E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf819t-i-sstsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-4: PIC16F819 REGISTER FILE MAP

File Address		ŀ	File Address	File Address A			
ndirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
	18h		98h				
	19h		99h				
	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
4005011	1Dh 1Eb	ADRESL	9Dh				
ADRESH	1Eh 1Fh		9Eh		11Fh		19Fh
ADCON0		ADCON1	9Fh		120h		1A0ł
	20h		A0h		12011		17101
		General		General			
General Purpose		Purpose Register		Purpose		Accesses	
Register		80 Bytes		Register		20h-7Fh	
96 Bytes				80 Bytes			
,			EFh		16Fh		
		Accesses	F0h	Accesses	170h		
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
		ata memory locati	ons, read	as '0'.			
* Not a pł	nysical reg	jister.					

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 0											
00h ⁽¹⁾	INDF	Addressir	ng this locati	on uses cont	ents of FSR to	o address dat	a memory (n	ot a physical	register)	0000 0000	23
01h	TMR0	Timer0 M	er0 Module Register xxxx xxxx								
02h ⁽¹⁾	PCL	Program	Counter's (F	PC) Least Sig	nificant Byte					0000 0000	23
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	16
04h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poi	nter					xxxx xxxx	23
05h	PORTA	PORTA D	Data Latch w	hen written; F	PORTA pins w	hen read				xxx0 0000	39
06h	PORTB	PORTB D	Data Latch w	hen written; I	PORTB pins v	when read				xxxx xxxx	43
07h	—	Unimplen	nented							_	_
08h	—	Unimplen	nented							—	—
09h	—	Unimplen	nented							—	—
0Ah ^(1,2)	PCLATH	_	_		Write Buffer	for the upper	5 bits of the	Program Cou	unter	0 0000	23
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
0Ch	PIR1	_	ADIF		_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	20
0Dh	PIR2	_	_	_	EEIF	_	_	_	_	0	21
0Eh	TMR1L	Holding R	olding Register for the Least Significant Byte of the 16-bit TMR1 Register								57
0Fh	TMR1H	Holding R	Register for tl	he Most Sign	ificant Byte of	f the 16-bit TM	/IR1 Register	r		xxxx xxxx	57
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	57
11h	TMR2	Timer2 M	odule Regis	ter						0000 0000	63
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	64
13h	SSPBUF	Synchron	ous Serial P	ort Receive I	Buffer/Transm	it Register				XXXX XXXX	71, 76
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	73
15h	CCPR1L	Capture/0	Compare/PW	/M Register (LSB)					XXXX XXXX	66, 67, 68
16h	CCPR1H	Capture/0	Compare/PW	/M Register (MSB)					XXXX XXXX	66, 67, 68
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	65
18h	—	Unimplen	nented							_	_
19h	—	Unimplen	nented							_	_
1Ah	—	Unimplen	nented							_	_
1Bh	_	Unimplen	nented							—	_
1Ch	—	Unimplen	nented							—	_
1Dh	_	Unimplen	nented							—	_
1Eh	ADRESH	A/D Resu	ılt Register ⊦	ligh Byte						XXXX XXXX	81
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	81

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: OPTION REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0		
	bit 7							bit (
7	RBPU: PO	RTB Pull-up	Enable bit							
		B pull-ups are B pull-ups are		individual po	ort latch valu	ues				
t 6	INTEDG: I	nterrupt Edge	e Select bit							
		pt on rising e pt on falling e								
t 5	5 TOCS: TMR0 Clock Source Select bit									
		tion on T0CK al instruction (•	CLKO)						
t 4	TOSE: TM	R0 Source Ec	lge Select bit	t						
		nent on high-t nent on low-to								
t 3	PSA: Prescaler Assignment bit									
		aler is assigne aler is assigne								
t 2-0	PS2:PS0:	Prescaler Ra	te Select bits							
	Bit Value	TMR0 Rate 1 : 2	WDT Rate							
	001	1:4	1:2							
	010 011	1 : 8 1 : 16	1:4 1:8							
	100	1:32	1:16							
	101	1:64	1:32							
	110 111	1 : 128 1 : 256	1 : 64 1 : 128							
	Legend:									
	R = Reada	able bit	W = Wr	itable bit	U = Unim	plemented	bit, read as	'0'		
	-n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown		

