

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf819t-i-mltsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 2											
100h ⁽¹⁾	INDF	Addressin	ng this locatio	on uses conte	ents of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
101h	TMR0	Timer0 M	lodule Regist	ter						xxxx xxxx	53
102h ⁽¹	PCL	Program	Counter's (P	C) Least Sigr	ificant Byte					0000 0000	23
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
104h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	nter					xxxx xxxx	23
105h	—	Unimpler	nented							_	—
106h	PORTB	PORTB [Data Latch w	hen written; P	ORTB pins w	hen read				XXXX XXXX	43
107h	—	Unimplen	nented							—	_
108h	—	Unimplen	nented							—	—
109h	—	Unimplen	nented							—	—
10Ah ^(1,2)	PCLATH	_	—	_	Write Buffer	for the upper	5 bits of the F	Program Cour	nter	0 0000	23
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
10Ch	EEDATA	EEPROM	I/Flash Data	Register Low	Byte					xxxx xxxx	25
10Dh	EEADR	EEPROM	1/Flash Addre	ess Register L	ow Byte					xxxx xxxx	25
10Eh	EEDATH	_	—	EEPROM/Fla	ash Data Reg	ister High Byt	е			xx xxxx	25
10Fh	EEADRH	—	—	—	—	—	EEPROM/F High Byte	lash Address	Register	xxx	25
Bank 3											
180h ⁽¹⁾	INDF	Addressin	ng this locatio	on uses conte	ents of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	17, 54
182h ⁽¹⁾	PCL	Program	Counter's (P	C) Least Sigr	ificant Byte					0000 0000	23
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
184h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	nter					xxxx xxxx	23
185h	—	Unimplen	nented							—	_
186h	TRISB	PORTB [Data Direction	n Register						1111 1111	43
187h	_	Unimplen	nented							_	—
188h	_	Unimplen	nented								—
189h	_	Unimplen	Unimplemented —							—	
18Ah ^(1,2)	PCLATH		Write Buffer for the upper 5 bits of the Program Counter 0 0000							23	
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
18Ch	EECON1	EEPGD									26
	1	EEPROM Control Register 2 (not a physical register)								25	
18Dh	EECON2	LEFRON	Reserved; maintain clear 0000 0000								
18Dh 18Eh	EECON2				p, e.e	,				0000 0000	—

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
bit 7							bit (
GIE: Globa	al Interrupt Er	nable bit					
	es all unmask les all interrup		;				
PEIE: Peri	pheral Interru	ipt Enable bit	:				
	es all unmask les all periphe						
TMR0IE: T	MR0 Overflo	w Interrupt E	nable bit				
	es the TMR0 les the TMR0						
INTE: RB0	/INT Externa	I Interrupt En	able bit				
	es the RB0/IN les the RB0/II						
RBIE: RB	Port Change	Interrupt Ena	able bit				
	es the RB po les the RB po	•	•				
TMR0IF: T	MR0 Overflo	w Interrupt F	lag bit				
	register has register did r		must be clea	ared in softv	vare)		
INTF: RB0	/INT Externa	I Interrupt Fla	ng bit				
	B0/INT exter B0/INT exter		· ·		ed in softwa	ire)	
RBIF: RB	Port Change	Interrupt Flag	g bit				
	h condition w Ind allow flag		•	RBIF. Read	ing PORTB	will end the	e mismatcl
	st one of the of the RB7:R	•	•	•	be cleared in	n software)	
Legend:							
R = Reada	able bit	W = Wr	ritable bit	U = Unim	plemented	bit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

