



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 10MHz                                                                     |
| Connectivity               | I²C, SPI                                                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 16                                                                        |
| Program Memory Size        | 3.5КВ (2К х 14)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 256 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                 |
| Data Converters            | A/D 5x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                            |
| Supplier Device Package    | 20-SSOP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf819-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS



# 2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note *AN556, "Implementing a Table Read"* (DS00556).

## 2.3.2 STACK

The PIC16F818/819 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

**Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

# 2.4 Indirect Addressing: INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

## EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected).

A simple program to clear RAM locations, 20h-2Fh, using indirect addressing is shown in Example 2-2.

#### EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

|          | MOVLW | 0x20   | ;initialize pointer  |
|----------|-------|--------|----------------------|
|          | MOVWF | FSR    | ;to RAM              |
| NEXT     | CLRF  | INDF   | ;clear INDF register |
|          | INCF  | FSR    | ;inc pointer         |
|          | BTFSS | FSR, 4 | ;all done?           |
|          | GOTO  | NEXT   | ;NO, clear next      |
| CONTINUE | 2     |        |                      |
|          | :     |        | ;YES, continue       |

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (Status<7>) as shown in Figure 2-6.



# FIGURE 5-15: BLOCK DIAGRAM OF RB7 PIN



# 7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 Interrupt Enable bit, TMR1IE (PIE1<0>).

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

# 7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a timer
- as a synchronous counter
- · as an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.1** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB6/T1OSO/T1CKI/PGC and RB7/T1OSI/ PGD pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*<sup>®</sup> *Mid-Range MCU Family Reference Manual*" (DS33023).

### REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

| U-0   | U-0 | R/W-0   | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  |
|-------|-----|---------|---------|---------|--------|--------|--------|
| _     |     | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N |
| bit 7 |     |         |         |         |        |        | bit 0  |

| bit 7-6      | Unimplemented: Read                                  | <b>as</b> '0'               |                                        |
|--------------|------------------------------------------------------|-----------------------------|----------------------------------------|
| bit 5-4      | T1CKPS1:T1CKPS0: Ti                                  | mer1 Input Clock Presc      | ale Select bits                        |
|              | 11 = 1:8 Prescale value                              |                             |                                        |
|              | 10 = 1:4 Prescale value                              |                             |                                        |
|              | 01 = 1:2 Prescale value                              |                             |                                        |
| <b>L</b> H 0 |                                                      | llatar Enchla Control hit   |                                        |
| DILS         |                                                      | INALOF ENABLE CONTROL DIL   |                                        |
|              | 1 = Oscillator is enabled 0 = Oscillator is shut-off | (the oscillator inverter is | s turned off to eliminate power drain) |
| hit 2        | TISYNC: Timer1 Extern                                | al Clock Input Synchror     | nization Control bit                   |
| 5112         | TMR1CS = $1^{\circ}$                                 |                             |                                        |
|              | 1 = Do not synchronize                               | external clock input        |                                        |
|              | 0 = Synchronize externa                              | I clock input               |                                        |
|              | <u>TMR1CS = 0:</u>                                   |                             |                                        |
|              | This bit is ignored. Time                            | r1 uses the internal cloc   | k when TMR1CS = 0.                     |
| bit 1        | TMR1CS: Timer1 Clock                                 | Source Select bit           |                                        |
|              | 1 = External clock from<br>0 = Internal clock (Eosc  | pin RB6/T1OSO/T1CKI         | /PGC (on the rising edge)              |
| bit 0        | TMR10N: Timer1 On bit                                | t i                         |                                        |
|              | 1 = Enables Timer1                                   |                             |                                        |
|              | 0 = Stops Timer1                                     |                             |                                        |
|              | Legend:                                              |                             |                                        |
|              | R = Readable bit                                     | W = Writable bit            | U = Unimplemented bit, read as '0'     |

| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
|-------------------|------------------|----------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

# 7.2 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit,  $\overline{T1SYNC}$  (T1CON<2>), has no effect since the internal clock is always in sync.

## 7.3 Timer1 Counter Operation

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

## 7.4 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RB7/T1OSI/PGD when bit T1OSCEN is set, or on pin RB6/T1OSO/T1CKI/PGC when bit T1OSCEN is cleared.

If  $\overline{\text{T1SYNC}}$  is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.



