

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf819-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 0											
00h ⁽¹⁾	INDF	Addressir	ng this locati	on uses cont	ents of FSR to	o address dat	a memory (n	ot a physical	register)	0000 0000	23
01h	TMR0	Timer0 M	odule Regis	ter						XXXX XXXX	53, 17
02h ⁽¹⁾	PCL	Program	Counter's (F	PC) Least Sig	nificant Byte					0000 0000	23
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	16
04h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poi	nter					xxxx xxxx	23
05h	PORTA	PORTA D	Data Latch w	hen written; F	PORTA pins w	hen read				xxx0 0000	39
06h	PORTB	PORTB D	Data Latch w	hen written; I	PORTB pins v	when read				xxxx xxxx	43
07h	—	Unimplen	nented							_	_
08h	—	Unimplen	nented							—	—
09h	—	Unimplen	nented							—	—
0Ah ^(1,2)	PCLATH	_	_		Write Buffer	for the upper	5 bits of the	Program Cou	unter	0 0000	23
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
0Ch	PIR1	_	ADIF		_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	20
0Dh	PIR2	_	_	_	EEIF	_	_	_	_	0	21
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								57
0Fh	TMR1H	Holding R	Register for tl	he Most Sign	ificant Byte of	f the 16-bit TM	/IR1 Register	r		xxxx xxxx	57
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	57
11h	TMR2	Timer2 M	odule Regis	ter						0000 0000	63
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	64
13h	SSPBUF	Synchron	ous Serial P	ort Receive I	Buffer/Transm	it Register				XXXX XXXX	71, 76
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	73
15h	CCPR1L	Capture/0	Compare/PW	/M Register (LSB)					XXXX XXXX	66, 67, 68
16h	CCPR1H	Capture/0	Compare/PW	/M Register (MSB)					XXXX XXXX	66, 67, 68
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	65
18h	—	Unimplen	nented							_	_
19h	—	Unimplen	nented							_	_
1Ah	—	Unimplen	Unimplemented —						_		
1Bh	_	Unimplen	nented							—	_
1Ch	—	Unimplen	nented							—	_
1Dh	_	Unimplen	nented							—	_
1Eh	ADRESH	A/D Resu	ılt Register ⊦	ligh Byte						XXXX XXXX	81
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	81

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: OPTION REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0				
	bit 7							bit (
7	RBPU: PO	RTB Pull-up	Enable bit									
		B pull-ups are B pull-ups are		individual po	ort latch valu	ues						
t 6	INTEDG: I	nterrupt Edge	e Select bit									
		pt on rising e pt on falling e										
t 5	TOCS: TMI	R0 Clock Sou	irce Select bi	it								
		tion on T0CK al instruction (•	CLKO)								
t 4	TOSE: TM	R0 Source Ec	lge Select bit	t								
		nent on high-t nent on low-to			•							
t 3	PSA: Pres	caler Assignn	nent bit									
		aler is assigne aler is assigne										
t 2-0	PS2:PS0: Prescaler Rate Select bits											
	Bit Value	TMR0 Rate 1 : 2	WDT Rate									
	001	1:4	1:2									
	010 011	1 : 8 1 : 16	1:4 1:8									
	100	1:32	1:16									
	101	1:64	1:32									
	110 111	1 : 128 1 : 256	1 : 64 1 : 128									
	Legend:											
	R = Reada	able bit	W = Writable bit U = Unimplemented bit, read a					'0'				
	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											

3.5 Reading Flash Program Memory

To read a program memory location, the user must write two bytes of the address to the EEADR and EEADRH registers, set the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle in the EEDATA and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDATA and EEDATH registers will hold this value until another read or until it is written to by the user (during a write operation).

