

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf819t-i-sotsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	9
3.0	Data EEPROM and Flash Program Memory	. 25
4.0	Oscillator Configurations	. 33
5.0	I/O Ports	39
6.0	Timer0 Module	. 53
7.0	Timer1 Module	. 57
8.0	Timer2 Module	. 63
9.0	Capture/Compare/PWM (CCP) Module	. 65
10.0	Synchronous Serial Port (SSP) Module	. 71
11.0	Analog-to-Digital Converter (A/D) Module	. 81
12.0	Special Features of the CPU	. 89
13.0	Instruction Set Summary	103
14.0	Development Support	111
15.0	Electrical Characteristics	115
16.0	DC and AC Characteristics Graphs and Tables	141
17.0	Packaging Information	155
Appe	ndix A: Revision History	165
Appe	ndix B: Device Differences	165
INDE	X	167
The I	/icrochip Web Site	173
Custo	mer Change Notification Service	173
Custo	mer Support	173
Read	er Response	174
PIC1	6F818/819 Product Identification System	175

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.2.2.8 **PCON Register**

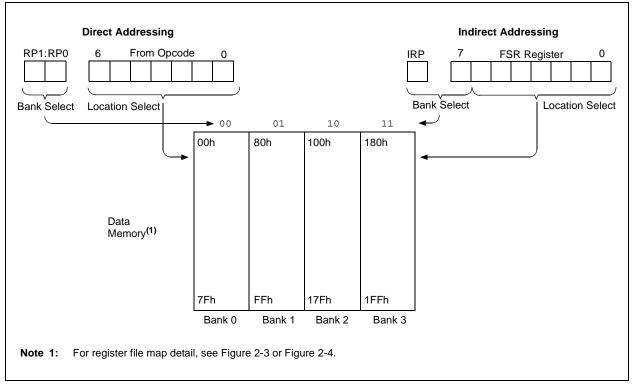
Note:	Interrupt fleg bits get eet when an interrupt								
note:	Interrupt flag bits get set when an interrupt								
	condition occurs regardless of the state of								
	its corresponding enable bit or the Global								
	Interrupt Enable bit, GIE (INTCON<7>).								
	User software should ensure the appropri-								
	ate interrupt flag bits are clear prior to								
	enabling an interrupt.								

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), a Brown-out Reset, an external MCLR Reset and WDT Reset.

-n = Value at POR

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a 'don't care' and is not necessarily predictable if the brownout circuit is disabled (by clearing the BOREN bit in the Configuration word).

REGISTER 2-8: PCON: POWER CONTROL REGISTER (ADDRESS 8Eh)


	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x				
	_	_		—	_	_	POR	BOR				
	bit 7							bit 0				
bit 7-2	Unimplem	ented: Read	l as '0'									
bit 1	POR: Power-on Reset Status bit											
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 											
bit 0	BOR: Brow	/n-out Reset	Status bit									
	 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) 											
	Legend:											
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented I	bit, read as	'0'				

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

REGISTER 3-1:	EECON1:	EEPROM	ACCESS C	ONTROL	REGISTER	1 (ADDRI	ESS 18Ch)				
	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-0	R/S-0	R/S-0			
	EEPGD		_	FREE	WRERR	WREN	WR	RD			
	bit 7							bit 0			
bit 7	EEPGD: Pr	ogram/Data	EEPROM	Select bit							
	0 = Access	es program es data mei fter a POR;	mory	not be chang	ged while a v	write operati	on is in prog	jress.			
bit 6-5	Unimplem	ented: Read	d as '0'								
bit 4	FREE: EEF	PROM Force	ed Row Eras	se bit							
	1 = Erase tl 0 = Perforn		memory row	addressed	by EEADRH	I:EEADR on	the next WF	R command			
bit 3	WRERR: E	EPROM Er	ror Flag bit								
	operat	ion)	s premature n completed	-	d (any MCLI	R or any WI	OT Reset du	ring normal			
bit 2	WREN: EE	PROM Writ	e Enable bit								
	1 = Allows write cycles0 = Inhibits write to the EEPROM										
bit 1	WR: Write Control bit										
	 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software. 0 = Write cycle to the EEPROM is complete 										
bit 0	RD: Read	Control bit									
		s an EEPR d) in softwar		D is cleared	l in hardwar	e. The RD I	bit can only	be set (not			
	0 = Does r	not initiate a	n EEPROM	read							
	Legend:]			

Legend:			
R = Readable bit	W = Writable bit	S = Set only	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.5 Timer1 Operation in Asynchronous Counter Mode

If control bit, $\overline{\text{T1SYNC}}$ (T1CON<2>), is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow that will wake-up the processor. However, special precautions in software are needed to read/write the timer.

