E·XFL

Lantiq - ADM5120PX-AB-T-2 Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application energies microcontrollars are angineered to

Details	
Product Status	Active
Applications	Network Processor
Core Processor	4Кс
Program Memory Type	-
Controller Series	-
RAM Size	16K x 8
Interface	Ethernet, UART, USB
Number of I/O	-
Voltage - Supply	1.8V, 3.3V
Operating Temperature	-
Mounting Type	Surface Mount
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	P-FQFP-208-10
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=adm5120px-ab-t-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CONFIDENTIAL

Main Processor

Bus Interface Auxillary Port Input

Returns the confirmation that the SIF was flushed.

BIU_AUXI	Offset	Reset Value
BIU Auxillary Port Input Register	0200 _H	0000 0000 _H

Field	Bits	Туре	Description
ACK	0	r	SIF Flush ACK
			Returns the acknlowdgement that the SIF was flushed.
			0 _B No action
			1 _B Flushed SIF was flushed.

Bus Interface Unit Auxillary Port Output

Used to configure the basic parameters of the BIU.

BIU_AUXO	Offset	Reset Value
BIU Auxillary Port Output Register	0208 _H	0000 0000 _H

Field	Bits	Туре	Description
max_read_ws	15:8	rw	Read WS define number of waitstates for read
Sus	4	rw	OCDS suspend should written with 0
Ndt	3	rw	delayed transaction should written with 1
Ewa	2	rw	early_wr_abotr_sup should written with 0
Era	1	rw	early_rd_abort_sup should written with 0
SFR	0	rw	SIF Flush request request flush operation from SIF module

4.3.2 FPI Bus Register Description

Absolute Register Address = Module Base Address + Offset Address

MultiPort Memory Controller (MPMC)

5 MultiPort Memory Controller (MPMC)

The MultiPort Memory Controller (MPMC) description covers:

- Feature list (Chapter 5.1)
- Functional description (Chapter 5.2)
- External Interface; described in the dedicated chapter of the different interfaces
- Registers (Chapter 5.3)

5.1 Feature List

The MPMC offers the following features:

- Dynamic memory interface support including SDRAM, JEDEC low-power SDRAM
- Asynchronous static memory device support including SRAM, ROM and NOR Flash with or without asynchronous page mode
- Read and write buffers to reduce latency and to improve performance
- 8-bit, 16-bit and 32-bit wide static memory support
- Static memory features include:
- Programmable wait states
 - Output enable, and write enable delays
 - Extended wait
 - Bus turnaround delay
 - Asynchronous page mode read
- Controller supports 2K, 4K and 8K row address synchronous memory parts. That is typical 512M, 256M, 128M and 16MB parts with 8, 16 or 32DQ bits per device.

5.2 Functional Description

The following describes the MPMC's functions

5.2.1 Static Memory Controller

Static memory descriptions:

5.2.1.1 Extended Wait Transfers

The static memory controller supports extremely long transfer times. In normal use the memory transfers are timed using the **MPMC Static Wait Rd 1** and **MPMC Static Wait Wr 1** registers. These registers enable transfers with up to 32 wait states. However, if an extremely slow static memory device has to be accessed you can enable the Extended Wait(EW) bit in register. When this bit is enabled the **MPMC Static Extended Wait** register is used to time both the read and write transfers. This register enables transfers to have up to 16368 wait states.

5.2.1.2 Wait State Generation

Each bank of the MPMC must be configured for external transfer wait states in read and write accesses. This is achieved by programming the appropriate fields of the bank control registers:

- MPMC Static Wait Wen 1
- MPMC Static Wait Oen 1
- MPMC Static Wait Rd 1
- MPMC Static Wait Wr 1
- MPMC Static Wait Page 1
- MPMC Static Wait Turn 1
- MPMC Static Extended Wait

MPMC Dynamic RP

Note: The delay is in MPMCCLK cycles.