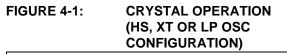
-n = Value at POR

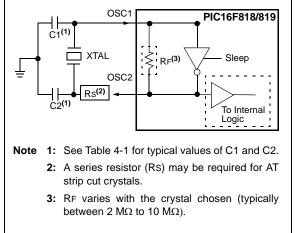
x = Bit is unknown

REGISTER 3-1:	EECON1:	EEPROM	ACCESS C	ONTROL	REGISTER	1 (ADDRI	ESS 18Ch)	
	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD		_	FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7	EEPGD: Pr	ogram/Data	EEPROM	Select bit				
	0 = Access	es program es data mei fter a POR;	mory	not be chang	ged while a v	write operati	on is in prog	jress.
bit 6-5	Unimplem	ented: Read	d as '0'					
bit 4	FREE: EEF	PROM Force	ed Row Eras	se bit				
	1 = Erase tl 0 = Perforn		memory row	addressed	by EEADRH	I:EEADR on	the next WF	R command
bit 3	WRERR: E	EPROM Er	ror Flag bit					
	operat	ion)	s premature n completed	-	d (any MCLI	R or any WI	OT Reset du	ring normal
bit 2	WREN: EE	PROM Writ	e Enable bit					
		write cycles write to the						
bit 1	WR: Write	Control bit						
	can on	ly be set (no	cle. The bit ot cleared) ir EEPROM is	n software.	y hardware o	once write is	s complete.	The WR bit
bit 0	RD: Read	Control bit						
		s an EEPR d) in softwar		D is cleared	l in hardwar	e. The RD I	bit can only	be set (not
	0 = Does r	not initiate a	n EEPROM	read				
	Legend:]

Legend:			
R = Readable bit	W = Writable bit	S = Set only	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.0 OSCILLATOR CONFIGURATIONS


4.1 Oscillator Types


The PIC16F818/819 can be operated in eight different oscillator modes. The user can program three configuration bits (FOSC2:FOSC0) to select one of these eight modes (modes 5-8 are new PIC16 oscillator configurations):

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. RC External Resistor/Capacitor with Fosc/4 output on RA6
- 5. RCIO External Resistor/Capacitor with I/O on RA6
- 6. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 7. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 8. ECIO External Clock with I/O on RA6

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (see Figure 4-1 and Figure 4-2). The PIC16F818/819 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

TABLE 4-1: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (FOR DESIGN GUIDANCE ONLY)

Osc Type	Crystal	Typical Capacitor Values Tested:				
	Freq	C1	C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	56 pF	56 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15 pF	15 pF			
	20 MHz	15 pF	15 pF			

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

- Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 2: Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

4.5.3 OSCILLATOR CONTROL REGISTER

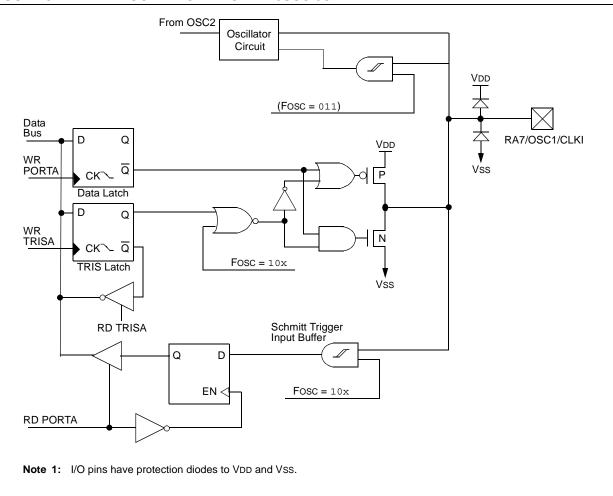
The OSCCON register (Register 4-2) controls several aspects of the system clock's operation.

The Internal Oscillator Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block that is used to drive the system clock. The choices are the INTRC source (31.25 kHz), the INTOSC source (8 MHz) or one of the six frequencies derived from the INTOSC postscaler (125 kHz to 4 MHz). Changing the configuration of these bits has an immediate change on the multiplexor's frequency output.