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

7.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

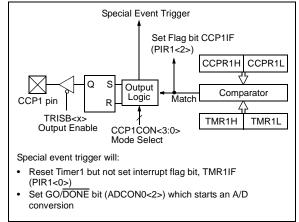
Reading the 16-bit value requires some care. The example codes provided in Example 7-1 and Example 7-2 demonstrate how to write to and read Timer1 while it is running in Asynchronous mode.

EXAMPLE 7-1:	WRITING A 16-BIT FREE RUNNING TIMER
EAAIVIFLE /-I.	WRITING A 10-DIT FREE RUNNING TIMER

; All	interrupts are	e disabled	
CLRF	TMR1L	; Clear Low byte, Ensures no rollover into TMR1H	
MOVLW	HI_BYTE	; Value to load into TMR1H	
MOVWF	TMR1H, F	; Write High byte	
MOVLW	LO_BYTE	; Value to load into TMR1L	
MOVWF	TMR1H, F	; Write Low byte	
; Re-e	nable the Inte	errupt (if required)	
CONTIN	IUE	; Continue with your code	

EXAMPLE 7-2: READING A 16-BIT FREE RUNNING TIMER

; All interrupts are disabled
MOVF TMR1H, W ; Read high byte
MOVWF TMPH
MOVF TMR1L, W ; Read low byte
MOVWF TMPL
MOVF TMR1H, W ; Read high byte
SUBWF TMPH, W ; Sub 1st read with 2nd read
BTFSC STATUS, Z ; Is result = 0
GOTO CONTINUE ; Good 16-bit read
; TMR1L may have rolled over between the read of the high and low bytes.
; Reading the high and low bytes now will read a good value.
MOVF TMR1H, W ; Read high byte
MOVWF TMPH
MOVF TMR1L, W ; Read low byte
MOVWF TMPL ; Re-enable the Interrupt (if required)
CONTINUE ; Continue with your code


9.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 9-2: COMPARE MODE OPERATION BLOCK DIAGRAM

9.2.1 CCP PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the TRISB<x> bit.

- Note 1: Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the data latch.
 - 2: The TRISB bit (2 or 3) is dependent upon the setting of configuration bit 12 (CCPMX).

9.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

9.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

9.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated that may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Note: The special event trigger from the CCP1 module will not set interrupt flag bit, TMR1IF (PIR1<0>).

TABLE 9-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 1 Bit 0		Value on POR, BOR		all off		other
0Bh,8Bh 10BH,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u		
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000		
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000		
86h	TRISB	PORTE	3 Data Dir	ection Reg	ister					1111	1111	1111	1111		
0Eh	TMR1L	Holding	g Register	r for the Lea	ast Significa	ant Byte of t	he 16-bit T	MR1 Regi	ster	xxxx	xxxx	uuuu	uuuu		
0Fh	TMR1H	Holding	g Register	r for the Mo	st Significa	nt Byte of th	ne 16-bit T	MR1 Regis	ster	xxxx	xxxx	uuuu	uuuu		
10h	T1CON	-		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu		
15h	CCPR1L	Capture	Capture/Compare/PWM Register 1 (LSB)									uuuu	uuuu		
16h	CCPR1H	Capture	e/Compar	re/PWM Re	gister 1 (M	SB)				xxxx	xxxx	uuuu	uuuu		
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000		

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

10.3 SSP I²C Mode Operation

The SSP module in I²C mode fully implements all slave functions, except general call support and provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RB4/SCK/SCL pin, which is the clock (SCL) and the RB1/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISB<4,1> bits.

