

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf819t-i-sog

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F818/819

NOTES:

PIC16F818/819

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
	bit 7							bit (
	GIE: Globa	al Interrupt Er	nable bit					
		es all unmask les all interrup		;				
	PEIE: Peri	pheral Interru	ipt Enable bit	:				
		es all unmask les all periphe						
	TMR0IE: T	MR0 Overflo	w Interrupt E	nable bit				
		es the TMR0 les the TMR0						
	INTE: RB0	/INT Externa	I Interrupt En	able bit				
		es the RB0/IN les the RB0/II						
	RBIE: RB	Port Change	Interrupt Ena	able bit				
		es the RB po les the RB po	•	•				
	TMR0IF: TMR0 Overflow Interrupt Flag bit							
		register has register did r		must be clea	ared in softv	vare)		
INTF: RB0/INT External Interrupt Flag bit								
		B0/INT exter B0/INT exter		· ·		ed in softwa	ire)	
	RBIF: RB Port Change Interrupt Flag bit							
		h condition w Ind allow flag		•	RBIF. Read	ing PORTB	will end the	e mismatcl
		st one of the of the RB7:R	•	•	•	be cleared in	n software)	
	Legend:							
	R = Reada	able bit	W = Wr	ritable bit	U = Unim	plemented	bit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

4.5.3 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 4-2) controls several aspects of the system clock's operation.

The Internal Oscillator Select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block that is used to drive the system clock. The choices are the INTRC source (31.25 kHz), the INTOSC source (8 MHz) or one of the six frequencies derived from the INTOSC postscaler (125 kHz to 4 MHz). Changing the configuration of these bits has an immediate change on the multiplexor's frequency output.

4.5.4 MODIFYING THE IRCF BITS

The IRCF bits can be modified at any time regardless of which clock source is currently being used as the system clock. The internal oscillator allows users to change the frequency during run time. This is achieved by modifying the IRCF bits in the OSCCON register. The sequence of events that occur after the IRCF bits are modified is dependent upon the initial value of the IRCF bits before they are modified. If the INTRC (31.25 kHz, IRCF<2:0> = 000) is running and the IRCF bits are modified to any other value than '000', a 4 ms (approx.) clock switch delay is turned on. Code execution continues at a higher than expected frequency while the new frequency stabilizes. Time sensitive code should wait for the IOFS bit in the OSCCON register to become set before continuing. This bit can be monitored to ensure that the frequency is stable before using the system clock in time critical applications.

If the IRCF bits are modified while the internal oscillator is running at any other frequency than INTRC (31.25 kHz, IRCF<2:0> \neq 000), there is no need for a 4 ms (approx.) clock switch delay. The new INTOSC frequency will be stable immediately after the **eight** falling edges. The IOFS bit will remain set after clock switching occurs.

Note: Caution must be taken when modifying the IRCF bits using BCF or BSF instructions. It is possible to modify the IRCF bits to a frequency that may be out of the VDD specification range; for example, VDD = 2.0V and IRCF = 111 (8 MHz).

4.5.5 CLOCK TRANSITION SEQUENCE WHEN THE IRCF BITS ARE MODIFIED

Following are three different sequences for switching the internal RC oscillator frequency.

- Clock before switch: 31.25 kHz (IRCF<2:0> = 000)
 - 1. IRCF bits are modified to an INTOSC/INTOSC postscaler frequency.
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
 - The IOFS bit is clear to indicate that the clock is unstable and a 4 ms (approx.) delay is started. Time dependent code should wait for IOFS to become set.
 - 5. Switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to INTRC (IRCF<2:0> = 000).
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. Oscillator switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to a different INTOSC/ INTOSC postscaler frequency.
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. The IOFS bit is set.
 - 5. Oscillator switchover is complete.

5.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

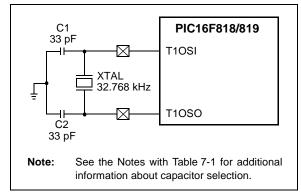
RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

PORTB is multiplexed with several peripheral functions (see Table 5-3). PORTB pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISB as the destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

7.6 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 32.768 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 7-3. Table 7-1 shows the capacitor selection for the Timer1 oscillator.