REGISTER 3-1:	EECON1:	EEPROM	ACCESS C	ONTROL	REGISTER	1 (ADDRI	ESS 18Ch)			
	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-0	R/S-0	R/S-0		
	EEPGD		_	FREE	WRERR	WREN	WR	RD		
	bit 7							bit 0		
bit 7	EEPGD: Pr	ogram/Data	EEPROM	Select bit						
	0 = Access	 1 = Accesses program memory 0 = Accesses data memory Reads '0' after a POR; this bit cannot be changed while a write operation is in progress. 								
bit 6-5	Unimplem	ented: Read	d as '0'							
bit 4	FREE: EEF	PROM Force	ed Row Eras	se bit						
		1 = Erase the program memory row addressed by EEADRH:EEADR on the next WR command 0 = Perform write-only								
bit 3	WRERR: E	EPROM Er	ror Flag bit							
	operat	ion)	s premature n completed	-	d (any MCLI	R or any WI	OT Reset du	ring normal		
bit 2	WREN: EE	PROM Writ	e Enable bit							
		write cycles write to the								
bit 1	WR: Write	Control bit								
	 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WI can only be set (not cleared) in software. 0 = Write cycle to the EEPROM is complete 							The WR bit		
bit 0	RD: Read	Control bit								
	 1 = Initiates an EEPROM read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 									
	0 = Does r	not initiate a	n EEPROM	read						
	Legend:]		

Legend:			
R = Readable bit	W = Writable bit	S = Set only	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

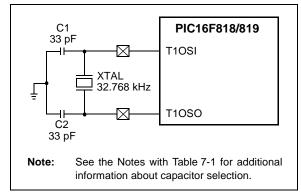
An example of the complete four-word write sequence is shown in Example 3-5. The initial address is loaded into the EEADRH:EEADR register pair; the four words of data are loaded using indirect addressing, assuming that a row erase sequence has already been performed.

EXAMPLE 3-5: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. The 32 words in the erase block have already been erased. ; 2. A valid starting address (the least significant bits = '00') is loaded into EEADRH:EEADR ; 3. This example is starting at 0x100, this is an application dependent setting. ; 4. The 8 bytes (4 words) of data are loaded, starting at an address in RAM called ARRAY. ; 5. This is an example only, location of data to program is application dependent. ; 6. word_block is located in data memory. BANKSEL EECON1 ;prepare for WRITE procedure EECON1, EEPGD BSF ; point to program memory EECON1, WREN BSF ;allow write cycles BCF EECON1, FREE ;perform write only BANKSEL word block MOVLW .4 MOVWF word block ;prepare for 4 words to be written BANKSEL EEADRH ;Start writing at 0x100 MOVLW 0x01 MOVWF ;load HIGH address EEADRH MOVLW 0x00 MOVWF EEADR ;load LOW address BANKSEL ARRAY MOVLW ARRAY ; initialize FSR to start of data MOVWF FSR LOOP BANKSEL EEDATA MOVF INDF, W ; indirectly load EEDATA MOVWF EEDATA INCF FSR. F ; increment data pointer MOVF INDF, W ; indirectly load EEDATH MOVWF EEDATH INCE FSR, F ; increment data pointer BANKSEL EECON1 ;required sequence MOVLW 0x55 MOVWF EECON2 MOVIW 0xAA ner MOVWF EECON2 BSF EECON1, WR ;set WR bit to begin write NOP ; instructions here are ignored as processor NOP BANKSEL EEADR INCF EEADR, f ;load next word address BANKSEL word_block DECFSZ word_block, f ; have 4 words been written? GOTO loop ;NO, continue with writing BANKSEL EECON1 BCF EECON1, WREN ;YES, 4 words complete, disable writes BSF INTCON, GIE ;enable interrupts

7.6 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 32.768 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 7-3. Table 7-1 shows the capacitor selection for the Timer1 oscillator.