To ensure proper communication of the I²C Slave mode, the TRIS bits (TRISx [SDA, SCL]) corresponding to the I²C pins must be set to '1'. If any TRIS bits (TRISx<7:0>) of the port containing the I²C pins (PORTx [SDA, SCL]) are changed in software during I²C communication using a Read-Modify-Write instruction (BSF, BCF), then the I²C mode may stop functioning properly and I²C communication may suspend. Do not change any of the TRISx bits (TRIS bits of the port containing the I²C pins) using the instruction BSF or BCF during I²C communication. If it is absolutely necessary to change the TRISx bits during communication, the following method can be used:

EXAMPLE 10-1:

MOVF	TRISC, W	; Example for an 18-pin part such as the PIC16F818/819
IORLW	0x18	; Ensures <4:3> bits are `11'
ANDLW	B'11111001'	; Sets <2:1> as output, but will not alter other bits
		; User can use their own logic here, such as IORLW, XORLW and ANDLW
MOVWF	TRISC	

The SSP module functions are enabled by setting SSP Enable bit, SSPEN (SSPCON<5>).

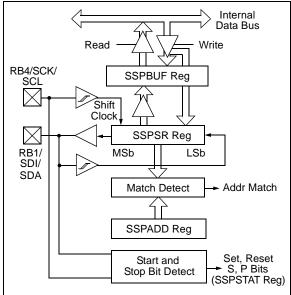


FIGURE 10-5: SSP BLOCK DIAGRAM (I²C™ MODE)

The SSP module has five registers for I^2C operation:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Firmware Controlled Master mode with Start and Stop bit interrupts enabled, slave is Idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISB bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation may be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

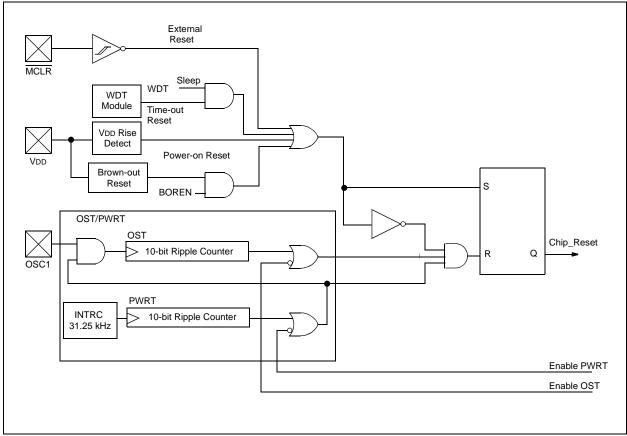
NOTES:

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾

			R/P-1		-	101 1	R/P-1	R/P-1	R/P-1	-	R/P-1	R/P-1	R/P-1
CP CC	CPMX	DEBUG	WRT1	WRT0	CPD	LVP	BOREN	MCLRE	FOSC2	PWRTEN	WDTEN	FOSC1	FOSC0
oit 13													bit 0
oit 13			h Droar	om Mom		ha Drat	ection bit						
л 15		1 = Code											
			•	ocations	code-p	rotecte	ed						
oit 12		ССРМХ	: CCP1	Pin Selec	tion bit	:							
				on on RB									
oit 11				on on RB		odo bit							
אנוו				uit Debug bugger d			and RB7 a	are gener	al purpos	e I/O pins			
										e debugger			
oit 10-9		WRT1:W	VRTO: F	lash Prog	gram M	emory	Write Ena	able bits					
		For PIC1											
		11 = Wri							na a difi a d l		a a vatura l		
							10 to 03FF	may be	moainea i	by EECON	CONTROL		
		01 = 000h to 03FF write-protected For PIC16F819:											
		11 = Wri	ite prote										
										ified by EE			
										ified by EE			
oit 8				lemory C				////////	y 50 moa				
		1 = Code		•									
				mory loca		-							
oit 7				e Progra				-					
							ow-Voltag			abled ed for prog	rammina		
oit 6				-out Rese							lanning		
		1 = BOR											
		0 = BOR	t disable	d									
oit 5						-	Select bit						
				VPP pin fu			LR tal I/O, MC	<u>`I P</u> interr	ally tied t	ם ער			
oit 3			_	er-up Tim		•			ially lieu l	0 000			
ло		1 = PWF		•									
		0 = PWF											
oit 2				dog Time	r Enab	le bit							
		1 = WDT											
		0 = WDT				ntion hi	to						
oit 4, 1-0				: Oscillato scillator: (n on RA6/	OSC2/CI	KO nin				
							on on RA6						
		101 = IN	ITRC os	cillator; C	LKO fu	unction	on RA6/C	DSC2/CL	KO pin ar	nd port I/O f	function o	n	
				1/CLKI p		functio	n on hoth	DAG/OS		pin and RA	17/0901/		
							46/OSC2/			pin anu rv	47/0301/		
		010 = H	S oscilla	tor									
		001 = X											
		000 = LF	- oscilla	lor									
						ramm							