The user must provide a software time delay to ensure proper oscillator start-up.

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.

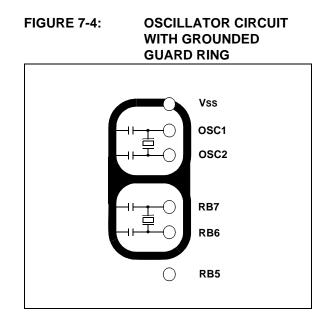
When using the Timer1 oscillator, In-Circuit Serial Programming[™] (ICSP[™]) may not function correctly (high-voltage or lowvoltage) or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.

If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead) or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

FIGURE 7-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 7-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type Freq		C1	C2	
LP	32 kHz	33 pF	33 pF	


- **Note 1:** Microchip suggests this value as a starting point in validating the oscillator circuit.
 - 2: Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

7.7 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 7-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator, a grounded guard ring around the oscillator circuit, as shown in Figure 7-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

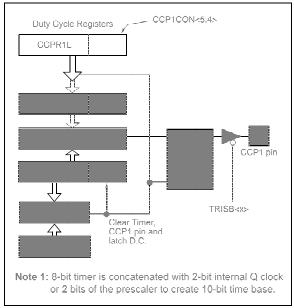
RTCinit	BANKSEL MOVLW MOVWF CLRF MOVLW	TMR1H 0x80 TMR1H TMR1L b'00001111'	; Preload TMR1 register pair ; for 1 second overflow ; Configure for external clock,
	MOVWF	TICON	; Asynchronous operation, external oscillator
	CLRF CLRF	secs mins	; Initialize timekeeping registers
	MOVLW	mins .12	
	MOVLW	.12 hours	
	BANKSEL	PIE1	
	BSF		; Enable Timer1 interrupt
	RETURN	,	,
RTCisr	BANKSEL	TMR1H	
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVF	secs, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	seconds	; Clear seconds
	INCF MOVF	mins, f mins, w	; Increment minutes
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN	511105, 2	; No, done
	CLRF	mins	; Clear minutes
	INCF	hours, f	; Increment hours
	MOVF	hours, w	
	SUBLW	.24	
	BTFSS	STATUS, Z	; 24 hours elapsed?
	RETURN		; No, done
	CLRF	hours	; Clear hours
	RETURN		; Done

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,		all c	e on other sets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000
0Eh	TMR1L	Holding	g Registe	er for the Le	ast Signific	ant Byte of t	he 16-bit T	MR1 Regi	ster	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu						uuuu				
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

9.3 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<x> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTB I/O data
	latch.

Figure 9-3 shows a simplified block diagram of the CCP module in PWM mode.

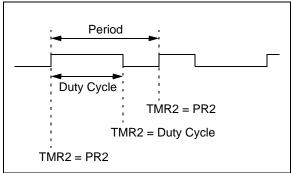

For a step by step procedure on how to set up the CCP module for PWM operation, see **Section 9.3.3 "Setup for PWM Operation"**.

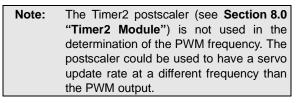
FIGURE 9-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 9-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 9-4: PWM OUTPUT

9.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula.


EQUATION 9-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 9-2:

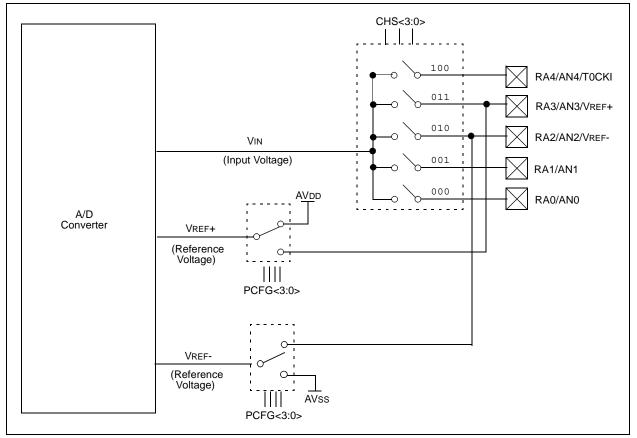
CCPR1L and CCP1CON<5:4> can be written to at any time but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The ADRESH:ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.