### FIGURE 7-1: TIMER1 INCREMENTING EDGE





| EXAMPLE 7-3: | IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE |
|--------------|-----------------------------------------------------------------|
| -            |                                                                 |

| RTCinit | BANKSEL | TMR1H        |   |                                             |
|---------|---------|--------------|---|---------------------------------------------|
|         | MOVLW   | 0x80         | ; | Preload TMR1 register pair                  |
|         | MOVWF   | TMR1H        | ; | for 1 second overflow                       |
|         | CLRF    | TMR1L        |   |                                             |
|         | MOVLW   | b'00001111'  | ; | Configure for external clock,               |
|         | MOVWF   | T1CON        | ; | Asynchronous operation, external oscillator |
|         | CLRF    | secs         | ; | Initialize timekeeping registers            |
|         | CLRF    | mins         |   |                                             |
|         | MOVLW   | .12          |   |                                             |
|         | MOVWF   | hours        |   |                                             |
|         | BANKSEL | PIE1         |   |                                             |
|         | BSF     | PIE1, TMR1IE | ; | Enable Timer1 interrupt                     |
|         | RETURN  |              |   |                                             |
| RTCisr  | BANKSEL | TMR1H        |   |                                             |
|         | BSF     | TMR1H, 7     | ; | Preload for 1 sec overflow                  |
|         | BCF     | PIR1, TMR1IF | ; | Clear interrupt flag                        |
|         | INCF    | secs, F      | ; | Increment seconds                           |
|         | MOVF    | secs, w      |   |                                             |
|         | SUBLW   | .60          |   |                                             |
|         | BTFSS   | STATUS, Z    | ; | 60 seconds elapsed?                         |
|         | RETURN  | _            | ; | No, done                                    |
|         | CLRF    | seconds      | ; | Clear seconds                               |
|         | INCF    | mins, f      | ; | Increment minutes                           |
|         | MOVF    | mins, w      |   |                                             |
|         | SUBLW   | .60          |   |                                             |
|         | BTFSS   | STATUS, Z    | ; | 60 seconds elapsed?                         |
|         | RETURN  |              | ; | No, done                                    |
|         | CLRF    | mins         | ; | Clear minutes                               |
|         | INCF    | hours, f     | ; | Increment hours                             |
|         | MOVE    | hours, w     |   |                                             |
|         | SUBLW   | .24          |   |                                             |
|         | BIFSS   | STATUS, Z    | ; | 24 nours elapsed?                           |
|         | RETURN  | h            | ; | No, done                                    |
|         | CLKF    | nours        | ; | Clear nours                                 |
|         | RETURN  |              | ; | Doue                                        |

## TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

| Address               | Name                                                                              | Bit 7                                                                      | Bit 6 | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1  | Bit 0  | Valu<br>POR, | e on<br>BOR | Valu<br>all c<br>Res | e on<br>other<br>sets |
|-----------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|---------|---------|---------|--------|--------|--------|--------------|-------------|----------------------|-----------------------|
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON                                                                            | GIE                                                                        | PEIE  | TMR0IE  | INTE    | RBIE    | TMR0IF | INTF   | RBIF   | 0000         | 000x        | 0000                 | 000u                  |
| 0Ch                   | PIR1                                                                              | _                                                                          | ADIF  | —       | —       | SSPIF   | CCP1IF | TMR2IF | TMR1IF | - 0          | 0000        | - 0                  | 0000                  |
| 8Ch                   | PIE1                                                                              | —                                                                          | ADIE  | —       | —       | SSPIE   | CCP1IE | TMR2IE | TMR1IE | - 0          | 0000        | - 0                  | 0000                  |
| 0Eh                   | TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register |                                                                            |       |         |         |         |        |        |        | xxxx         | xxxx        | uuuu                 | uuuu                  |
| 0Fh                   | TMR1H                                                                             | Holding Register for the Most Significant Byte of the 16-bit TMR1 Register |       |         |         |         |        |        | xxxx   | xxxx         | uuuu        | uuuu                 |                       |
| 10h                   | T1CON                                                                             | _                                                                          | _     | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N | 00           | 0000        | uu                   | uuuu                  |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

# 8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for the PWM mode of the CCP1 module. The TMR2 register is readable and writable and is cleared on any device Reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).

Timer2 can be shut-off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

Register 8-1 shows the Timer2 Control register.

Additional information on timer modules is available in the "*PIC*<sup>®</sup> *Mid-Range MCU Family Reference Manual*" (DS33023).