MPMC_DRP MPMC Dynamic RP	Offset Reset Va 030 _H						
31 30 29 28 27 26 25 24 23 22 21 20 19 18 1	7 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	7					
Res	PCP						
-	rw	_					

Field	Bits	Туре	Description
Res	31:4	-	Reserved
			Read undefined. Must be written as zeros.
PCP	3:0	rw	Precharge Command Period0 _H 1 clock cycle
			^{…н} F _H 16 clock cycles (reset value on nPOR)

MPMC Dynamic RAS

Note: The delay is in MPMCCLK cycles.

MPMC_DRAS MPMC Dynamic RAS	Offset 034 _H	Reset Value F _H
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17	7 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
Res		APCP

rw

Field	Bits	Туре	Description
Res	31:4		Reserved
			Read undefined. Must be written as zeros.
APCP	3:0	rw	Active to Precharge Command Period 0 _H 1 clock cycle
			F _H 16 clock cycles (reset value on nPOR)

MPMC Dynamic SREX

Note: The delay is in MPMCCLK cycles.

MultiPort Memory Controller (MPMC)

Table 30 Address Mapping Table				oping Table
[14]	[12]	[11:9]	[8:7]	Description
0	1	010	01	128MB (8M X 16), 4 banks, row length=12, column length=9
0	1	011	00	256MB (32M X 8), 4 banks, row length=13, column length=10
0	1	011	01	256MB (16M X 16), 4 banks, row length=13, column length=9
0	1	100	00	512MB (64M X 8), 4 banks, row length=13, column length=11
0	1	100	01	512MB (32M X 16), 4 banks, row length=13, column length=10

32-Bit external bus High-Performance address mapping (Row, Bank, Column)

1	0	000	00	16MB (2M X 8), 2 banks, row length=11, column length=9
1	0	000	01	16MB (1M X 16), 2 banks, row length=11, column length=8
1	0	001	00	64MB (8M X 8), 4 banks, row length=12, column length=9
1	0	001	01	64MB (4M X 16), 4 banks, row length=12, column length=8
1	0	001	10	64MB (2M X 32), 4 banks, row length=11, column length=8
1	0	010	00	128MB (16M X 8),4 banks, row length=12, column length=10
1	0	010	01	128MB (8M X 16), 4 banks, row length=12, column length=9
1	0	010	10	128MB (4M X 32), 4 banks, row length=12, column length=8
1	0	011	00	256MB (32M X 8), 4 banks, row length=13, column length=10
1	0	011	01	256MB (16M X 16), 4 banks, row length13, column length=9
1	0	011	10	256MB (8M X 32), 4 banks, row length=13, column length=8
1	0	100	00	512MB (64M X8),4 banks, row length=13, column length=11
1	0	100	01	512MB (32M X 16),4 banks, row length=13, column length=10

32-Bit external bus Low-Performance SDRAM mapping (Bank, Row, Column)

1	0	100	01	512MB (32M X 16),4 banks, row length=13, column length=10
1	1	000	00	16MB (2M X 8), 2 banks, row length=11, column length=9
1	1	000	01	16MB (1M X 16), 2 banks, row length=11, column length=8
1	1	001	00	64MB (8M X 8), 4 banks, row length=12, column length=9
1	1	001	01	64MB (4M X 16), 4 banks, row length=12, column length=8
1	1	001	10	64MB (2M X 32), 4 banks, row length=11, column length=8
1	1	010	00	128MB (16M X 8),4 banks, row length=12, column length=10
1	1	010	01	128MB (8M X 16), 4 banks, row length=12, column length=9
1	1	010	10	128MB (4M X 32), 4 banks, row length=12, column length=8
1	1	011	00	256MB (32M X 8), 4 banks, row length=13, column length=10
1	1	011	01	256MB (16M X 16), 4 banks, row length13, column length=9
1	1	011	10	256MB (8M X 32), 4 banks, row length=13, column length=8
1	1	100	00	512MB (64M X8),4 banks, row length=13, column length=11
1	1	100	01	512MB (32M X 16),4 banks, row length=13, column length=10

MultiPort Memory Controller (MPMC)

MPMC Dynamic Ras Cas 1

Notes

- 1. The RAS to CAS latency (RAS) and CAS latency (CAS) are both defined in MPMCCLK cycles.
- 2. The offset 104_H and 124_H is for SDRAM bank0 and bank1 respectively.