BANKSEL	EEADRH		;	Select Bank of EEADRH
MOVF	ADDRH, W	1	;	
MOVWF	EEADRH		;	MS Byte of Program
			;	Address to read
MOVF	ADDRL, W	T	;	
MOVWF	EEADR		;	LS Byte of Program
			;	Address to read
BANKSEL	EECON1		;	Select Bank of EECON1
BSF	EECON1,	EEPGD	;	Point to PROGRAM
			;	memory
BSF	EECON1,	RD	;	EE Read
			;	
NOP			;	Any instructions
			;	here are ignored as
NOP			;	program memory is
			;	read in second cycle
			;	after BSF EECON1,RD
BANKSEL	EEDATA		;	Select Bank of EEDATA
MOVF	EEDATA,	W	;	DATAL = EEDATA
MOVWF	DATAL		;	
MOVF	EEDATH,	W	;	DATAH = EEDATH
MOVWF	DATAH		;	
1				

3.6 Erasing Flash Program Memory

The minimum erase block is 32 words. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

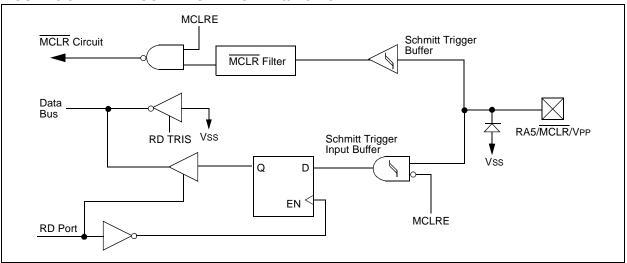
When initiating an erase sequence from the microcontroller itself, a block of 32 words of program memory is erased. The Most Significant 11 bits of the EEADRH:EEADR point to the block being erased. EEADR< 4:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

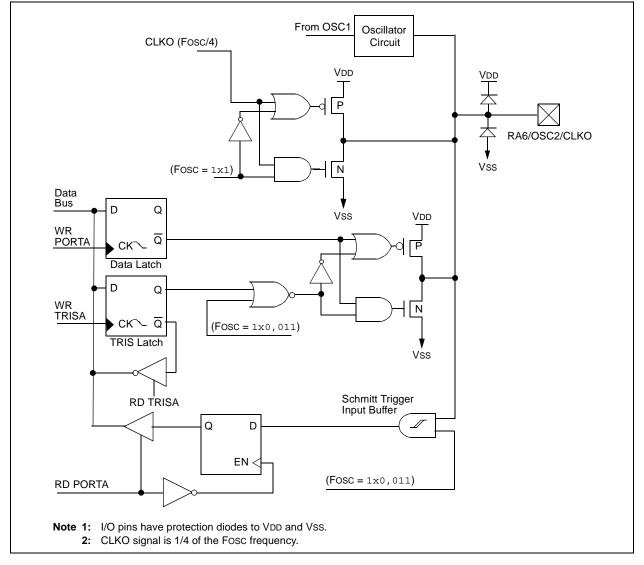
For protection, the write initiate sequence for EECON2 must be used.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the erase takes place. This is not Sleep mode, as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

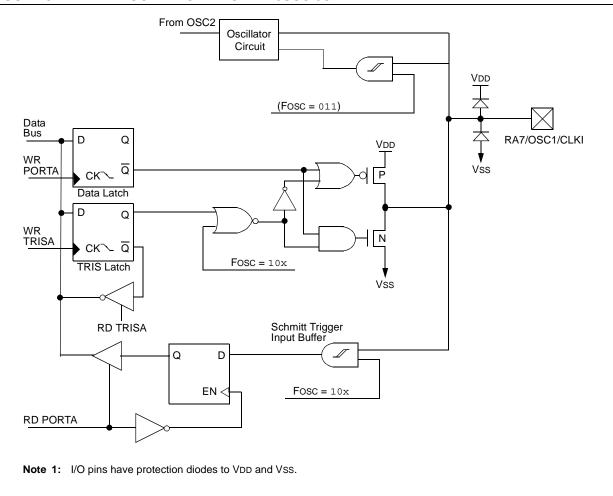
3.6.1 FLASH PROGRAM MEMORY ERASE SEQUENCE


The sequence of events for erasing a block of internal program memory location is:

- 1. Load EEADRH:EEADR with address of row being erased.
- Set EEPGD bit to point to program memory; set WREN bit to enable writes and set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase.