# 8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMR2 register
- A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR, WDT Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

# 8.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate a shift clock.

### FIGURE 8-1: TIMER2 BLOCK DIAGRAM



#### 10.3.2 MASTER MODE OPERATION

Master mode operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I<sup>2</sup>C bus may be taken when the P bit is set or the bus is Idle and both the S and P bits are clear.

In Master mode operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISB<4,1> bit(s). The output level is always low, irrespective of the value(s) in PORTB<4,1>. So when transmitting data, a '1' data bit must have the TRISB<1> bit set (input) and a '0' data bit must have the TRISB<1> bit cleared (output). The same scenario is true for the SCL line with the TRISB<4> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I<sup>2</sup>C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- · Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode operation can be done with either the Slave mode Idle (SSPM3:SSPM0 = 1011) or with the Slave mode active. When both Master mode operation and Slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on Master mode operation, see AN554, "Software Implementation of  $f^2C^{TM}$  Bus Master" (DS00554).

### 10.3.3 MULTI-MASTER MODE OPERATION

In Multi-Master mode operation, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I<sup>2</sup>C bus may be taken when bit P (SSPSTAT<4>) is set or the bus is Idle and both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master mode operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISB<4,1>). There are two stages where this arbitration can be lost:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the Slave device continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

For more information on Multi-Master mode operation, see AN578, "Use of the SSP Module in the  $l^2C^{TM}$  Multi-Master Environment" (DS00578).

| Address                | Name                                | Bit 7              | Bit 6              | Bit 5                     | Bit 4                | Bit 3     | Bit 2      | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|------------------------|-------------------------------------|--------------------|--------------------|---------------------------|----------------------|-----------|------------|--------|--------|----------------------|---------------------------------|
| 0Bh, 8Bh,<br>10Bh,18Bh | INTCON                              | GIE                | PEIE               | TMR0IE                    | INTE                 | RBIE      | TMR0IF     | INTF   | RBIF   | 0000 000x            | 0000 000u                       |
| 0Ch                    | PIR1                                | _                  | ADIF               | _                         | —                    | SSPIF     | CCP1IF     | TMR2IF | TMR1IF | -0 0000              | -0 0000                         |
| 8Ch                    | PIE1                                | _                  | ADIE               | _                         | —                    | SSPIE     | CCP1IE     | TMR2IE | TMR1IE | -0 0000              | -0 0000                         |
| 13h                    | SSPBUF                              | Synchron           | ous Seria          | I Port Rece               | ive Buffei           | r/Transmi | t Register |        |        | xxxx xxxx            | uuuu uuuu                       |
| 93h                    | SSPADD                              | Synchron           | ous Seria          | l Port (l <sup>2</sup> C⊤ | <sup>™</sup> mode) / | Address F | Register   |        |        | 0000 0000            | 0000 0000                       |
| 14h                    | SSPCON                              | WCOL               | SSPOV              | SSPEN                     | CKP                  | SSPM3     | SSPM2      | SSPM1  | SSPM0  | 0000 0000            | 0000 0000                       |
| 94h                    | SSPSTAT                             | SMP <sup>(1)</sup> | CKE <sup>(1)</sup> | D/A                       | Р                    | S         | R/W        | UA     | BF     | 0000 0000            | 0000 0000                       |
| 86h                    | TRISB PORTB Data Direction Register |                    |                    |                           |                      |           |            |        |        | 1111 1111            | 1111 1111                       |

TABLE 10-3: REGISTERS ASSOCIATED WITH I<sup>2</sup>C<sup>™</sup> OPERATION

**Legend:** x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

**Note 1:** Maintain these bits clear in  $I^2C$  mode.

NOTES:

# 12.2 Reset

The PIC16F818/819 differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The  $\overline{\text{TO}}$  and  $\overline{\text{PD}}$  bits are set or cleared differently in different Reset situations as indicated in Table 12-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR wake-up from Sleep, the CPU requires or approximately 5-10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 12-4 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 12-1.



#### FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

# 12.3 MCLR

PIC16F818/819 device has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested.

The RA5/MCLR/VPP pin can be configured for  $\overline{\text{MCLR}}$  (default) or as an I/O pin (RA5). This is configured through the MCLRE bit in the Configuration Word register.

### FIGURE 12-2: RECOMMENDED MCLR CIRCUIT



# 12.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V-1.7V). To take advantage of the POR, tie the  $\underline{MCLR}$  pin to VDD as described in Section 12.3 "MCLR". A maximum rise time for VDD is specified. See Section 15.0 "Electrical Characteristics" for details.

When the device starts normal operation (exits the Reset condition), device operating parameters (volt-age, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For more information, see Application Note *AN607, "Power-up Trouble Shooting"* (DS00607).

# 12.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) of the PIC16F818/819 is a counter that uses the INTRC oscillator as the clock input. This yields a count of 72 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC and will vary from chip-to-chip due to temperature and process variation. See DC parameter #33 for details.

The PWRT is enabled by clearing configuration bit, PWRTEN.

# 12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

# 12.7 Brown-out Reset (BOR)

The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter #D005, about 4V) for longer than TBOR (parameter #35, about 100  $\mu$ s), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a Reset may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer (if enabled) will keep the device in Reset for TPWRT (parameter #33, about 72 ms). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. Unlike previous PIC16 devices, the PWRT is no longer automatically enabled when the Brown-out Reset circuit is enabled. The PWRTEN and BOREN configuration bits are independent of each other.

# 12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of Reset.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F818/819 device operating in parallel.

Table 12-3 shows the Reset conditions for the Status, PCON and PC registers, while Table 12-4 shows the Reset conditions for all the registers.

# 12.9 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset Status bit,  $\overline{\text{BOR}}$ . Bit  $\overline{\text{BOR}}$  is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if

# bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit,  $\overline{\text{POR}}$ . It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

# TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

| Oscillator           | Power-u             | p                            | Brown-out R         | Wake-up                |                    |
|----------------------|---------------------|------------------------------|---------------------|------------------------|--------------------|
| Configuration        | PWRTE = 0           | PWRTE = 0   PWRTE = 1   PWRT |                     | PWRTE = 1              | from Sleep         |
| XT, HS, LP           | TPWRT + 1024 • TOSC | 1024 • Tosc                  | TPWRT + 1024 • TOSC | 1024 • Tosc            | 1024 • Tosc        |
| EXTRC, EXTCLK, INTRC | TPWRT               | 5-10 μs <b>(1)</b>           | Tpwrt               | 5-10 μs <sup>(1)</sup> | 5-10 μs <b>(1)</b> |

**Note 1:** CPU start-up is always invoked on POR, BOR and wake-up from Sleep.

## TABLE 12-2: STATUS BITS AND THEIR SIGNIFICANCE

| POR | BOR | ТО | PD |                                                                   |  |  |
|-----|-----|----|----|-------------------------------------------------------------------|--|--|
| 0   | x   | 1  | 1  | Power-on Reset                                                    |  |  |
| 0   | x   | 0  | x  | Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$ |  |  |
| 0   | x   | x  | 0  | Illegal, PD is set on POR                                         |  |  |
| 1   | 0   | 1  | 1  | Brown-out Reset                                                   |  |  |
| 1   | 1   | 0  | 1  | WDT Reset                                                         |  |  |
| 1   | 1   | 0  | 0  | WDT wake-up                                                       |  |  |
| 1   | 1   | u  | u  | MCLR Reset during normal operation                                |  |  |
| 1   | 1   | 1  | 0  | MCLR Reset during Sleep or interrupt wake-up from Sleep           |  |  |

**Legend:** u = unchanged, x = unknown

## TABLE 12-3: RESET CONDITION FOR SPECIAL REGISTERS

| Condition                          | Program<br>Counter    | Status<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 000h                  | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 000h                  | 000u uuuu          | uu               |
| MCLR Reset during Sleep            | 000h                  | 0001 Ouuu          | uu               |
| WDT Reset                          | 000h                  | 0000 luuu          | uu               |
| WDT wake-up                        | PC + 1                | uuu0 0uuu          | uu               |
| Brown-out Reset                    | 000h                  | 0001 luuu          | u0               |
| Interrupt wake-up from Sleep       | PC + 1 <sup>(1)</sup> | uuul Ouuu          | uu               |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0'

**Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

| COMF             | Complement f                                                                                                                                          |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [label] COMF f,d                                                                                                                                      |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                       |  |  |  |  |  |
| Operation:       | (f) $\rightarrow$ (destination)                                                                                                                       |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                     |  |  |  |  |  |
| Description:     | The contents of register 'f' are<br>complemented. If 'd' = 0, the<br>result is stored in W. If 'd' = 1, the<br>result is stored back in register 'f'. |  |  |  |  |  |

| GOTO             | Unconditional Branch                                                                                                                                                                            |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] GOTO k                                                                                                                                                                         |  |  |  |  |  |  |
| Operands:        | $0 \leq k \leq 2047$                                                                                                                                                                            |  |  |  |  |  |  |
| Operation:       | $k \rightarrow PC < 10:0>$<br>PCLATH<4:3> $\rightarrow PC < 12:11>$                                                                                                                             |  |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                            |  |  |  |  |  |  |
| Description:     | GOTO is an unconditional branch.<br>The eleven-bit immediate value is<br>loaded into PC bits<10:0>. The<br>upper bits of PC are loaded<br>from PCLATH<4:3>. GOTO is a<br>two-cycle instruction. |  |  |  |  |  |  |

| DECF             | Decrement f                                                                                                                                 | INCF             | Increment f                                                                                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] DECF f,d                                                                                                                   | Syntax:          | [ <i>label</i> ] INCF f,d                                                                                                                                            |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                             | Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                      |
| Operation:       | (f) – 1 $\rightarrow$ (destination)                                                                                                         | Operation:       | (f) + 1 $\rightarrow$ (destination)                                                                                                                                  |
| Status Affected: | Z                                                                                                                                           | Status Affected: | Z                                                                                                                                                                    |
| Description:     | Decrement register 'f'. If 'd' = 0,<br>the result is stored in the W<br>register. If 'd' = 1, the result is<br>stored back in register 'f'. | Description:     | The contents of register 'f' are<br>incremented. If 'd' = 0, the result<br>is placed in the W register. If<br>'d' = 1, the result is placed back in<br>register 'f'. |

| DECFSZ           | Decrement f, Skip if 0                                                                                                                                                                                                                                                                                                           | INCFSZ           | Increment f, Skip if 0                                                                                                                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] DECFSZ f,d                                                                                                                                                                                                                                                                                                               | Syntax:          | [label] INCFSZ f,d                                                                                                                                                                                                                                                                                                          |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                                                                                                                                                                                      | Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                                                                                                                                                             |
| Operation:       | (f) $-1 \rightarrow$ (destination);<br>skip if result = 0                                                                                                                                                                                                                                                                        | Operation:       | (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0                                                                                                                                                                                                                                                                  |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                             | Status Affected: | None                                                                                                                                                                                                                                                                                                                        |
| Description:     | The contents of register 'f' are<br>decremented. If 'd' = 0, the result<br>is placed in the W register. If<br>'d' = 1, the result is placed back in<br>register 'f'.<br>If the result is '1', the next<br>instruction is executed. If the<br>result is '0', then a NOP is<br>executed instead, making it a<br>2 TcY instruction. | Description:     | The contents of register 'f' are<br>incremented. If 'd' = 0, the result is<br>placed in the W register. If 'd' = 1,<br>the result is placed back in<br>register 'f'.<br>If the result is '1', the next<br>instruction is executed. If the<br>result is '0', a NOP is executed<br>instead, making it a 2 TCY<br>instruction. |

# 15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

| PIC16LF8<br>(Indus             | <b>818/819</b><br>strial)             | <b>Standa</b><br>Operati | <b>rd Oper</b><br>ng temp | <b>ating Co</b><br>erature | onditions (unles $-40^{\circ}C \le TA$                                                                                                       | <b>s otherwise state</b><br>$A \le +85^{\circ}C$ for indus                                                | ל)<br>trial                          |  |  |  |
|--------------------------------|---------------------------------------|--------------------------|---------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
| PIC16F8 <sup>,</sup><br>(Indus | 18/819<br>strial, Extended)           | <b>Standa</b><br>Operati | rd Oper<br>ng temp        | erating Co                 | $\begin{array}{l} \text{onditions (unles} \\ -40^\circ\text{C} \leq \text{T}\text{A} \\ -40^\circ\text{C} \leq \text{T}\text{A} \end{array}$ | <b>s otherwise stated</b><br>$\Delta \le +85^{\circ}$ C for indus<br>$\Delta \le +125^{\circ}$ C for exte | <b>t)</b><br>trial<br>nded           |  |  |  |
| Param<br>No.                   | Device                                | Тур                      | Max                       | Units                      |                                                                                                                                              | Conditions                                                                                                |                                      |  |  |  |
|                                | Supply Current (IDD) <sup>(2,3)</sup> |                          |                           |                            |                                                                                                                                              |                                                                                                           |                                      |  |  |  |
|                                | PIC16LF818/819                        | 8                        | 20                        | μA                         | -40°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 7                        | 15                        | μA                         | +25°C                                                                                                                                        | VDD = 2.0V                                                                                                |                                      |  |  |  |
|                                |                                       | 7                        | 15                        | μA                         | +85°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                | PIC16LF818/819                        | 16                       | 30                        | μA                         | -40°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 14                       | 25                        | μΑ                         | +25°C                                                                                                                                        | VDD = 3.0V                                                                                                | Fosc = 31.25 kHz                     |  |  |  |
|                                |                                       | 14                       | 25                        | μΑ                         | +85°C                                                                                                                                        |                                                                                                           | Internal RC Oscillator)              |  |  |  |
|                                | All devices                           | 32                       | 40                        | μΑ                         | -40°C                                                                                                                                        |                                                                                                           | ,                                    |  |  |  |
|                                |                                       | 29                       | 35                        | μΑ                         | +25°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 29                       | 35                        | μΑ                         | +85°C                                                                                                                                        | VDD = 5.0V                                                                                                |                                      |  |  |  |
|                                | Extended devices                      | 35                       | 45                        | μΑ                         | +125°C                                                                                                                                       |                                                                                                           |                                      |  |  |  |
|                                | PIC16LF818/819                        | 132                      | 160                       | μΑ                         | -40°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 126                      | 155                       | μΑ                         | +25°C                                                                                                                                        | VDD = 2.0V                                                                                                |                                      |  |  |  |
|                                |                                       | 126                      | 155                       | μΑ                         | +85°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                | PIC16LF818/819                        | 260                      | 310                       | μΑ                         | -40°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 230                      | 300                       | μΑ                         | +25°C                                                                                                                                        | VDD = 3.0V                                                                                                | Fosc = 1 MHz                         |  |  |  |
|                                |                                       | 230                      | 300                       | μΑ                         | +85°C                                                                                                                                        |                                                                                                           | Internal RC Oscillator)              |  |  |  |
|                                | All devices                           | 560                      | 690                       | μΑ                         | -40°C                                                                                                                                        |                                                                                                           | ,                                    |  |  |  |
|                                |                                       | 500                      | 650                       | μΑ                         | +25°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 500                      | 650                       | μΑ                         | +85°C                                                                                                                                        | VDD = 5.0V                                                                                                |                                      |  |  |  |
|                                | Extended devices                      | 570                      | 710                       | μΑ                         | +125°C                                                                                                                                       |                                                                                                           |                                      |  |  |  |
|                                | PIC16LF818/819                        | 310                      | 420                       | μΑ                         | -40°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 300                      | 410                       | μΑ                         | +25°C                                                                                                                                        | VDD = 2.0V                                                                                                |                                      |  |  |  |
|                                |                                       | 300                      | 410                       | μΑ                         | +85°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                | PIC16LF818/819                        | 550                      | 650                       | μΑ                         | -40°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 530                      | 620                       | μΑ                         | +25°C                                                                                                                                        | VDD = 3.0V                                                                                                | FOSC = 4 MHz<br>( <b>RC RUN</b> mode |  |  |  |
|                                |                                       | 530                      | 620                       | μΑ                         | +85°C                                                                                                                                        |                                                                                                           | Internal RC Oscillator)              |  |  |  |
|                                | All devices                           | 1.2                      | 1.5                       | mA                         | -40°C                                                                                                                                        |                                                                                                           | ,                                    |  |  |  |
|                                |                                       | 1.1                      | 1.4                       | mA                         | +25°C                                                                                                                                        |                                                                                                           |                                      |  |  |  |
|                                |                                       | 1.1                      | 1.4                       | mA                         | +85°C                                                                                                                                        | VDD = 5.0V                                                                                                |                                      |  |  |  |
|                                | Extended devices                      | 1.3                      | 1.6                       | mA                         | +125°C                                                                                                                                       |                                                                                                           |                                      |  |  |  |

