1OSCEN Bit	57
T1SYNC Bit	57
T2CKPS0 Bit	64
T2CKPS1 Bit	64
Tad	85
Time-out Sequence	
Timer0	53
Associated Registers	55
Clock Source Edge Select (T0SE Bit)	17
Clock Source Select (T0CS Bit)	
External Clock	
Interrupt	53
Operation	53
Overflow Enable (TMR0IE Bit)	
Overflow Flag (TMR0IF Bit)	
Overflow Interrupt	
Prescaler	
Т0СКІ	