4.5.4 MODIFYING THE IRCF BITS

The IRCF bits can be modified at any time regardless of which clock source is currently being used as the system clock. The internal oscillator allows users to change the frequency during run time. This is achieved by modifying the IRCF bits in the OSCCON register. The sequence of events that occur after the IRCF bits are modified is dependent upon the initial value of the IRCF bits before they are modified. If the INTRC (31.25 kHz, IRCF<2:0> = 000) is running and the IRCF bits are modified to any other value than '000', a 4 ms (approx.) clock switch delay is turned on. Code execution continues at a higher than expected frequency while the new frequency stabilizes. Time sensitive code should wait for the IOFS bit in the OSCCON register to become set before continuing. This bit can be monitored to ensure that the frequency is stable before using the system clock in time critical applications.

If the IRCF bits are modified while the internal oscillator is running at any other frequency than INTRC (31.25 kHz, IRCF<2:0> \neq 000), there is no need for a 4 ms (approx.) clock switch delay. The new INTOSC frequency will be stable immediately after the **eight** falling edges. The IOFS bit will remain set after clock switching occurs.


Note: Caution must be taken when modifying the IRCF bits using BCF or BSF instructions. It is possible to modify the IRCF bits to a frequency that may be out of the VDD specification range; for example, VDD = 2.0V and IRCF = 111 (8 MHz).

4.5.5 CLOCK TRANSITION SEQUENCE WHEN THE IRCF BITS ARE MODIFIED

Following are three different sequences for switching the internal RC oscillator frequency.

- Clock before switch: 31.25 kHz (IRCF<2:0> = 000)
 - 1. IRCF bits are modified to an INTOSC/INTOSC postscaler frequency.
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
 - The IOFS bit is clear to indicate that the clock is unstable and a 4 ms (approx.) delay is started. Time dependent code should wait for IOFS to become set.
 - 5. Switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to INTRC (IRCF<2:0> = 000).
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. Oscillator switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to a different INTOSC/ INTOSC postscaler frequency.
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. The IOFS bit is set.
 - 5. Oscillator switchover is complete.

The maximum PWM resolution (bits) for a given PWM frequency is given by the following formula.

EQUATION 9-3:

Resolution =
$$\frac{\log(\frac{Fosc}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<x> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.
 - Note: The TRISB bit (2 or 3) is dependant upon the setting of configuration bit 12 (CCPMX).

TABLE 9-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B		all o	e on other sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 00	20x	0000	000u
0Ch	PIR1	_	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 00	000	- 0	0000
8Ch	PIE1	_	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 00	000	- 0	0000
86h	TRISB	PORT	B Data Dire	ection Regis	ter					1111 1:	111	1111	1111
11h	TMR2	Timer2	2 Module Re	gister						0000 00	000	0000	0000
92h	PR2	Timer2	2 Module Pe	riod Registe	er					1111 1:	111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 00	000	-000	0000
15h	CCPR1L	Captu	re/Compare	PWM Regis	ster 1 (LSB)					XXXX XX	xx	uuuu	uuuu
16h	CCPR1H	Captur	Capture/Compare/PWM Register 1 (MSB)						uuuu				
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 00	000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0			
	bit 7							bit 0			
bit 7	WCOL: W	rite Collision	Detect bit								
		 1 = An attempt to write the SSPBUF register failed because the SSP module is busy (must be cleared in software) 									
	0 = No col		,								
bit 6	SSPOV: R	eceive Over	flow Indicator	[·] bit							
	In SPI mod			00000115							
	of ove must r mode,	erflow, the da read the SSF , the overflow g to the SSPI	ived while the ta in SSPSR PBUF, even if bit is not set BUF register.	is lost. Ove only transm	erflow can on nitting data, to	ily occur in avoid sett	Slave mode ing overflow	e. The user /. In Master			
	In I ² C mod	le:									
		care" in Trar	while the SSI nsmit mode. \$								
bit 5	SSPEN: S	ynchronous	Serial Port E	nable bit ⁽¹⁾							
	In SPI mod	-									
			and configur				t pins				
	In I ² C mod										
			port and conf and configu				rial port pins	;			
	Note 1:	In both mo output.	des, when er	abled, these	e pins must l	be properly	configured	as input or			
bit 4	CKP: Cloc	k Polarity Se	elect bit								
		nit happens o	on falling edg on rising edg								
	In I ² C Slav										
	SCK release										
	1 = Enable 0 = Holds (ock stretch).	Used to ens	sure data set	up time.)					
bit 3-0		-	ous Serial P	-							
		-	de, clock = C								
			de, clock = C								
			de, clock = C de, clock = T		12						
			e, clock = SC			abled.					
			e, clock = SC		in control dis	abled. SS c	an be used	as I/O pin			
			e, 7-bit addre e, 10-bit addr								
			Controlled Ma		Slave Idle)						
	$1110 = I^2C$	Slave mode	e, 7-bit addre	ss with Starl	t and Stop bit						
			e, 10-bit addr			oit interrupts	enabled				
	1000, 10	UUI, 1010,	1100, 11	JI = Keserv	ea						
	Legend:										
	R = Reada	ble bit	W = W	itable bit	U = Unim	lemented h	oit, read as '	0'			
								-			