The user must provide a software time delay to ensure proper oscillator start-up.

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging.

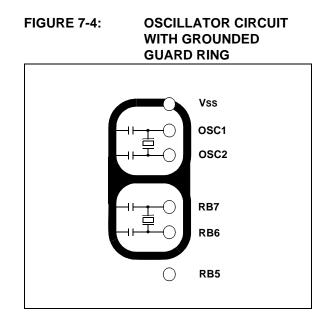
When using the Timer1 oscillator, In-Circuit Serial Programming[™] (ICSP[™]) may not function correctly (high-voltage or lowvoltage) or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged.

If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead) or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

FIGURE 7-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 7-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	32 kHz 33 pF	


- **Note 1:** Microchip suggests this value as a starting point in validating the oscillator circuit.
 - **2:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

7.7 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

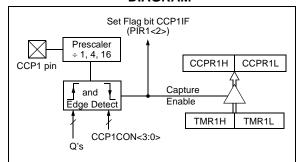
The oscillator circuit, shown in Figure 7-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator, a grounded guard ring around the oscillator circuit, as shown in Figure 7-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on the CCP1 pin. An event is defined as:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

9.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the TRISB<x> bit.

- **Note 1:** If the CCP1 pin is configured as an output, a write to the port can cause a capture condition.
 - 2: The TRISB bit (2 or 3) is dependent upon the setting of configuration bit 12 (CCPMX).

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit, CCP1IE (PIE1<2>), clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

9.1.4 CCP PRESCALER

There are four prescaler settings specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

	CCP1CON NEW CAPT PS	;Turn CCP module off ;Load the W reg with
MOVWF	CCP1CON	;the new prescaler ;move value and CCP ON ;Load CCP1CON with this ;value

NOTES:

14.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

14.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

14.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

14.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

PIC16LF8 (Indus			rd Oper ng temp	•	•	s otherwise stated ≤ +85°C for indus	•			
PIC16F81 (Indus	18/819 strial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units		Condi	tions			
	Supply Current (IDD) ^(2,3)									
	PIC16LF818/819	9	20	μΑ	-40°C					
		7	15	μA	+25°C	VDD = 2.0V				
		7	15	μA	+85°C					
	PIC16LF818/819	16	30	μA	-40°C					
		14	25	μA	+25°C	VDD = 3.0V	Fosc = 32 kHz			
		14	25	μA	+85°C		(LP Oscillator)			
	All devices	32	40	μA	-40°C					
		26	35	μΑ	+25°C	VDD = 5.0V				
		26	35	μΑ	+85°C	VDD = 3.0V				
	Extended devices	35	53	μA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