MPMC_DRC1	Offset	Reset Value
MPMC Dynamic Ras Cas 1	124 _H	303 _H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	987	65432	1 0
Res	CASL	Res	RASL
-	rw	-	rw

Field	Bits	Туре	Description
Res	31:10	-	Reserved
CASL	9:8	rw	CAS Latency 00_B Reserved 01_B One clock cycle(a) 10_B Two clock cycles 11_B Three clock cycles(reset value on nPOR).
Res	7:2	-	Reserved
RASL	1:0	rw	RAS Latency Active to read or write delay 00_B Reserved 01_B One clock cycle(a) 10_B Two clock cycles 11_B Three clock cycles (reset value on nPOR).

Reserved 2

Ethernet Switch Controller

Res_2 Reserved 2	ed 2 Offset								
31 30 29 28 27 26 25 24 23	22 21 20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0							
	Res_2								

Field	Bits	Туре	Description
Res_2	31:0		Reserved
			Not Applicable.

Reserved 3

Res_3 Reserved 3	Offset 3С _н	Reset Value 0 _H
31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0
	Res_3	

Field	Bits	Туре	Description
Res_3	31:0		Reserved Not Applicable.

		_	cmo h Cl			Offset 4C _H										Reset Value 0 _H																
3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res SA SS											SS																					
		1		1		1	1			1					1		1				1			L			1		1		rw	rw

Field	Bits	Туре	Description
Res	31:2		Reserved
			Not Applicable.
SA	1	rw	Search Again Search for the next available address, self_clear (program again after data_rdy).
SS	0	rw	Search Start Searching from the start of address table, self_clear.

ADDR St1

ADDR_st1 Address St1	Offset 54 _H	Reset Value 0 _H							
31 30 29 28 27 26 25 24 23 2	2 21 20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0							
MACA1									
	ro								

Field	Bits	Туре	Description
MACA1	31:0	ro	MAC Address 47:16

MAC Write Address 0

MAC_wt0	Offset	Reset Value
MAC Write Address 0	58 _H	0 _H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MWA WAF WPMN WV WVN B D WC

IVIVVA	WAF	VVPIVIN	E	VV V N	BDWC
		1		1 1	
rw	rw	rw	rw	rw	rw ro rw

Field	Bits	Туре	Description
MWA	31:16	rw	MAC Write Address 15:0
WAF	15:13	rw	Write Age Field
			000 _B Empty
			001 to 110 _B Existed MAC
			111 _B Static address
WPMN	12:7	rw	Write Port Map Number
WVE	6	rw	Write VLAN Enable
WVN	5:3	rw	Write VLAN Number
WFB	2	rw	Write Filter Bit
MWD	1	ro	MAC Write Done
			1 _B MAC address write complete, read_clear
MAWC	0	rw	MAC Address Write Command
			1 _B The MAC write data is ready and write toMAC table, self_clear

MAC Write Address 1

Ethernet Switch Controller

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TT SN		Res			P4	4RE	BC	Re s	P	4TB	с																				
		1	I	1	1	1	I	I	1	I		I	I	I	1	1		1	1	I	1 1			I		1	I				
rw																										rw				rw	

Field	Bits	Туре	Description
TTSM	31	rw	The Transmit Traffic Shaper Mode0BBest effort mode (default)1BAverage Inter Packet Gap (IPG) in the 1 second period
Res	30:7		Reserved Not Applicable.
P4RBC	6:4	rw	Port 4 Receive Bandwidth Control Please refer to P3RBC for bandwidth define.
Res	3		Reserved Not Applicable.
P4TBC	2:0	rw	Port 4 Transmit Bandwidth Control Please refer to P3RBC for bandwidth define.

PHY Control 0

PHY_cntl0 PHY Control 0		Offset 68 _H			Reset Value 0 _H
31 30 29 28 27 26 25	24 23 22 21 20 19 18 17	16 15 14	13 12 11 10 9	8 7 6 5	4 3 2 1 0
	WTD	s RC	WC PHYR	Res	PHYA
	rw	rw	rw rw		rw

Field	Bits	Туре	Description	
WTD	31:16	rw	The Data be Written into the PHY	
Res	15		Reserved	
			Not Applicable.	
RC	14	rw	Read Command, self_clear	
WC	13		Write Command, self_clear	
PHYR	12:8		PHY Register Address	
Res	7:5		Reserved	
			Not Applicable.	
PHYA	4:0	rw	PHY Address	

31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4	3 2 1 0
Res	FCR	GPT	APTL	APTH
	rw	rw	rw	rw

Field	Bits	Туре	Description
Res	31:25		Reserved
			Not Applicable.
FCR	24:16	rw	Switch Flow Control Release Threshold, 268 Free Blocks
GPT	15:8	rw	Giga Port Buffer Threshold, 32 Occupied Blocks
APTL	7:4	rw	Per Port Guaranteed High Priority pkt, 3 Blocks
APTH	3:0		Per Port Guaranteed Normal Priority pkt, 3 Blocks

ADM5120P/PX

Ethernet Switch Controller

Field	Bits	Туре	Description
RMAE	30	rw	Recommend MCC Average Enable Per port PHY auto MDIX enable. 0 _B Default value
AMDIX	29:25		Auto MDIX enable Note: [25] = port0, [26] = port 1 etc
			$0_{\rm B}$ disable auto MDIX. $1_{\rm B}$ enable auto MDIX. (default)
PHYR	24:20		PHY Reset Note: [20] = port0, [21] = port 1 etc
			0 _B Reset(default) 1 _B Normal
RFCV	19:15		Recommended FC Value (reg4, bit10) Note: [15] = port0, [16] = port 1 etc
			0 _B No forced 1 _B FC_rec ON
DC	14:10		Duplex Control Note: [10] = port0, [11] = port 1 etc
			0 _B Half 1 _B Full
SC	9:5		Speed Control
			Note: [5] = port0, [6] = port 1 etc
			0 _B 10M 1 _B 100M
ANE	4:0		Auto Negotiation Enable Note: [0] = port0, [1] = port 1 etc
			$1_{\rm B}$ Enable

PHY Control 3

PHY_cntl3 PHY Control 3		Offset 80 _H	:							Re			lue B _H
31 30 29 28 27 26 25 24 23 22 Res	21 20 19 18 17 FXE	16 15 DF CB E* DE	RP IC	RF GL	RN T	RR JE	RA PD	II N*	нс	PF	1	RE	

Field	Bits	Туре	Description
Res	31:22		Reserved
			Not Applicable.

Field	Bits	Туре	Description
Res	31:24		Reserved Not Applicable.
OC	23:16	rw	Offset Count from SA 7:0 This offset defines that the data will be extracted from the packets. The data will be compared with the Custom Field and Mask. The offset is counted from SA0 field of packet. If VLAN type found, it will add 4-byte automatically.
MCF	15:8		Mask of Custom Field The mask data for the Custom Field.
CFD	7:0		Custom Field Define This data defines the Custom Field that will be treated as higher priority or filtered.

Port Controller

Port_cnt	Offset F	Reset Value
Port Controller	AC _H	0 _H
31 30 29 28 27 26 25 24 23 22 21 20 19 18 1	7 16 15 14 13 12 11 10 9 8 7 6 5 4 3	3 2 1 0
	SI	
	ro	

Field	Bits	Туре	Description
SI	31:0	ro	Sel Info
			If port_sel=0, [24:16] port0 high packet count [8:0] port0 low packet count
			If port_sel=1, [24:16] port1 high packet count [8:0] port1 low packet count
			If port_sel=2, [24:16] port2 high packet count [8:0] port2 low packet count
			If port_sel=3, [24:16] port3 high packet count [8:0] port3 low packet count
			If port_sel=4, [24:16] port4 high packet count [8:0] port4 low packet count
			If port_sel=5, [24:16] port5 high packet count [8:0] port5 low packet count
			If port_sel=6, [24:16] port6 high packet count [8:0] port6 low packet count
			If port_sel=7, [24:16] port7 high packet count [8:0] port7 low packet count
			If port_sel=9, [8:0] flow control status
			If port_sel=10, [24:16] testing [8:0] ever flow control port
			If port_sel=11, [24:16] no_pkt status [7:0] no_pkt_status
			If port_sel=12, [24:16] receive bandwidth control port, [8:0] transmit
			bandwidth control port

port4_LED

Note: Port4 LED[2:0] pin (141,142,143) configuration register.

port4_LED Port 4 LED				Offset 110 _H	Reset Value A59 _H
31 30 29	<u>28 27</u>	26 25	<u>24 23 22 2</u> Res	1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 IN IN IN A	LED1 P4LED0
	1	1 1 1			rw rw
Field		Rite	Type	Description	

Field	Bits	Туре	Description
Res	31:15		Reserved
			Not Applicable.
IN_P4LED2	14	ro	Input in Port 4 LED2
			Input value at pin Port 4 LED2 when it is configured to GPIO_in mode
IN_P4LED1	13	ro	Input in Port 4 LED1
			Input value at pin Port 4 LED1 when it is configured to GPIO_in mode
IN_P4LED0	12	ro	Input in Port 4 LED0
			Input value at pin Port 4 LED0 when it is configured to GPIO_in mode
P4LED2	11:8	rw	Port 4 LED2 State
			Refer to the definition in P0LED2 except the default value.
			1010 _B Default value, duplex/col
P4LED1	7:4		Port 4 LED1 State
			Refer to the definition in P0LED2 except the default value.
			0101 _B Default value, speed
P4LED0	3:0		Port 4 LED0 State
			Refer to the definition in P0LED2 except the default value.
			1001 _B Default value, link/activity

UART

UART Receive Status Register/Error Clear

UARTRRS_ECR UART Receive Status Register/Error Clear					fset 4 _H			Reset Value 0 _H
ſ	7	6	5	4	3	2	1	0
	RSR		Res	1	OE	BE	PE	FE
	W		r		r	r	r	r

Field	Bits	Туре	Description
RSR	7	w	RSR A write to this register clears the framing, parity, break and overrun errors. The data value is not important.
Res	6:4	r	Reserved Not applicable.
OE	3		Overrun Error This bit is set to 1 if data is received and the FIFO is already full.
BE	2		Break Error This bit is set to 1 if a break condition was detected, indicating that the received data input was held LOW for longer than a full-word transmission time.
PE	1		Parity Error When this bit is set to 1, it indicates that the parity of received data character does pot match the parity selected in UARTLCR_H (bit 2)
FE	0		Framing Error When this bit is set to 1, it indicates that the received character did not have a valid stop bit.

UART Line Control Register, High Byte

UARTLCR_H UART Line C		er, High Byte		fset 8 _H			Reset Value 0 _H
7	6	5	4	3	2	1	0
Res	WLEN		FEN	STP2	EPS	PEN	BRK
	rw		rw	rw	rw	rw	rw

Field	Bits	Туре	Description
Res	7		Reserved
			Not applicable

USB 1.1 Host Controller

Field	Bits	Туре	Description		
CC	30:27		Complete Code The transfer status of each USB transfer.		
			$0000_{\rm B}$ No Error		
			$0001_{\rm B}$ CRC Check Error		
			0010 _B Bit-Stuffing Error		
			0011 _B Data Toggle Error		
			0100 _B STALL		
			0101 _B Device No Response (Timeout)		
			0110 _B PID Error (Invalid PID)		
			0111 _B Unexpected PID		
			1000 _B Data Overrun (Packet Overrun)		
			1001 _B Data Underrun (Packet Underrrun)		
			1100 _B Buffer Overrun		
			1101 _B Buffer Underrrun		
EC	26:25		Error Count		
			Error count the error that happens at each USB transfer.		
DTB 24:23			Data Toggle Bit		
			This field is used for data PID value. When 1, use but 23 as the toggle bit.		
			24 _B When 0, use togglecarry bit in ED as the PID		
			23 _B Toggle value		
DIR	22:21		Direction		
			These bits indicate this packet's direction.		
			00 _B Setup packet		
			01 _B Out packet		
			10 _B IN packet		
			11 _B Res Reserved		
Res	20:14		Reserved		
ISI	13:8		Interrrupt Service Interval		
			This field indicates the frame interval where the interrupt transaction		
			occurs. The frame interval = bit [13:8] + 1		
Res	7:6		Reserved		
FN	5:0		Frame Number		
			This field indicates the frame number that receive/transmit this data, this		
			field is only valid when configured in Isochronous and interrupt		
			transaction. For Isochronous transaction, it indicates the frame number in		
			which the isochronous transaction should occur. For interrupt transaction,		
			software uses this field to indicate to hardware for the "starting frame		
			number" of the interrupt transaction, hardware will update this field to the		
			"next frame number" after the current transaction is done.		