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

10.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<4,1> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

Either or both of the following conditions will cause the SSP module not to give this ACK pulse:

- a) The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- b) The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF but bit, SSPIF (PIR1<3>), is set. Table 10-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, are shown in timing parameter #100 and parameter #101.

10.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The Buffer Full bit, BF, is set.
- c) An ACK pulse is generated.
- d) SSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) – on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.

10.3.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit, BF (SSPSTAT<0>), is set or bit, SSPOV (SSPCON<6>), is set.

An SSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

10.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RB4/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then pin RB4/SCK/SCL should be enabled by setting bit, CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 10-7).

NOTES:

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for 18/20 pin devices.

The conversion of an analog input signal results in a corresponding 10-bit digital number. The A/D module has a high and low-voltage reference input that is software selectable to some combination of VDD, VSS, RA2 or RA3.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/Os.

Additional information on using the A/D module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
	bit 7							bit 0
bit 7-6	ADCS1:AD	DCS0: A/D C	onversion C	lock Select b	oits			
	If ADCS2 =							
	00 = Fosc 01 = Fosc							
	10 = FOSC	-						
		clock derived	from the in	ternal A/D m	odule RC o	scillator)		
	If ADCS2 =	<u>= 1:</u>						
	00 = FOSC	-						
	01 = FOSC 10 = FOSC	-						
		clock derived	from the in	ternal A/D m	odule RC o	scillator)		
bit 5-3	•	50: Analog C						
		nnel 0 (RA0/		01 0110				
		nnel 1 (RA1/	,					
		nnel 2 (RA2/	,					
		nnel 3 (RA3/ nnel 4 (RA4/						
bit 2		: A/D Conve	•	hit				
	If ADON =		SION Status	DIL				
			progress (se	tting this bit	starts the A	D conversion)		
						cleared by ha	rdware wh	en the
	A/D co	onversion is o	complete)					
bit 1	Unimplem	ented: Read	l as '0'					
bit 0	ADON: A/I							
		onverter mod						
	0 = A/D cc	onverter mod	ule is snut-o	m and consu	mes no ope	erating current		
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unir	nplemented bit	, read as '()'

'1' = Bit is set

'0' = Bit is cleared

REGISTER 11-1: ADCON0: A/D CONTROL REGISTER 0 (ADDRESS 1Fh)

-n = Value at POR

x = Bit is unknown

11.5 A/D Operation During Sleep

The A/D module can operate during Sleep mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in Sleep, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in Sleep, ensure the SLEEP instruction immediately <u>follows</u> the instruction that sets the GO/DONE bit.

11.6 Effects of a Reset

A device Reset forces all registers to their Reset state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

11.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF		—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRESH	A/D Res	ult Regist	er High By	/te					xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Res	ult Regist	er Low By	te					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxx0 0000	uuu0 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	PORTA	Data Di	rection Regis	ster		1111 1111	1111 1111

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

12.18 Low-Voltage ICSP Programming

The LVP bit of the Configuration Word register enables Low-Voltage ICSP Programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin.

If Low-Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when Programming mode is entered with VIHH on MCLR. The LVP bit can only be changed when using high voltage on MCLR.

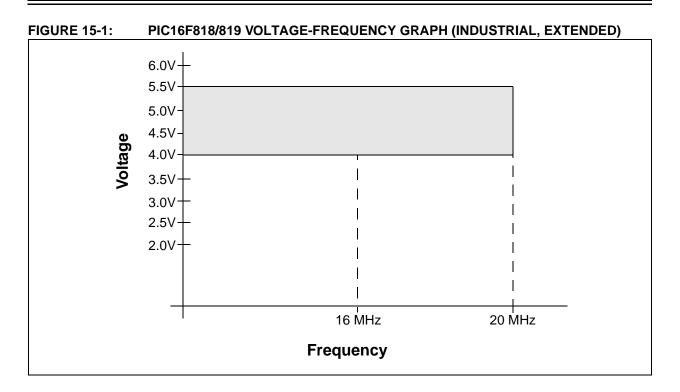
It should be noted that once the LVP bit is programmed to '0', only the High-Voltage Programming mode is available and only this mode can be used to program the device.

When using Low-Voltage ICSP, the part must be supplied at 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code-protect bits from an ON state to an OFF state. For all other cases of Low-Voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs or user code can be reprogrammed or added.

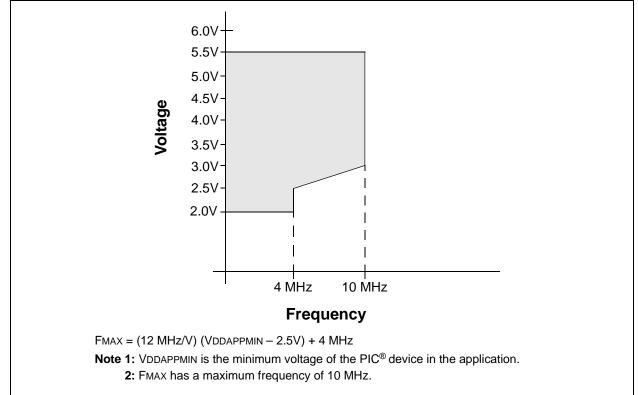
The following LVP steps assume the LVP bit is set in the Configuration Word register.

- 1. Apply VDD to the VDD pin.
- 2. Drive MCLR low.
- 3. Apply VDD to the RB3/PGM pin.
- 4. Apply VDD to the $\overline{\text{MCLR}}$ pin.
- 5. Follow with the associated programming steps.

- Note 1: The High-Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP mode (LVP = 1), the RB3 pin can no longer be used as a general purpose I/O pin.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.
 - 4: RB3 should not be allowed to float if LVP is enabled. An external pull-down device should be used to default the device to normal operating mode. If RB3 floats high, the PIC16F818/819 device will enter Programming mode.
 - LVP mode is enabled by default on all devices shipped from Microchip. It can be disabled by clearing the LVP bit in the Configuration Word register.
 - 6: Disabling LVP will provide maximum compatibility to other PIC16CXXX devices.

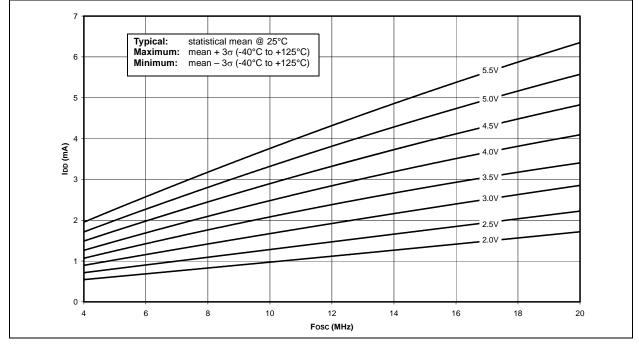

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' = 0, the next instruction is executed. If bit 'b' = 1, then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRF	Clear f	
Syntax:	[label] CLRF f	
Operands:	$0 \le f \le 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	


BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' = 1, the next instruction is executed. If bit 'b' in register 'f' = 0, the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC) + 1 → TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>	Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow PD$
Description:	Call subroutine. First, return	Status Affected:	TO, PD
	address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits<10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

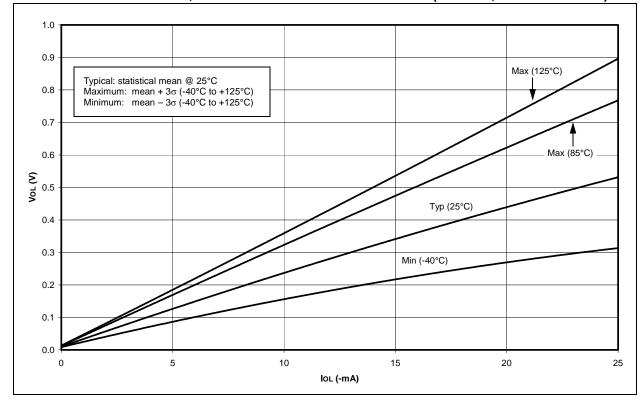
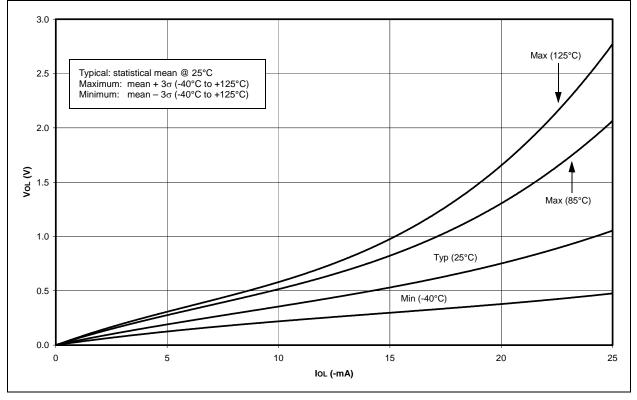


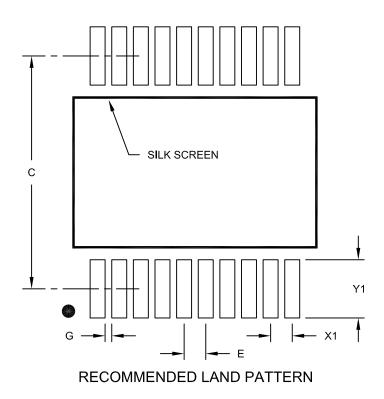
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

© 2001-2013 Microchip Technology Inc.


FIGURE 16-19: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C)

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

Writing to Flash Program Memory	31
Code Protection	. 89, 100
Computed GOTO	23
Configuration Bits	
Crystal Oscillator and Ceramic Resonators	
Customer Change Notification Service	173
Customer Notification Service	173
Customer Support	173

D

Data EEPROM Memory	25
Associated Registers	
EEADR Register	
EEADRH Register	
EECON1 Register	
EECON2 Register	
EEDATA Register	
EEDATH Register	
Operation During Code-Protect	
Protection Against Spurious Writes	
Reading	
Write Interrupt Enable Flag (EEIF Bit)	
Writing	
Data Memory	
Special Function Registers	13
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Internal RC Accuracy	125
PIC16F818/819, PIC16LF818/819	126
Power-Down and Supply Current	
Supply Voltage	
Development Support	111
Device Differences	165
Device Overview	
Direct Addressing	24

Е

EEADR Register25		
EEADRH Register25		
EECON1 Register25		
EECON2 Register25		
EEDATA Register25		
EEDATH Register25		
Electrical Characteristics115		
Endurance1		
Errata3		
External Clock Input34		
External Interrupt Input (RB0/INT). See Interrupt Sources.		

F

Elect. Decement Management	~~
Flash Program Memory	.25
Associated Registers	. 32
EEADR Register	.25
EEADRH Register	.25
EECON1 Register	.25
EECON2 Register	.25
EEDATA Register	.25
EEDATH Register	.25
Erasing	.28
Reading	.28
Writing	.30
FSR Register13, 14, 15,	23
G	
General Purpose Register File	.10

I

/O Ports	\$
² C	
Associated Registers)
Master Mode Operation79)
Mode Selection	
Multi-Master Mode Operation	
Slave Mode	
Addressing	
Reception	
SCL, SDA Pins	
Transmission	
D Locations	
n-Circuit Debugger	
n-Circuit Serial Programming	
n-Circuit Serial Programming (ICSP)	
NDF Register	
Indirect Addressing	
Instruction Format	
Instruction Set	
Descriptions	
Read-Modify-Write Operations	
Summary Table	
-	
ADDLW	
ADDWF	
ANDLW 105	
ANDWF 105	
BCF	
BSF 105	
BTFSC 106	
BTFSS 106	
CALL 106	
CLRF 106	
CLRW 106	
CLRWDT 106	
COMF 107	
DECF 107	,
DECFSZ 107	
GOTO 107	
INCF 107	,
INCFSZ 107	
IORLW	
IORWF 108	3
MOVF 108	3
MOVLW 108	3
MOVWF 108	3
NOP	3
RETFIE 109)
RETLW 109)
RETURN 109)
RLF)
RRF)
SLEEP 109)
SUBLW)
SUBWF 110)
SWAPF 110)
XORLW 110)
XORWF	
NT Interrupt (RB0/INT). See Interrupt Sources.	
NTCON Register	5
GIE Bit	
INTE Bit	
INTF Bit	
RBIF Bit	
	·