	PIC16LF818/819 (Industrial)		rd Oper			s otherwise stated ≤ +85°C for indus				
PIC16F8 (Indu	1 8/819 strial, Extended)		rd Oper		-40°C ≤ TA	s otherwise states $\leq +85^{\circ}$ C for indus $\leq +125^{\circ}$ C for exte	trial			
Param No.	Device	Тур	Max	Units		Condi	tions			
Supply Current (IDD) ^(2,3)										
	PIC16LF818/819	72	95	μΑ	-40°C					
		76	90	μΑ	+25°C	VDD = 2.0V				
		76	90	μA	+85°C					
	PIC16LF818/819	138	175	μΑ	-40°C					
		136	170	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz			
		136	170	μΑ	+85°C		(RC Oscillator) ⁽³⁾			
	All devices	310	380	μΑ	-40°C					
		290	360	μΑ	+25°C	VDD = 5.0V				
		280	360	μΑ	+85°C	100 = 0.01				
	Extended devices	350	500	μΑ	+125°C					
	PIC16LF818/819	270	315	μΑ	-40°C					
		280	310	μΑ	+25°C	VDD = 2.0V				
		285	310	μΑ	+85°C					
	PIC16LF818/819	460	610	μΑ	-40°C	_				
		450	600	μΑ	+25°C	VDD = 3.0V	FOSC = 4 MHz			
		450	600	μΑ	+85°C		(RC Oscillator) ⁽³⁾			
	All devices	900	1060	μΑ	-40°C					
		890	1050	μΑ	+25°C	VDD = 5.0V				
		890	1050	μΑ	+85°C					
	Extended devices	.920	1.5	mA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

15.2 DC Characteristics: Power-Down and Supply Current PIC16F818/819 (Industrial, Extended) PIC16LF818/819 (Industrial) (Continued)

	PIC16LF818/819 (Industrial)		rd Oper ng temp		onditions (unless -40°C \leq TA	otherwise stated ≤ +85°C for indus			
PIC16F8 (Indu	18/819 strial, Extended)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	Units		Condi	ions		
D022	Module Differential Currer	nts (∆lw	от, ∆Іво	R, ∆ i lvd	, Δ IOSCB, Δ IAD)				
(∆IWDT)	Watchdog Timer	er 1.5 3.8 μA -40°C							
		2.2	3.8	μA	+25°C	VDD = 2.0V			
		2.7	4.0	μΑ	+85°C				
		2.3	4.6	μΑ	-40°C				
		2.7	4.6	μΑ	+25°C	VDD = 3.0V			
		3.1	4.8	μΑ	+85°C				
		3.0	10.0	μA	-40°C				
		3.3	10.0	μΑ	+25°C	VDD = 5.0V			
		3.9	13.0	μΑ	+85°C	100 - 0.01			
	Extended Devices	5.0	21.0	μΑ	+125°C				
D022A (∆IBOR)	Brown-out Reset	40	60	μΑ	-40°C to +85°C	VDD = 5.0V			
D025	Timer1 Oscillator	1.7	2.3	μΑ	-40°C				
(∆IOSCB)		1.8	2.3	μΑ	+25°C	VDD = 2.0V			
		2.0	2.3	μΑ	+85°C				
		2.2	3.8	μΑ	-40°C				
		2.6	3.8	μA	+25°C	VDD = 3.0V	32 kHz on Timer1		
		2.9	3.8	μA	+85°C				
		3.0	6.0	μΑ	-40°C				
		3.2	6.0	μA	+25°C	VDD = 5.0V			
		3.4	7.0	μΑ	+85°C				
D026	A/D Converter	0.001	2.0	μΑ	-40°C to +85°C	VDD = 2.0V			
(ΔIAD)		0.001	2.0	μΑ	-40°C to +85°C	VDD = 3.0V	A/D on, Sleep, not converting		
		0.003	2.0	μΑ	-40°C to +85°C	VDD = 5.0V			
	Extended Devices	4.0	8.0	μA	-40°C to +125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

15.3 DC Characteristics: Internal RC Accuracy PIC16F818/819, PIC16F818/819 TSL (Industrial, Extended) PIC16LF818/819, PIC16LF818/819 TSL (Industrial)

PIC16LF	F818/819⁽³⁾ F818/819 TSL⁽³⁾ Jstrial)	Standard O Operating te	•	•		rwise stated) 35°C for industrial					
PIC16F8	818/819 ⁽³⁾ 318/819 TSL ⁽³⁾ ustrial, Extended)	Standard Operating te		-40°	$C^{2} \leq TA \leq +8$	r wise stated) 35°C for industrial 25°C for extended					
Param No.	Device	Min	Тур	Мах	Units	с	onditions				
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾											
	PIC16LF818/819	-5	±1	5	%	+25°C					
		-25	—	25	%	-10°C to +85°C	VDD = 2.7-3.3V				
		-30	_	30	%	-40°C to +85°C					
	PIC16F818/819 ⁽⁴⁾	-5	±1	5	%	+25°C					
		-25	—	25	%	-10°C to +85°C	VDD = 4.5-5.5V				
		-30	—	30	%	-40°C to +85°C	VDD = 4.5-5.5V				
		-35	—	35	%	-40°C to +125°C					
	PIC16LF818/819 TSL	-2	±1	2	%	+25°C					
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V				
		-10	—	10	%	-40°C to +85°C					
	PIC16F818/819 TSL ⁽⁵⁾	-2	±1	2	%	+25°C					
		-5	—	5	%	-10°C to +85°C	VDD = 4.5-5.5V				
		-10	—	10	%	-40°C to +85°C	VDD = 4.5-5.5V				
		-15	—	15	%	-40°C to +125°C					
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾										
	PIC16LF818/819	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V				
	PIC16F818/819 ⁽⁴⁾	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V				
	PIC16LF818/819 TSL	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V				
	PIC16F818/819 TSL ⁽⁵⁾	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V				

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

3: The only specification difference between a non-TSL device and a TSL device is the internal RC oscillator specifications listed above. All other specifications are maintained.

4: Example part number for the specifications listed above: PIC16F818-I/SS (PIC16F818 device, Industrial temperature, SSOP package).

5: Example part number for the specifications listed above: PIC16F818-I/SSTSL (PIC16F818 device, Industrial temperature, SSOP package).

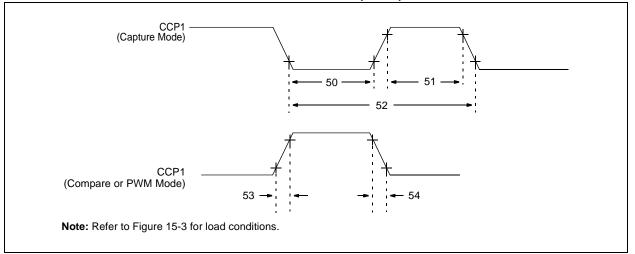
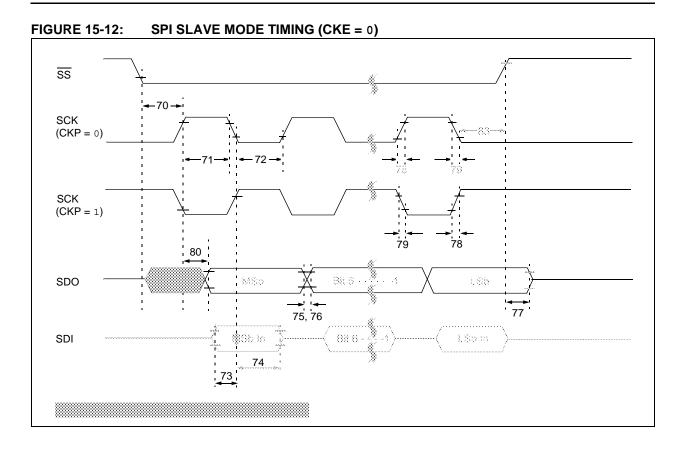
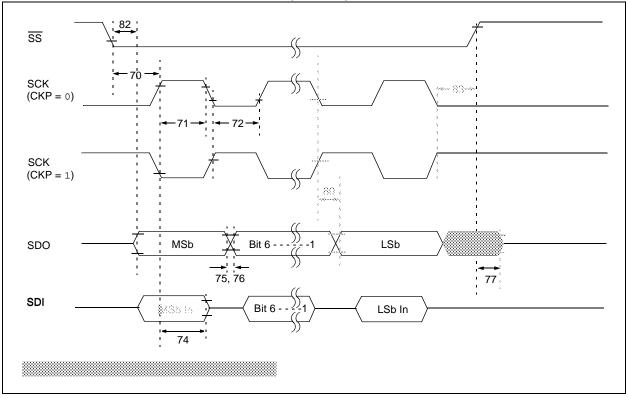
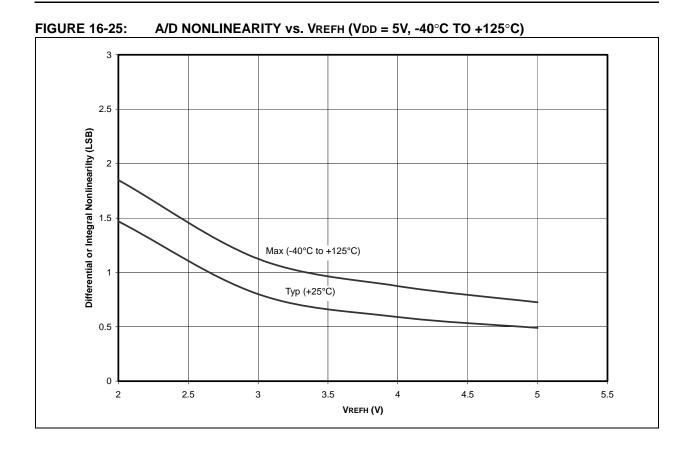
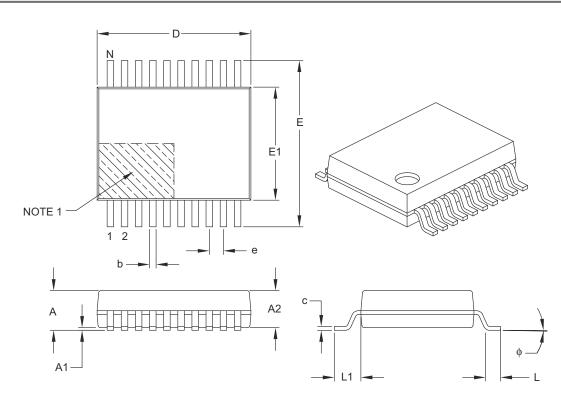



TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)


Param No.	Symbol		Characteristi	c	Min	Тур†	Max	Units	Conditions
50*	TCCL	CCP1 No Prescaler			0.5 Tcy + 20	—	—	ns	
		Input Low Time		PIC16F818/819	10	—	—	ns	
			With Prescaler	PIC16 LF 818/819	20	—	—	ns	
51*	ТссН	CCP1	No Prescaler		0.5 TCY + 20		_	ns	
		Input High		PIC16F818/819	10		_	ns	
		Time	With Prescaler	PIC16 LF 818/819	20		—	ns	
52*	TCCP	CCP1 Input Period		<u>3 Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)	
53*	TCCR	CCP1 Output R	ise Time	PIC16F818/819	—	10	25	ns	
				PIC16 LF 818/819	—	25	50	ns	
54*	TccF	CCP1 Output Fa	all Time	PIC16F818/819	—	10	25	ns	
				PIC16 LF 818/819	—	25	45	ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	С	0.09	_	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

Writing to Flash Program Memory	31
Code Protection	. 89, 100
Computed GOTO	23
Configuration Bits	
Crystal Oscillator and Ceramic Resonators	
Customer Change Notification Service	173
Customer Notification Service	173
Customer Support	173

D

Data EEPROM Memory	25
Associated Registers	
EEADR Register	
EEADRH Register	
EECON1 Register	
EECON2 Register	
EEDATA Register	
EEDATH Register	
Operation During Code-Protect	
Protection Against Spurious Writes	
Reading	
Write Interrupt Enable Flag (EEIF Bit)	
Writing	
Data Memory	
Special Function Registers	13
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Internal RC Accuracy	125
PIC16F818/819, PIC16LF818/819	126
Power-Down and Supply Current	
Supply Voltage	
Development Support	
Device Differences	165
Device Overview	
Direct Addressing	24

Е

EEADR Register25			
EEADRH Register25			
EECON1 Register25			
EECON2 Register			
EEDATA Register25			
EEDATH Register25			
Electrical Characteristics115			
Endurance1			
Errata3			
External Clock Input34			
External Interrupt Input (RB0/INT). See Interrupt Sources.			