EXAMPLE 3-4:	ERASING A FLASH PROGRAM MEMORY ROW
--------------	------------------------------------

	BANKSEL	EEADRH	;	Select Bank of EEADRH
	MOVF	ADDRH, W	;	
	MOVWF	EEADRH	;	MS Byte of Program Address to Erase
	MOVF	ADDRL, W	;	
	MOVWF	EEADR	;	LS Byte of Program Address to Erase
ERASE ROW				
_	BANKSEL	EECON1	;	Select Bank of EECON1
	BSF	EECON1, EEE	GD ;	Point to PROGRAM memory
	BSF	EECON1, WRE	EN ;	Enable Write to memory
	BSF	EECON1, FRE	EE ;	Enable Row Erase operation
;				
	BCF	INTCON, GIE	s;	Disable interrupts (if using)
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
	MOVLW	AAh	;	
	MOVWF	EECON2	;	Write AAh
	BSF	EECON1, WR	;	Start Erase (CPU stall)
	NOP		;	Any instructions here are ignored as processor
			;	halts to begin Erase sequence
	NOP		;	processor will stop here and wait for Erase complete
			;	after Erase processor continues with 3rd instruction
	BCF	EECON1, FRE	EE ;	Disable Row Erase operation
	BCF	EECON1, WRE	EN ;	Disable writes
	BSF	INTCON, GIE	· ; 2	Enable interrupts (if using)



EXAMPLE 6-1: CHANGING THE PRESCALER ASSIGNMENT FROM TIMER0 TO WDT

BANKSEL	OPTION_REG	;	Select Bank of OPTION_REG
MOVLW	b'xx0x0xxx'	;	Select clock source and prescale value of
MOVWF	OPTION_REG	;	other than 1:1
BANKSEL	TMR0	;	Select Bank of TMR0
CLRF	TMR0	;	Clear TMR0 and prescaler
BANKSEL	OPTION_REG	;	Select Bank of OPTION_REG
MOVLW	b'xxxx1xxx'	;	Select WDT, do not change prescale value
MOVWF	OPTION_REG		
CLRWDT		;	Clears WDT and prescaler
MOVLW	b'xxxx1xxx'	;	Select new prescale value and WDT
MOVWF	OPTION_REG		

EXAMPLE 6-2: CHANGING THE PRESCALER ASSIGNMENT FROM WDT TO TIMER0

CLRWDT		;	Clear WDT and prescaler
BANKSEL	OPTION_REG	;	Select Bank of OPTION_REG
MOVLW	b'xxxx0xxx'	;	Select TMR0, new prescale
MOVWF	OPTION_REG	;	value and clock source

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
01h,101h	TMR0	Timer0 Mo	odule Regis	ster						xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 Interrupt Enable bit, TMR1IE (PIE1<0>).

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a timer
- as a synchronous counter
- · as an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.1** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB6/T1OSO/T1CKI/PGC and RB7/T1OSI/ PGD pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON
bit 7							bit 0

bit 7-6	Unimplemented: Read	as '0'								
bit 5-4	T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits									
	11 = 1:8 Prescale value	ł								
	10 = 1:4 Prescale value									
	01 = 1:2 Prescale value 00 = 1:1 Prescale value									
bit 3										
DIT 3	T1OSCEN: Timer1 Osc									
	1 = Oscillator is enabled 0 = Oscillator is shut-off	-	s turned off to eliminate power drain)							
bit 2										
	T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1:									
	1 = Do not synchronize external clock input									
	0 = Synchronize externa	al clock input								
	<u>TMR1CS = 0:</u>									
	This bit is ignored. Time	er1 uses the internal cloc	k when TMR1CS = 0.							
bit 1	TMR1CS: Timer1 Clock Source Select bit									
	 1 = External clock from 0 = Internal clock (Fost 	•	/PGC (on the rising edge)							
bit 0	TMR1ON: Timer1 On bi									
	1 = Enables Timer1									
	0 = Stops Timer1									
	Legend:									
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.8 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" signal (CCP1M3:CCP1M0 = 1011), the signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

7.9 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other Reset, except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

7.10 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

7.11 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 7.6 "Timer1 Oscillator**"), gives users the option to include RTC functionality in their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 7-3, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow, triggers the interrupt and calls the routine which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it; the simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

REGISTER 8-1:	T2CON: TIM	ER2 CONTROL	REGISTER (ADDRESS	12h)		
	U-0 R/	/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	— TOL	JTPS3 TOUTPS	2 TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7						bit 0
bit 7	Unimplement	ed: Read as '0'					
bit 6-3	TOUTPS3:TO	UTPS0: Timer2 O	utput Postscale	e Select bits			
	0000 = 1:1 Pos 0001 = 1:2 Pos 0010 = 1:3 Pos	stscale					
	•						
	•						
	1111 = 1:16 P	ostscale					
bit 2	TMR2ON: Tim	er2 On bit					
	1 = Timer2 is 0 = Timer2 is						
bit 1-0	T2CKPS1:T2C	KPS0: Timer2 Cl	ock Prescale S	elect bits			
	00 = Prescaler 01 = Prescaler 1x = Prescaler	is 4					
	Legend:]
	R = Readable	bit W :	= Writable bit	U = Unim	plemented	bit. read as	'0'

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000
8Ch	PIE1	_	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000
11h	TMR2	Timer2	Module Re	egister						0000	0000	0000	0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2	Period Re	gister						1111	1111	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM (CCP) module contains a 16-bit register that can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Table 9-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match which will reset Timer1 and start an A/D conversion (if the A/D module is enabled). The CCP module's input/output pin (CCP1) can be configured as RB2 or RB3. This selection is set in bit 12 (CCPMX) of the Configuration Word register.

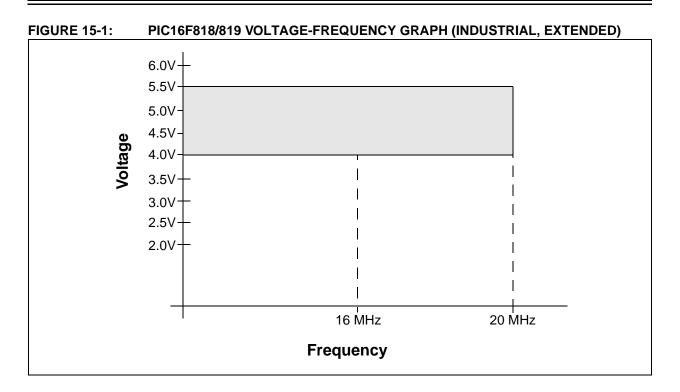
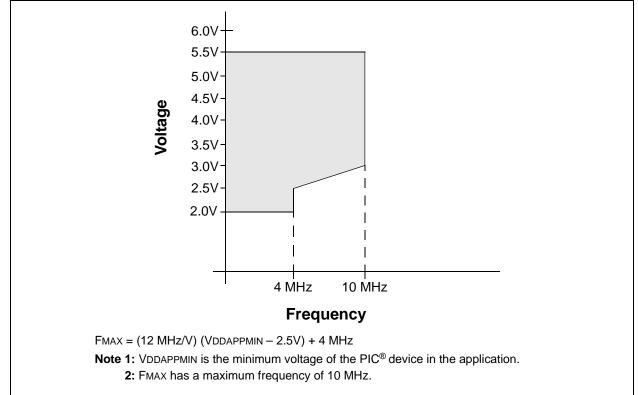
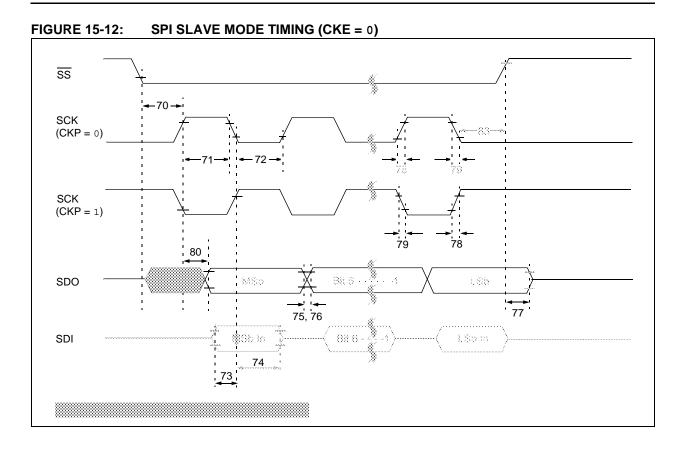
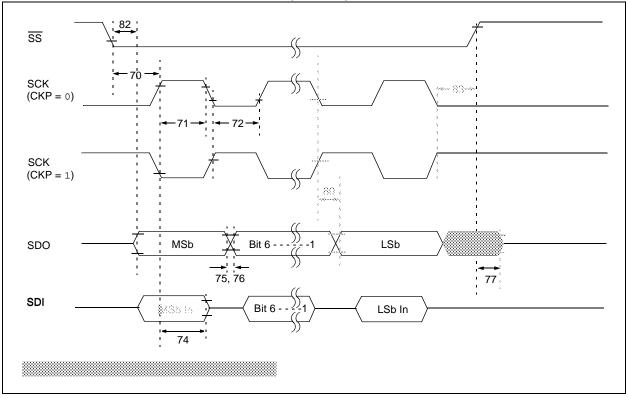

Additional information on the CCP module is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) and in Application Note AN594, "Using the CCP Module(s)" (DS00594).

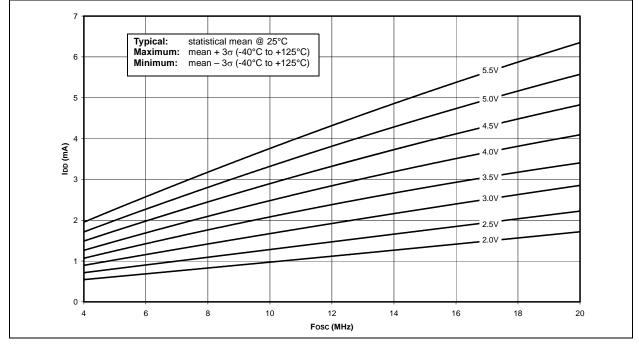
TABLE 9-1: CCP MODE – TIMER RESOURCE


CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2


REGISTER 9-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0
Unimpleme							
CCP1X:CCI	P1Y: PWM	Least Signi	ficant bits				
<u>Capture mo</u> Unused.	<u>de:</u>						
<u>Compare mo</u> Unused.	ode:						
<u>PWM mode:</u> These bits a	-	LSbs of the	PWM duty	cycle. The e	eight MSbs a	re found in (CCPRxL.
CCP1M3:CO	CP1M0: CC	P1 Mode S	elect bits				
0000 = Cap	ture/Compa	are/PWM di	sabled (res	ets CCP1 m	odule)		
0100 = Cap	ture mode,	every fallin	g edge				
0101 = Cap							
0110 = Cap		•	• •				
0111 = Cap		•	• •	(CCP1IF bit	ic cot)		
		· ·		h (CCP1IF b	,		
1010 = Com				terrupt on ma		F bit is set,	CCP1 pin is
1011 = Com	npare mode			t (CCP1IF b conversion			
11xx = PWI					,		,
Legend:							
Legend: R = Readab	le bit	W = V	Vritable bit	U = Uni	mplemented	l bit, read as	s 'O'





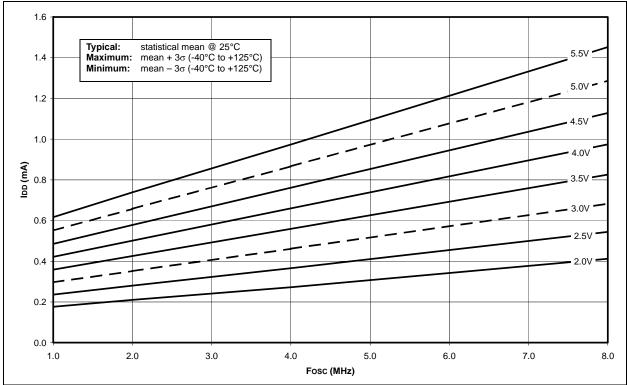
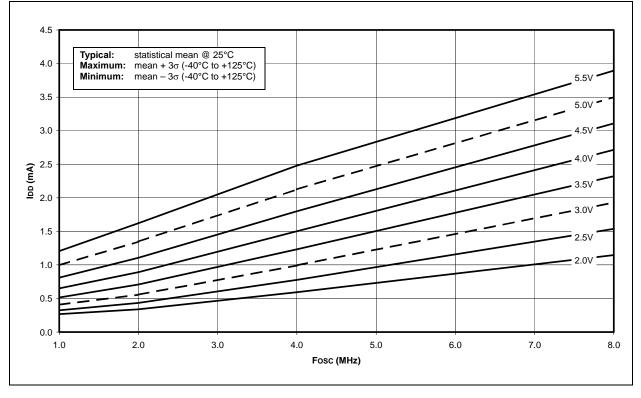
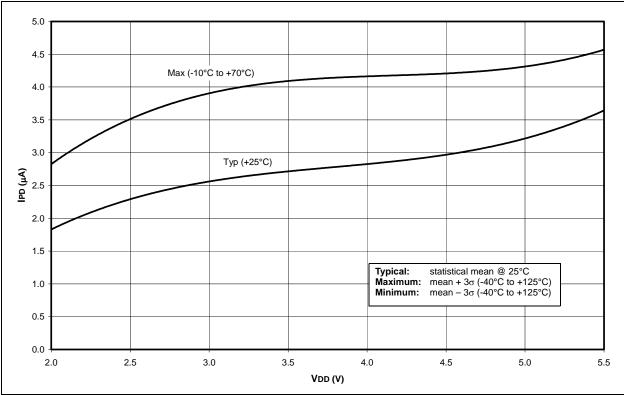
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

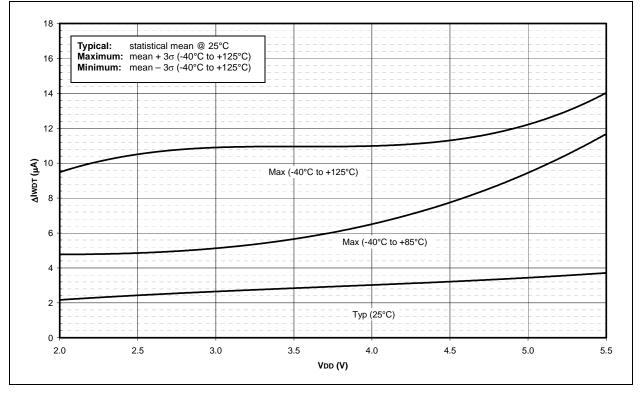
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

© 2001-2013 Microchip Technology Inc.

FIGURE 16-7: TYPICAL IDD vs. VDD, -40°C TO +125°C, 1 MHz TO 8 MHz (RC_RUN MODE, ALL PERIPHERALS DISABLED)


FIGURE 16-8: MAXIMUM IDD vs. VDD, -40°C TO +125°C, 1 MHz TO 8 MHz (RC_RUN MODE, ALL PERIPHERALS DISABLED)

INDEX

	L
-	٩

A/D	
Acquisition Requirements	84
ADIF Bit	
Analog-to-Digital Converter	81
Associated Registers	
Calculating Acquisition Time	
Configuring Analog Port Pins	85
Configuring the Interrupt	
Configuring the Module	83
Conversion Clock	85
Conversion Requirements	. 140
Conversions	86
Converter Characteristics	. 139
Delays	84
Effects of a Reset	
GO/DONE Bit	83
Internal Sampling Switch (Rss) Impedance	84
Operation During Sleep	
Result Registers	86
Source Impedance	84
Time Delays	84
Use of the CCP Trigger	87
Absolute Maximum Ratings	. 115
ACK	77
ADCON0 Register	81
ADCON1 Register	81
ADRESH Register 1	3, 81
ADRESH, ADRESL Register Pair	83
ADRESL Register1	4, 81
Application Notes	
AN556 (Implementing a Table Read)	23
AN578 (Use of the SSP Module in the I ² C	
Multi-Master Environment)	71
AN607 (Power-up Trouble Shooting)	
Assembler	
MPASM Assembler	. 112
в	