**Legend:** Shading of rows is to assist in readability of the table.

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

# 15.5 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

| 1. TppS2pp             | S                                  | 3. Tcc:s⊤ | (I <sup>2</sup> C specifications only) |
|------------------------|------------------------------------|-----------|----------------------------------------|
| 2. TppS                |                                    | 4. Ts     | (I <sup>2</sup> C specifications only) |
| Т                      |                                    |           |                                        |
| F                      | Frequency                          | Т         | Time                                   |
| Lowercas               | e letters (pp) and their meanings: |           |                                        |
| рр                     |                                    |           |                                        |
| сс                     | CCP1                               | OSC       | OSC1                                   |
| ck                     | CLKO                               | rd        | RD                                     |
| CS                     | CS                                 | rw        | RD or WR                               |
| di                     | SDI                                | SC        | SCK                                    |
| do                     | SDO                                | SS        | SS                                     |
| dt                     | Data in                            | tO        | TOCKI                                  |
| io                     | I/O port                           | t1        | T1CKI                                  |
| mc                     | MCLR                               | wr        | WR                                     |
| Uppercas               | e letters and their meanings:      |           |                                        |
| S                      |                                    |           |                                        |
| F                      | Fall                               | Р         | Period                                 |
| Н                      | High                               | R         | Rise                                   |
| I                      | Invalid (High-impedance)           | V         | Valid                                  |
| L                      | Low                                | Z         | High-impedance                         |
| I <sup>2</sup> C only  |                                    |           |                                        |
| AA                     | output access                      | High      | High                                   |
| BUF                    | Bus free                           | Low       | Low                                    |
| TCC:ST (I <sup>2</sup> | C specifications only)             |           |                                        |
| CC                     |                                    |           |                                        |
| HD                     | Hold                               | SU        | Setup                                  |
| ST                     |                                    |           |                                        |
| DAT                    | DATA input hold                    | STO       | Stop condition                         |
| STA                    | Start condition                    |           |                                        |

## FIGURE 15-3: LOAD CONDITIONS







| TABLE 15-2: | <b>CLKO AND I/O TIMING REQUIREMENTS</b> |
|-------------|-----------------------------------------|
|-------------|-----------------------------------------|

| Param<br>No. | Symbol   | Characterist                             | Min                     | Тур†       | Мах | Units        | Conditions |          |
|--------------|----------|------------------------------------------|-------------------------|------------|-----|--------------|------------|----------|
| 10*          | TosH2ckL | OSC1 ↑ to CLKO ↓                         | _                       | 75         | 200 | ns           | (Note 1)   |          |
| 11*          | TosH2ckH | OSC1 ↑ to CLKO ↑                         |                         | —          | 75  | 200          | ns         | (Note 1) |
| 12*          | TCKR     | CLKO Rise Time                           |                         | —          | 35  | 100          | ns         | (Note 1) |
| 13*          | ТскF     | CLKO Fall Time                           |                         | _          | 35  | 100          | ns         | (Note 1) |
| 14*          | TcĸL2ıoV | CLKO $\downarrow$ to Port Out Valid      |                         | —          | _   | 0.5 TCY + 20 | ns         | (Note 1) |
| 15*          | ТюV2скН  | Port In Valid before CLKO 1              |                         | Tosc + 200 | -   | —            | ns         | (Note 1) |
| 16*          | TCKH2IOI | Port In Hold after CLKO ↑                |                         | 0          | _   | —            | ns         | (Note 1) |
| 17*          | TosH2ıoV | OSC1 ↑ (Q1 cycle) to Port Out            | Valid                   | —          | 100 | 255          | ns         |          |
| 18*          | TosH2ıol | OSC1 ↑ (Q2 cycle) to Port                | PIC16 <b>F</b> 818/819  | 100        | _   | —            | ns         |          |
|              |          | Input Invalid (I/O in hold time)         | PIC16 <b>LF</b> 818/819 | 200        | -   | —            | ns         |          |
| 19*          | TIOV20SH | Port Input Valid to OSC1 $\uparrow$ (I/O | in setup time)          | 0          | —   | —            | ns         |          |
| 20*          | TIOR     | Port Output Rise Time                    | PIC16 <b>F</b> 818/819  | —          | 10  | 40           | ns         |          |
|              |          |                                          | PIC16 <b>LF</b> 818/819 | —          | -   | 145          | ns         |          |
| 21*          | TIOF     | Port Output Fall Time                    | PIC16 <b>F</b> 818/819  | _          | 10  | 40           | ns         |          |
|              |          |                                          | PIC16 <b>LF</b> 818/819 | —          | _   | 145          | ns         |          |
| 22††*        | TINP     | INT pin High or Low Time                 |                         | Тсү        | —   | —            | ns         |          |
| 23††*        | Trbp     | RB7:RB4 Change INT High or               | Low Time                | Тсү        | _   | _            | ns         |          |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