To determine sample time, see **Section 11.1** "**A/D Acquisition Requirements**". After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 11-1:

A/D BLOCK DIAGRAM

© 2001-2013 Microchip Technology Inc.

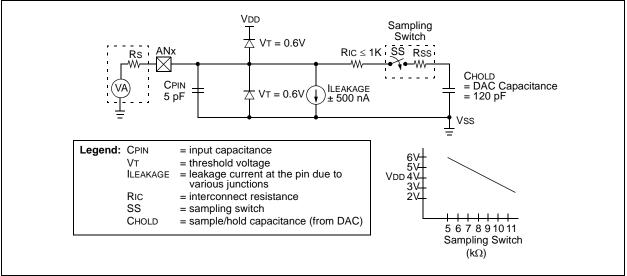
11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The maximum recommended impedance for analog sources is 2.5 k\Omega. As the impedance is decreased, the acquisition time may be decreased.

After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 11-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).


EQUATION 11-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient= TAMP + TC + TCOFF = 2 μ s + TC + [(Temperature - 25°C)(0.05 μ s/°C)] TC = CHOLD (RIC + Rss + Rs) In(1/2047) = -120 pF (1 k Ω + 7 k Ω + 10 k Ω) In(0.0004885) = 16.47 μ s TACQ = 2 μ s + 16.47 μ s + [(50°C - 25°C)(0.05 μ s/°C) = 19.72 μ s

Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

FIGURE 11-2: ANALOG INPUT MODEL

TABLE 12-4: INITIALIZATION CONDITIONS FOR ALL REGISTE

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	xxx0 0000	uuu0 0000	uuuu uuuu
PORTB	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	-0 0000	-0 0000	-u uuuu (1)
PIR2	0		u(1)
TMR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	<u>uuuu</u> uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	<u>uuuu</u> uuuu
CCPR1L	xxxx xxxx	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
CCPR1H	xxxx xxxx	uuuu uuuu	<u> </u>
CCP1CON	00 0000	00 0000	uu uuuu
ADRESH	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	1111 1111	1111 1111	uuuu uuuu
TRISA	1111 1111	1111 1111	<u>uuuu</u> uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PIE2	0	0	u
PCON	dd	uu	
OSCCON	-000 -0	-000 -0	-uuu -u
OSCTUNE	00 0000	00 0000	uu uuuu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	<u>uuuu</u> uuuu
SSPSTAT	0000 0000	0000 0000	<u>uuuu</u> uuuu
ADRESL	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1	00 0000	00 0000	uu uuuu
EEDATA	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATH	xx xxxx	uu uuuu	uu uuuu
EEADRH	xxx	uuu	uuu
EECON1	xx x000	ux u000	uu uuuu
EECON2			

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-3 for Reset value for specific conditions.

13.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are ANDed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions	
100*	Тнідн	Clock High Time	100 kHz mode	4.0		μS		
			400 kHz mode	0.6		μs		
			SSP Module	1.5 TCY				
101*	TLOW	Clock Low Time	100 kHz mode	4.7		μs		
			400 kHz mode	1.3	_	μs		
			SSP Module	1.5 TCY	_			
102*	Tr	SDA and SCL Rise	100 kHz mode	—	1000	ns		
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF	
103*	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF	
90*	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μs	Only relevant for Repeate Start condition	
			400 kHz mode	0.6		μs		
91*	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μs	After this period, the first clock pulse is generated	
			400 kHz mode	0.6		μs		
106*	THD:DAT	D:DAT Data Input Hold Time	100 kHz mode	0	_	ns		
			400 kHz mode	0	0.9	μs		
107*	TSU:DAT	7* TSU:DAT Data Input Setup Time	U:DAT Data Input Setup	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100		ns		
92*	Tsu:sto	SU:STO Stop Condition Setup Time	100 kHz mode	4.7	_	μs		
			400 kHz mode	0.6	_	μs		
109*	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—		ns		
110*	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission can start	
	Св	Bus Capacitive Load	ling	—	400	pF		