В
BF Bit
Block Diagrams
A/D83
Analog Input Model84
Capture Mode Operation66
Compare Mode Operation67
In-Circuit Serial Programming Connections101
Interrupt Logic96
On-Chip Reset Circuit91
PIC16F818/8196
PWM68
RA0/AN0:RA1/AN1 Pins40
RA2/AN2/Vref- Pin40
RA3/AN3/Vref+ Pin40
RA4/ <u>AN4/T</u> 0CKI Pin40
RA5/MCLR/Vpp Pin41
RA6/OSC2/CLKO Pin41
RA7/OSC1/CLKI Pin42
RB0 Pin45
RB1 Pin46
RB2 Pin47
RB3 Pin48
RB4 Pin
RB5 Pin50

RB6 Pin51
RB7 Pin52
Recommended MCLR Circuit
SSP in I ² C Mode76
SSP in SPI Mode74
System Clock 38
Timer0/WDT Prescaler
Timer1
Timer2
Watchdog Timer (WDT) 98
BOR. See Brown-out Reset.
Brown-out Reset (BOR) 89, 91, 92, 93, 94

С

C Compilers	
MPLAB C18 1	12
Capture/Compare/PWM (CCP)	65
Capture Mode	
CCP Prescaler	
Pin Configuration	
Software Interrupt	
Timer1 Mode Selection	
Capture, Compare and Timer1	
Associated Registers	67
CCP1IF	
CCPR1	
CCPR1H:CCPR1L	
Compare Mode	
Pin Configuration	
Software Interrupt Mode	
Special Event Trigger	
Special Event Trigger Output of CCP1	
Timer1 Mode Selection	
PWM and Timer2	•.
Associated Registers	69
PWM Mode	
Duty Cycle	
Example Frequencies/Resolutions	69
Period	
Setup for Operation	
Timer Resources	
CCP1M0 Bit	
CCP1M1 Bit	
CCP1M2 Bit	
CCP1M3 Bit	
CCP1X Bit	
CCP1Y Bit	
CCPR1H Register	
CCPR1L Register	
Code Examples	00
Changing Between Capture Prescalers	66
Changing Prescaler Assignment from Timer0	00
to WDT	55
Changing Prescaler Assignment from WDT	
to Timer0	55
Clearing RAM Using Indirect Addressing	
Erasing a Flash Program Memory Row	
Implementing a Real-Time Clock Using a	20
Timer1 Interrupt Service	62
Initializing PORTA	
Reading a 16-Bit Free Running Timer	
Reading Data EEPROM	
Reading Flash Program Memory	28
Saving Status and W Registers in RAM	
Writing a 16-Bit Free Running Timer	
Writing to Data EEPROM	
	~ '

Timer157
Associated Registers62
Capacitor Selection
Counter Operation
Operation
Operation in Asynchronous Counter Mode
Operation in Synchronized Counter Mode
Operation in Timer Mode
•
Oscillator
Oscillator Layout Considerations
Prescaler
Resetting Register Pair (TMR1H, TMR1L)61
Resetting Using a CCP Trigger Output61
TMR1H59
TMR1L59
Use as a Real-Time Clock61
Timer263
Associated Registers64
Output63
Postscaler63
Prescaler63
Prescaler and Postscaler63
Timing Diagrams
A/D Conversion140
Brown-out Reset131
Capture/Compare/PWM (CCP1)
CLKO and I/O
External Clock
I ² C Bus Data
I ² C Bus Start/Stop Bits
I ² C Reception (7-Bit Address)
I ² C Transmission (7-Bit Address)
PWM Output68
Reset, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer 131
Timer and Power-up Timer131 Slow Rise Time (MCLR Tied to Vdd
Timer and Power-up Timer
Timer and Power-up Timer
Timer and Power-up Timer
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 75, 135
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime to Vdd Through RC Network): Case 1
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime to Vdd Through RC Network): Case 1
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLR
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to Vdd96Through RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Time-0 and Timer1 External Clock132
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 1ied to Vdd Through Pull-up Resistor) Time-out Sequence on Power-up (MCLR 1ied to Vdd Through RC Network): Case 1 Time-out Sequence on Power-up (MCLR 1ied to Vdd Through RC Network): Case 2 Time-out Sequence on Power-up (MCLR 1ied to Vdd Through RC Network): Case 2 Timer0 and Timer1 External Clock 132 Timer1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128Timing Requirements
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128Timing Requirements129
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128Timing Requirements22External Clock129TMR0 Register15
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Requirements24External Clock129TMR0 Register15TMR1CS Bit57
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Requirements24External Clock129TMR0 Register15TMR1CS Bit57TMR1H Register13
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Requirements24External Clock129TMR0 Register15TMR1CS Bit57TMR1H Register13
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 128 Time1 to Vdd Through RC Network): Case 2 95 Time-out Sequence on Power-up (MCLR 132 Time1 ncrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Parameter Symbology 128 Timing Requirements 57 TMR0 Register 13 TMR1H Register 13 TMR1L Register 13 TMR1ON Bit 57
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 126 Time-out Sequence on Power-up (MCLR 126 Time out Sequence on Power-up (MCLR 132 Time-out Sequence on Power-up (MCLR 132 Time out Sequence on Power-up (MCLR 132 Time1 to Vdd Through RC Network): Case 1 132 Time0 and Time1 External Clock 132 Time1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 128 Timing Requirements 57 TMR1 Register 13 TMR1 Register
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 128 Time1 to Vdd Through RC Network): Case 2 95 Time-out Sequence on Power-up (MCLR 132 Time1 ncrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Parameter Symbology 128 Timing Requirements 57 TMR0 Register 13 TMR1H Register 13 TMR1L Register 13 TMR1ON Bit 57
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 126 Time-out Sequence on Power-up (MCLR 126 Time out Sequence on Power-up (MCLR 132 Time-out Sequence on Power-up (MCLR 132 Time out Sequence on Power-up (MCLR 132 Time1 to Vdd Through RC Network): Case 1 132 Time0 and Time1 External Clock 132 Time1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 128 Timing Requirements 57 TMR1 Register 13 TMR1 Register
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 164 to Vdd Through Pull-up Resistor) Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 164 to Vdd Through RC Network): Case 1 Tied to Vdd Through RC Network): Case 2 95 Timer0 and Timer1 External Clock 132 Timer1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 128 Timing Requirements 57 TMR1 Register 13 TMR1CS Bit 57 TMR1 Register 13 TMR1ON Bit 57 TMR2 Register 13 TMR2 Register 13
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Master Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 164 to Vdd Through Pull-up Resistor) Time-out Sequence on Power-up (MCLR 164 to Vdd Through RC Network): Case 1 Time-out Sequence on Power-up (MCLR 176 to Vdd Through RC Network): Case 1 Time out Sequence on Power-up (MCLR 176 to Vdd Through RC Network): Case 1 Time out Sequence on Power-up (MCLR 132 Timero and Timer1 External Clock 132 Timer1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 129 TMR0 Register 13 TMR1CS Bit 57 TMR1H Register 13 TMR1ON Bit 57 TMR2 Register 13

TRISA Register TRISB Register	
V	
Vdd Pin	8
Vss Pin	8
w	
Wake-up from Sleep	
Interrupts	93, 94
MCLR Reset	
WDT Reset	-
Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	
Enable (WDTEN Bit)	
INTRC Oscillator	
Postscaler. See Postscaler, WDT.	
Programming Considerations	
Time-out Period	
WDT Reset, Normal Operation	
WDT Reset, Sleep	
WDT Wake-up	
WCOL	
Write Collision Detect Bit, WCOL	
WWW Address	
WWW, On-Line Support	

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769393

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.