Legend:

R = Readable bitP = Programmable bitU = Unimplemented bit, read as '1'-n = Value when device is unprogrammedu = Unchanged from programmed state


12.2 Reset

The PIC16F818/819 differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations as indicated in Table 12-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR wake-up from Sleep, the CPU requires or approximately 5-10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 12-4 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 12-1.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.9 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. Bit $\overline{\text{BOR}}$ is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if

bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-u	p	Brown-out R	Wake-up	
Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from Sleep
XT, HS, LP	TPWRT + 1024 • TOSC	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
EXTRC, EXTCLK, INTRC	Tpwrt	5-10 μs ⁽¹⁾	TPWRT	5-10 μs ⁽¹⁾	5-10 μs ⁽¹⁾

Note 1: CPU start-up is always invoked on POR, BOR and wake-up from Sleep.

TABLE 12-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	х	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

Legend: u = unchanged, x = unknown

TABLE 12-3: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

12.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising if bit INTEDG (OPTION_REG<6>) is set, or falling if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit, INTF (INTCON<1>), is set. This interrupt can be disabled by clearing enable bit, INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from Sleep if bit INTE was set prior to going into Sleep. The status of Global Interrupt Enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 12.13 "Power-Down Mode (Sleep)" for details on Sleep mode.

12.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit, TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>) (see **Section 6.0 "Timer0 Module"**).

12.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). See Section 3.2 "EECON1 and EECON2 Registers".

12.11 Context Saving During Interrupts

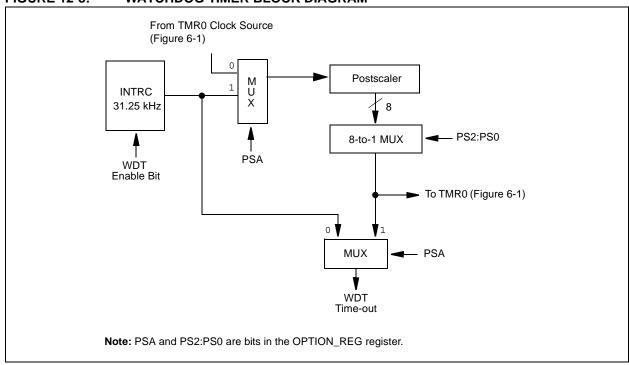
During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W, Status registers). This will have to be implemented in software as shown in Example 12-1.

For PIC16F818 devices, the upper 64 bytes of each bank are common. Temporary holding registers, W_TEMP and STATUS_TEMP, should be placed here. These 64 locations do not require banking and therefore, make it easier for context save and restore.

For PIC16F819 devices, the upper 16 bytes of each bank are common.

EXAMPLE 12-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS, W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		;Insert user code here
:		
SWAPF	STATUS_TEMP, W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP, F	;Swap W_TEMP
SWAPF	W_TEMP, W	;Swap W_TEMP into W


12.12 Watchdog Timer (WDT)

For PIC16F818/819 devices, the WDT is driven by the INTRC oscillator. When the WDT is enabled, the INTRC (31.25 kHz) oscillator is enabled. The nominal WDT period is 16 ms and has the same accuracy as the INTRC oscillator.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer wake-up). The TO bit in the Status register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit, WDTEN (see **Section 12.1 "Configuration Bits**"). WDT time-out period values may be found in **Section 15.0** "**Electrical Characteristics**" under parameter #31. Values for the WDT prescaler (actually a postscaler but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- **Note 1:** The CLRWDT and SLEEP instructions clear the WDT and the postscaler if assigned to the WDT and prevent it from timing out and generating a device Reset condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared but the prescaler assignment is not changed.