F

	~~
Flash Program Memory	.25
Associated Registers	. 32
EEADR Register	.25
EEADRH Register	.25
EECON1 Register	.25
EECON2 Register	.25
EEDATA Register	.25
EEDATH Register	.25
Erasing	.28
Reading	.28
Writing	.30
FSR Register13, 14, 15,	23
G	
General Purpose Register File	.10

I

/O Ports	\$
² C	
Associated Registers79)
Master Mode Operation79)
Mode	
Mode Selection	
Multi-Master Mode Operation	
Slave Mode	
Addressing	
Reception	
SCL, SDA Pins	
Transmission	
D Locations	
n-Circuit Debugger	
n-Circuit Serial Programming	
n-Circuit Serial Programming (ICSP)	
NDF Register	
Indirect Addressing23, 24	
Instruction Format	
Instruction Format	
Descriptions	
Read-Modify-Write Operations	
Summary Table	
-	
ADDLW	
ADDWF	
ANDLW 105	
ANDWF 105	
BCF	
BSF 105	
BTFSC 106	
BTFSS 106	
CALL 106	
CLRF 106	
CLRW 106	
CLRWDT 106	
COMF 107	
DECF 107	7
DECFSZ 107	
GOTO 107	
INCF 107	,
INCFSZ 107	
IORLW 108	
IORWF 108	3
MOVF	3
MOVLW 108	3
MOVWF 108	3
NOP	3
RETFIE 109)
RETLW)
RETURN 109)
RLF)
RRF)
SLEEP 109)
SUBLW)
SUBWF 110)
SWAPF)
XORLW 110)
XORWF	
NT Interrupt (RB0/INT). See Interrupt Sources.	
NTCON Register	5
GIE Bit	
INTE Bit	
INTE Bit	
RBIF Bit	
	`

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
	cation (optional):	
Would	d you like a reply?YN	
Devic	e: PIC16F818/819	Literature Number: DS39598F
Ques	tions:	
1. V	/hat are the best features of this document?	
_		
2. H	ow does this document meet your hardware and s	oftware development needs?
_		
3. D	o you find the organization of this document easy	to follow? If not, why?
4. W	/hat additions to the document do you think would	enhance the structure and subject?
5. V	/hat deletions from the document could be made v	vithout affecting the overall usefulness?
_		
6. Is	there any incorrect or misleading information (whe	at and where)?
7. H	ow would you improve this document?	
_		
_		

PIC16F818/819 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>/xx xxx</u> 	Examples:
Device	Temperature Package Pattern Range	 a) PIC16LF818-I/P = Industrial temp., PDIP package, Extended VDD limits. b) PIC16F818-I/SO = Industrial temp., SOIC
Device	PIC16F818: Standard VDD range PIC16F818T: (Tape and Reel) PIC16LF818: Extended VDD range	package, normal VDD limits.
Temperature Range	$\begin{array}{rcl} - & & 0^{\circ} C \text{ to } +70^{\circ} C \\ I & = & -40^{\circ} C \text{ to } +85^{\circ} C \text{ (Industrial)} \\ E & = & -40^{\circ} C \text{ to } +125^{\circ} C \text{ (Extended)} \end{array}$	
Package	P = PDIP SO = SOIC SS = SSOP ML = QFN	Note 1: F = CMOS Flash LF = Low-Power CMOS Flash
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	2: T = in tape and reel – SOIC, SSOP packages only.