Data Buffer Pointer

Data_Buf_P	Offset	Reset Value
Data Buffer Pointer	н	0 _H

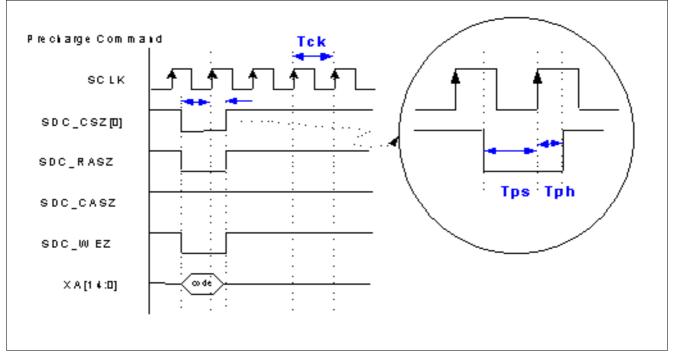
USB 1.1 Host Controller

Interrupt Status

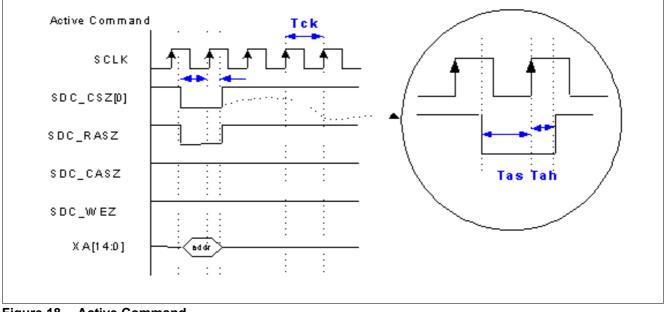
INT_S Interrupt Sta	atus	Offset 04 _H			
31 30 29 28	8 27 26 25 Res	24 23 22 2 Res	1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 TD FN so IN BA Re Re RE SO S* BI s s SI FI		
rorw1 c w1c			rw1c rw1cw1cw1cw1cw1cw1cw1cw1		
Field	Bits	Туре	Description		
INTA	31	ro	Interrupt Active When this bit is set, it indicates that at least one unmasked status is set.	d interrupt	
FATI	30	rw1c	Fatal Interrupt, Device ModeReserved.Host mode:1BFatal system bus error occurs		
SWI	29		Software Interrupt, Both Modes 1 _B Software Interrupt. This bit is set when software set one to SW_INT_REQ 00 _H , and is cleared after software writes one to this bit.		
Res	28:26		Reserved Not Applicable		
Res	25:21		Reserved Not Applicable		
TDC	20	rw1c	A TD is Completed		
Res	19:12		Reserved Not Applicable		
FNO	11	rw1c	Frame Number Overflow This bit is set when the MSB of the frame number changes	S.	
SO	10		Scheduling Overrun This bit is set when USB schedules for current frame overruns.		
INSMI	9		Root Hub Status Change11BDetected device insertion or remove. This bit will only be set for the device or hub, which is attached to host directly.		
BABI	8		Babble Detected, Host Mode11Detected babble		
Res	7		Reserved Not Applicable		
Res	6		Reserved		

Not Applicable

USB 1.1 Host Controller


Res_7 Reserved 7	Offset 14 _H	Reset Value 0 _H
31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15 14 13 12 11 Res_7	10 9 8 7 6 5 4 3 2 1 0

Field	Bits	Туре	Description
Res_7	31:0		Reserved Not Applicable
			Not Applicable



ADM5120P/PX

Electrical Characteristics

Terminology

VLAN **W** WAN Virtual LAN

Wide Area Networks