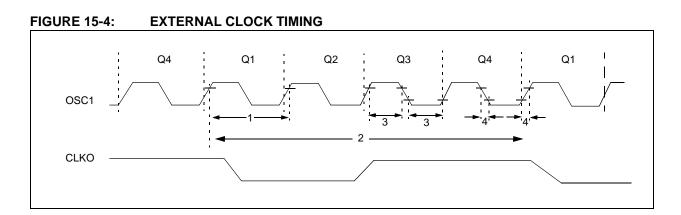

FIGURE 12-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-5: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
2007h	Configuration bits ⁽¹⁾	LVP	BOREN	MCLRE	FOSC2	PWRTEN	WDTEN	FOSC1	FOSC0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of these bits.

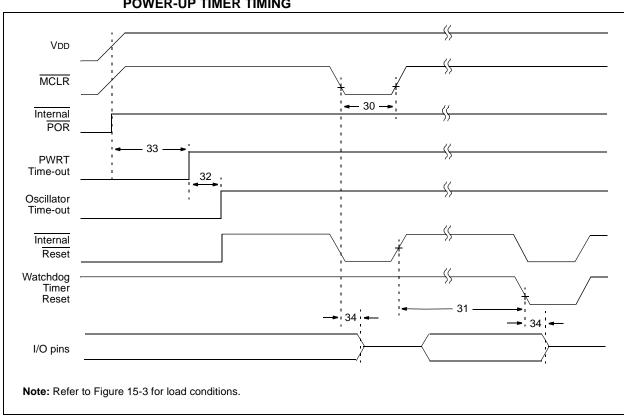
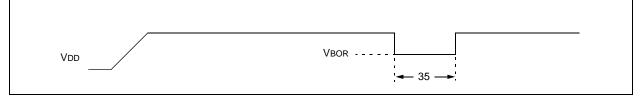


TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKI Frequency (Note 1)	DC	_	1	MHz	XT and RC Oscillator mode
			DC	_	20	MHz	HS Oscillator mode
			DC	_	32	kHz	LP Oscillator mode
		Oscillator Frequency (Note 1)	DC		4	MHz	RC Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			4	—	20	MHz	HS Oscillator mode
			5	_	200	kHz	LP Oscillator mode
1	Tosc	External CLKI Period (Note 1)	1000	—	—	ns	XT and RC Oscillator mode
			50	—	—	ns	HS Oscillator mode
			5	—	—	ms	LP Oscillator mode
		Oscillator Period (Note 1)	250	_	—	ns	RC Oscillator mode
			250		10,000	ns	XT Oscillator mode
			50		250	ns	HS Oscillator mode
			5	_	_	ms	LP Oscillator mode
2	Тсү	Instruction Cycle Time (Note 1)	200	TCY	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High	500		_	ns	XT Oscillator
	TosH	or Low Time	2.5	_	_	ms	LP Oscillator
			15	_	_	ns	HS Oscillator
4	TosR,	External Clock in (OSC1) Rise or	—		25	ns	XT Oscillator
	TosF	Fall Time	—	_	50	ns	LP Oscillator
			—	_	15	ns	HS Oscillator


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 15-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-7: BROWN-OUT RESET TIMING