| Param<br>No. | Symbol                | Characteristic                                                         | Min                                               | Тур†         | Max      | Units     | Conditions |  |
|--------------|-----------------------|------------------------------------------------------------------------|---------------------------------------------------|--------------|----------|-----------|------------|--|
| 70*          | TssL2scH,<br>TssL2scL | $\overline{SS} \downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ Input | Тсү                                               | —            | -        | ns        |            |  |
| 71*          | TscH                  | SCK Input High Time (Slave mode)                                       |                                                   | Tcy + 20     | -        |           | ns         |  |
| 72*          | TscL                  | SCK Input Low Time (Slave mode)                                        |                                                   | Tcy + 20     | _        | _         | ns         |  |
| 73*          | TDIV2SCH,<br>TDIV2SCL | Setup Time of SDI Data Input to SC                                     | K Edge                                            | 100          | -        | _         | ns         |  |
| 74*          | TscH2diL,<br>TscL2diL | Hold Time of SDI Data Input to SCK                                     | 100                                               | —            | _        | ns        |            |  |
| 75*          | TDOR                  | SDO Data Output Rise Time                                              | PIC16 <b>F</b> 818/819<br>PIC16 <b>LF</b> 818/819 | _            | 10<br>25 | 25<br>50  | ns<br>ns   |  |
| 76*          | TDOF                  | SDO Data Output Fall Time                                              |                                                   | _            | 10       | 25        | ns         |  |
| 77*          | TssH2doZ              | SS ↑ to SDO Output High-Impedance                                      | e                                                 | 10           | _        | 50        | ns         |  |
| 78*          | TscR                  | SCK Output Rise Time<br>(Master mode)                                  | PIC16 <b>F</b> 818/819<br>PIC16 <b>LF</b> 818/819 | _            | 10<br>25 | 25<br>50  | ns<br>ns   |  |
| 79*          | TscF                  | SCK Output Fall Time (Master mode                                      | e)                                                |              | 10       | 25        | ns         |  |
| 80*          | TscH2doV,<br>TscL2doV | SDO Data Output Valid after SCK<br>Edge                                | PIC16 <b>F</b> 818/819<br>PIC16 <b>LF</b> 818/819 |              | _        | 50<br>145 | ns<br>ns   |  |
| 81*          | TDOV2SCH,<br>TDOV2SCL | SDO Data Output Setup to SCK Edge                                      |                                                   | Тсү          | -        | -         | ns         |  |
| 82*          | TssL2doV              | SDO Data Output Valid after $\overline{SS} \downarrow Edge$            |                                                   | _            | _        | 50        | ns         |  |
| 83*          | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK Edge                                                    |                                                   | 1.5 TCY + 40 | —        | —         | ns         |  |

#### TABLE 15-6: SPI MODE REQUIREMENTS

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



# FIGURE 15-14: I<sup>2</sup>C<sup>™</sup> BUS START/STOP BITS TIMING









NOTES:

# 18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | Units     |      | INCHES   |      |
|----------------------------|-----------|------|----------|------|
| Dimensio                   | on Limits | MIN  | NOM      | MAX  |
| Number of Pins             | Ν         |      | 18       |      |
| Pitch                      | е         |      | .100 BSC |      |
| Top to Seating Plane       | А         | -    | -        | .210 |
| Molded Package Thickness   | A2        | .115 | .130     | .195 |
| Base to Seating Plane      | A1        | .015 | -        | -    |
| Shoulder to Shoulder Width | Е         | .300 | .310     | .325 |
| Molded Package Width       | E1        | .240 | .250     | .280 |
| Overall Length             | D         | .880 | .900     | .920 |
| Tip to Seating Plane       | L         | .115 | .130     | .150 |
| Lead Thickness             | С         | .008 | .010     | .014 |
| Upper Lead Width           | b1        | .045 | .060     | .070 |
| Lower Lead Width           | b         | .014 | .018     | .022 |
| Overall Row Spacing §      | eB        | -    | -        | .430 |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B