Timer157
Associated Registers62
Capacitor Selection
Counter Operation
Operation
Operation in Asynchronous Counter Mode
Operation in Synchronized Counter Mode
Operation in Timer Mode
•
Oscillator
Oscillator Layout Considerations
Prescaler
Resetting Register Pair (TMR1H, TMR1L)61
Resetting Using a CCP Trigger Output61
TMR1H59
TMR1L59
Use as a Real-Time Clock61
Timer263
Associated Registers64
Output63
Postscaler63
Prescaler63
Prescaler and Postscaler63
Timing Diagrams
A/D Conversion140
Brown-out Reset131
Capture/Compare/PWM (CCP1)
CLKO and I/O
External Clock
I ² C Bus Data
I ² C Bus Start/Stop Bits
I ² C Reception (7-Bit Address)
I ² C Transmission (7-Bit Address)
PWM Output68
Reset, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer 131
Timer and Power-up Timer131 Slow Rise Time (MCLR Tied to Vdd
Timer and Power-up Timer
Timer and Power-up Timer
Timer and Power-up Timer
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 96 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 100
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime to Vdd Through RC Network): Case 1
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime-out Sequence on Power-up (MCLRTime to Vdd Through RC Network): Case 1
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLR
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to Vdd96Through RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Time-0 and Timer1 External Clock132
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128Timing Requirements
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128Timing Requirements129
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Parameter Symbology128Timing Requirements22External Clock129TMR0 Register15
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Requirements24External Clock129TMR0 Register15TMR1CS Bit57
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Requirements24External Clock129TMR0 Register15TMR1CS Bit57TMR1H Register13
Timer and Power-up Timer131Slow Rise Time (MCLR Tied to VddThrough RC Network)96SPI Master Mode75SPI Master Mode (CKE = 0, SMP = 0)134SPI Master Mode (CKE = 1, SMP = 1)134SPI Slave Mode (CKE = 0)75, 135SPI Slave Mode (CKE = 1)75, 135SPI Slave Mode (CKE = 1)75, 135Time-out Sequence on Power-up (MCLRTied to Vdd Through Pull-up Resistor)95Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 195Time-out Sequence on Power-up (MCLRTied to Vdd Through RC Network): Case 295Timer0 and Timer1 External Clock132Timer1 Incrementing Edge58Wake-up from Sleep through Interrupt100Timing Requirements24External Clock129TMR0 Register15TMR1CS Bit57TMR1H Register13
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 128 Time1 to Vdd Through RC Network): Case 2 95 Time-out Sequence on Power-up (MCLR 132 Time1 ncrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Parameter Symbology 128 Timing Requirements 57 TMR0 Register 13 TMR1H Register 13 TMR1L Register 13 TMR1ON Bit 57
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 126 Time-out Sequence on Power-up (MCLR 126 Time out Sequence on Power-up (MCLR 132 Time-out Sequence on Power-up (MCLR 132 Time out Sequence on Power-up (MCLR 132 Time1 to Vdd Through RC Network): Case 1 132 Time0 and Time1 External Clock 132 Time1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 128 Timing Requirements 57 TMR1 Register 13 TMR1 Register
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 128 Time1 to Vdd Through RC Network): Case 2 95 Time-out Sequence on Power-up (MCLR 132 Time1 ncrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Parameter Symbology 128 Timing Requirements 57 TMR0 Register 13 TMR1H Register 13 TMR1L Register 13 TMR1ON Bit 57
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 126 Time-out Sequence on Power-up (MCLR 126 Time out Sequence on Power-up (MCLR 132 Time-out Sequence on Power-up (MCLR 132 Time out Sequence on Power-up (MCLR 132 Time1 to Vdd Through RC Network): Case 1 132 Time0 and Time1 External Clock 132 Time1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 128 Timing Requirements 57 TMR1 Register 13 TMR1 Register
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 1, SMP = 1) 134 SPI Slave Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 164 to Vdd Through Pull-up Resistor) Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 164 to Vdd Through RC Network): Case 1 Tied to Vdd Through RC Network): Case 2 95 Timer0 and Timer1 External Clock 132 Timer1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 128 Timing Requirements 57 TMR1 Register 13 TMR1CS Bit 57 TMR1 Register 13 TMR1ON Bit 57 TMR2 Register 13 TMR2 Register 13
Timer and Power-up Timer 131 Slow Rise Time (MCLR Tied to Vdd 14 Through RC Network) 96 SPI Master Mode 75 SPI Master Mode (CKE = 0, SMP = 0) 134 SPI Master Mode (CKE = 1, SMP = 1) 134 SPI Master Mode (CKE = 0) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 SPI Slave Mode (CKE = 1) 75, 135 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through Pull-up Resistor) 95 Time-out Sequence on Power-up (MCLR 11 Tied to Vdd Through RC Network): Case 1 95 Time-out Sequence on Power-up (MCLR 120 Timeout Sequence on Power-up (MCLR 132 Timeout Sequence on Power-up (MCLR 132 Timeout Sequence on Power-up (MCLR 132 Timeon and Timer1 External Clock 132 Timer1 Incrementing Edge 58 Wake-up from Sleep through Interrupt 100 Timing Requirements 129 TMR0 Register 13 TMR1CS Bit 57 TMR1H Register 13

TRISA Register TRISB Register	
V	
Vdd Pin	8
Vss Pin	8
w	
Wake-up from Sleep	
Interrupts	93, 94
MCLR Reset	
WDT Reset	-
Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	
Enable (WDTEN Bit)	
INTRC Oscillator	
Postscaler. See Postscaler, WDT.	
Programming Considerations	
Time-out Period	
WDT Reset, Normal Operation	
WDT Reset, Sleep	
WDT Wake-up	
WCOL	
Write Collision Detect Bit, WCOL	
WWW Address	
WWW, On-Line Support	