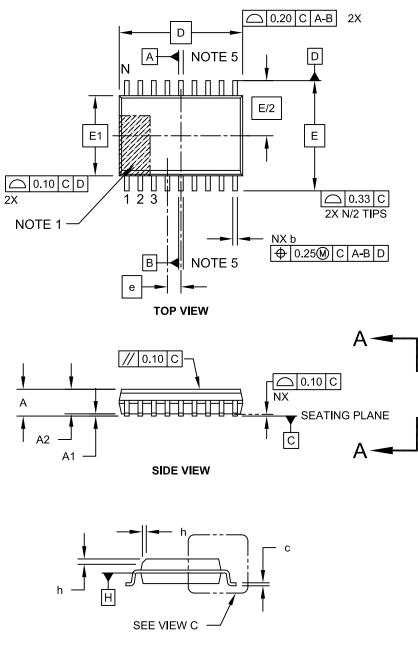
TABLE 15-8: I²C™ BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²CTM bus device can be used in a Standard mode (100 kHz) I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

TABLE 15-9:A/D CONVERTER CHARACTERISTICS: PIC16F818/819 (INDUSTRIAL, EXTENDED)PIC16LF818/819 (INDUSTRIAL)

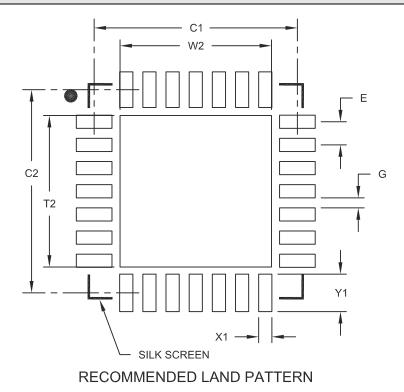

Param No.	Sym	Charac	teristic	Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution		_	—	10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	Eı∟	Integral Linearity Error		_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential Linearity Error			—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset Error		—	—	<±2	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A07	Egn	Gain Error		_	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	_	Monotonicity		_	guaranteed ⁽³⁾	—	_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage (VREF+ - VREF-)		2.0	—	VDD + 0.3	V	
A21	Vref+	Reference Voltage High		AVdd - 2.5V		AVDD + 0.3V	V	
A22	Vref-	Reference Voltage Low		AVss-0.3V		VREF+ - 2.0V	V	
A25	VAIN	Analog Input Voltage		Vss - 0.3V	—	VREF + 0.3V	V	
A30	ZAIN	Recommended Ir Analog Voltage S		_	—	2.5	kΩ	(Note 4)
A40	IAD	A/D Conversion	PIC16 F 818/819	_	220	—	μΑ	Average current
		Current (VDD)	PIC16 LF 818/819		90	—	μA	consumption when A/D is on (Note 1)
A50	IREF	VREF Input Currei	nt (Note 2)	_		5	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 11.1 "A/D Acquisition Requirements".
					—	150	μΑ	During A/D conversion cycle

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.
 - 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
 - 3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
 - 4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition time.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-051C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

PIC16F818/819

NOTES:

PIC16F818/819

TMR0IE Bit 18
Internal Oscillator Block
INTRC Modes35
Internet Address 173
Interrupt Sources
RB0/INT Pin, External97
TMR0 Overflow97
Interrupts
RB7:RB4 Port Change43
Synchronous Serial Port Interrupt
Interrupts, Context Saving During
Interrupts, Enable Bits
Global Interrupt Enable (GIE Bit)
Interrupt-on-Change (RB7:RB4) Enable
(RBIE Bit)
RB0/INT Enable (INTE Bit)
TMR0 Overflow Enable (TMR0IE Bit)
Interrupts, Enable bits
Global Interrupt Enable (GIE Bit)
Interrupts, Flag Bits
Interrupt-on-Change (RB7:RB4) Flag
(RBIF Bit)
RB0/INT Flag (INTF Bit)
TMR0 Overflow Flag (TMR0IF Bit)
INTRC Modes
INTRC Modes Adjustment
Adjustment
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94
Adjustment
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M 102 M Master Clear (MCLR) MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M 102 M Master Clear (MCLR) MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M Master Clear (MCLR) 102 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173 MPLAB ASM30 Assembler, Linker, Librarian 112
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173 MPLAB ASM30 Assembler, Linker, Librarian 112
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173 MPLAB ASM30 Assembler, Linker, Librarian 112 MPLAB Integrated Development 111
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173 MPLAB ASM30 Assembler, Linker, Librarian 112 MPLAB Integrated Development 111 Environment Software 111 MPLAB PM3 Device Programmer 114
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173 MPLAB ASM30 Assembler, Linker, Librarian 112 MPLAB Integrated Development 111 Environment Software 111 MPLAB REAL ICE In-Circuit Emulator System 113
Adjustment 36 L Loading of PC 23 Low-Voltage ICSP Programming 102 M M Master Clear (MCLR) 91, 93, 94 MCLR Reset, Normal Operation 91, 93, 94 MCLR Reset, Sleep 91, 93, 94 Operation and ESD Protection 92 Memory Organization 9 Data Memory 10 Program Memory 9 Microchip Internet Web Site 173 MPLAB ASM30 Assembler, Linker, Librarian 112 MPLAB Integrated Development 111 Environment Software 111 MPLAB PM3 Device Programmer 114

0

Opcode Field Descriptions	103
OPTION_REG Register	
INTEDG Bit	
PS2:PS0 Bits	
PSA Bit	
RBPU Bit	17, 54
TOCS Bit	
T0SE Bit	17
Oscillator Configuration	
ECIO	
EXTCLK	
EXTRC	
HS	33, 93
INTIO1	
INTIO2	
INTRC	
LP	33, 93
RC	33, 35

RCIO		33
XT	33,	93
Oscillator Control Register		37
Modifying IRCF Bits		
Clock Transition Sequence		
Oscillator Start-up Timer (OST)		
Oscillator, WDT	09,	92
		90
Р		
Packaging Information		
Marking		
PCFG0 Bit		-
PCFG1 Bit		
PCFG2 Bit		
PCFG3 Bit		
PCL Register	14, 15,	23
PCLATH Register	14, 15,	23
PCON Register		
POR Bit		
Pinout Descriptions		~~
PIC16F818/819		7
Pointer, FSR		
POP	•••••	23
POR. See Power-on Reset.		
PORTA		. 7
Associated Register Summary		
Functions		39
PORTA Register		39
TRISA Register		39
PORTA Register		
PORTB		
Associated Register Summary		
Functions		
PORTB Register		
Pull-up Enable (RBPU Bit)		
RB0/INT Edge Select (INTEDG Bit)		
RB0/INT Pin, External		
RB7:RB4 Interrupt-on-Change		97
RB7:RB4 Interrupt-on-Change Enable		
(RBIE Bit)		97
RB7:RB4 Interrupt-on-Change Flag		
(RBIF Bit)	18.	97
TRISB Register		
PORTB Register		
Postscaler, WDT		
		17
Assignment (PSA Bit)		
Rate Select (PS2:PS0 Bits)		17
Power-Down Mode. See Sleep.		
Power-on Reset (POR) 89, 91, 9	92, 93,	94
POR Status (POR Bit)		
Power Control (PCON) Register		
Power-Down (PD Bit)		91
Time-out (TO Bit)	16,	91
Power-up Timer (PWRT)		
PR2 Register		
Prescaler, Timer0		
Assignment (PSA Bit)		17
Rate Select (PS2:PS0 Bits)		
Program Counter		17
Reset Conditions		റാ
		33

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
	cation (optional):	
Would	d you like a reply? Y N	
Devic	e: PIC16F818/819	Literature Number: DS39598F
Ques	tions:	
1. V	/hat are the best features of this document?	
_		
2. H	ow does this document meet your hardware and s	oftware development needs?
_		
3. D	o you find the organization of this document easy	to follow? If not, why?
4. W	/hat additions to the document do you think would	enhance the structure and subject?
5. V	/hat deletions from the document could be made v	vithout affecting the overall usefulness?
_		
6. Is	there any incorrect or misleading information (whe	at and where)?
7. H	ow would you improve this document?	
_		
_		

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820