TABLE 15-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
TMCL	MCLR Pulse Width (Low)	2			μS	VDD = 5V, -40°C to +85°C
Twdt	Watchdog Timer Time-out Period (no prescaler)	13.6	16	18.4	ms	VDD = 5V, -40°C to +85°C
Tost	Oscillation Start-up Timer Period		1024 Tosc	_		Tosc = OSC1 period
TPWRT	Power-up Timer Period	61.2	72	82.8	ms	VDD = 5V, -40°C to +85°C
Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	2.1	μS	
TBOR	Brown-out Reset Pulse Width	100	_	—	μS	$VDD \leq VBOR (D005)$
	TMCL TWDT TOST TPWRT TIOZ	TMCL MCLR Pulse Width (Low) TWDT Watchdog Timer Time-out Period (no prescaler) TOST Oscillation Start-up Timer Period TPWRT Power-up Timer Period TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset	TMCL MCLR Pulse Width (Low) 2 TWDT Watchdog Timer Time-out Period (no prescaler) 13.6 TOST Oscillation Start-up Timer Period — TPWRT Power-up Timer Period 61.2 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset —	TMCL MCLR Pulse Width (Low) 2 TWDT Watchdog Timer Time-out Period (no prescaler) 13.6 16 TOST Oscillation Start-up Timer Period — 1024 Tosc TPWRT Power-up Timer Period 61.2 72 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset — —	TMCLMCLR Pulse Width (Low)2—TWDTWatchdog Timer Time-out Period (no prescaler)13.61618.4TOSTOscillation Start-up Timer Period—1024 Tosc—TPWRTPower-up Timer Period61.27282.8TIOZI/O High-Impedance from MCLR Low or Watchdog Timer Reset——2.1	TMCLMCLR Pulse Width (Low)2—μsTWDTWatchdog Timer Time-out Period (no prescaler)13.61618.4msTOSTOscillation Start-up Timer Period—1024 Tosc——TPWRTPower-up Timer Period61.27282.8msTIOZI/O High-Impedance from MCLR Low or Watchdog Timer Reset—2.1μs

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

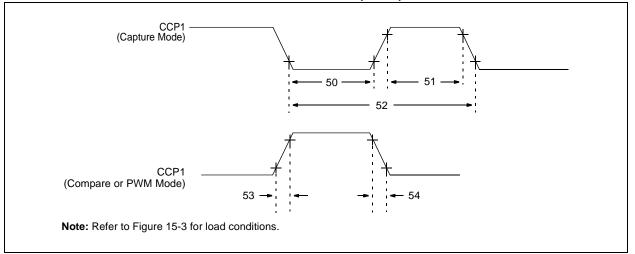
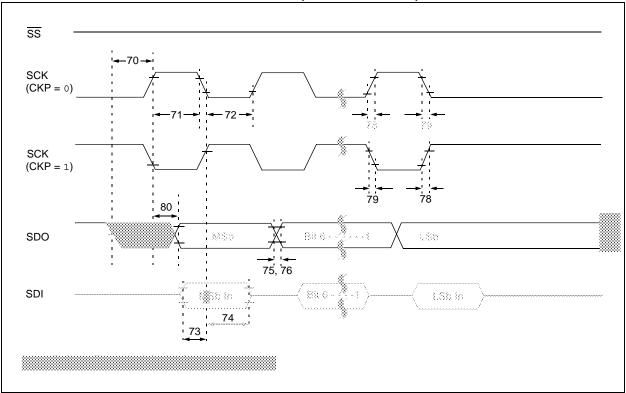
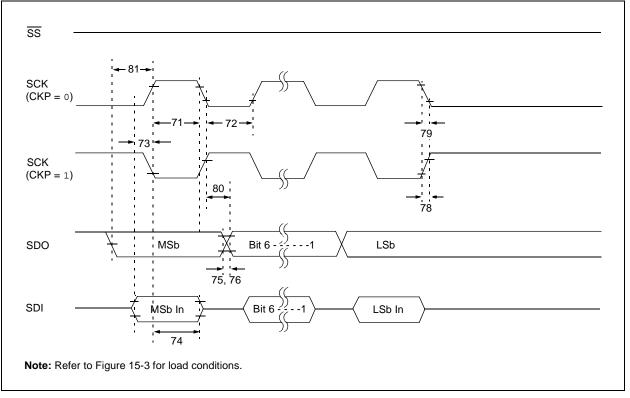
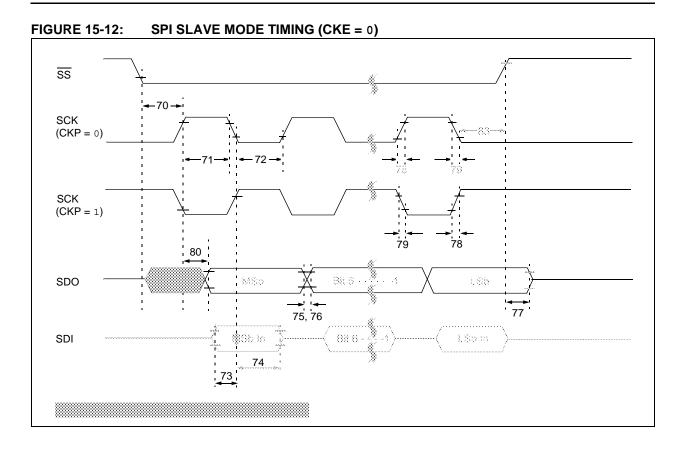



TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Param No.	Symbol		Characteristic			Тур†	Max	Units	Conditions
50*	TCCL	CCP1	No Prescaler		0.5 Tcy + 20	—	—	ns	
		Input Low Time		PIC16F818/819	10	—	—	ns	
			With Prescaler	PIC16 LF 818/819	20	—	—	ns	
51*	51* TccH CCP1				0.5 TCY + 20		_	ns	
		Input High Time		PIC16F818/819	10		_	ns	
			With Prescaler	PIC16 LF 818/819	20		—	ns	
52*	TCCP	CCP1 Input Per	CP1 Input Period		<u>3 Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)
53*	TCCR	CCP1 Output R	ise Time	PIC16F818/819	—	10	25	ns	
				PIC16 LF 818/819	—	25	50	ns	
54*	TccF	CCP1 Output Fa	all Time	PIC16F818/819	—	10	25	ns	
				PIC16 LF 818/819	—	25	45	ns	


* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

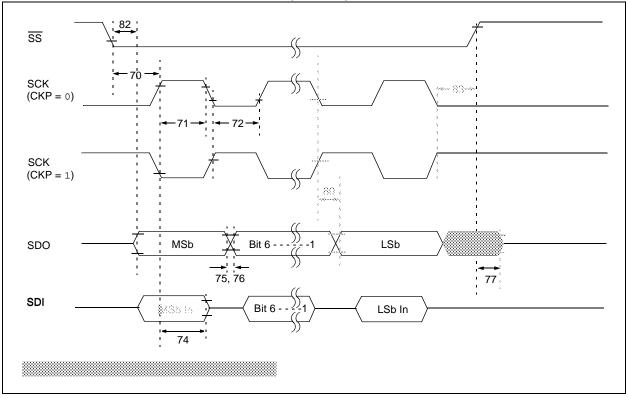
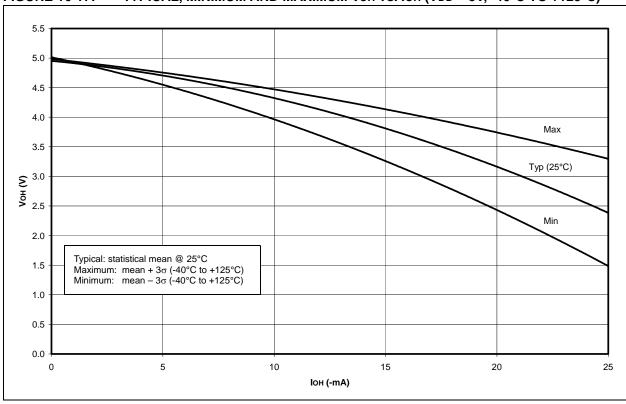

FIGURE 15-10: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-11: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)



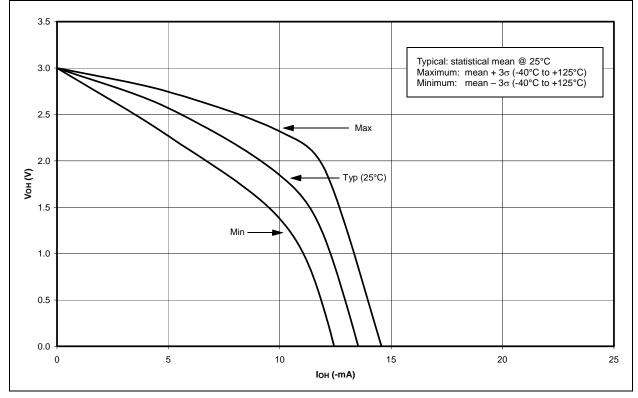


FIGURE 16-17: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

NOTES: