

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke02z64vld4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Timers
 - One 6-channel FlexTimer/PWM (FTM)
 - Two 2-channel FlexTimer/PWM (FTM)
 - One 2-channel periodic interrupt timer (PIT)
 - One real-time clock (RTC)
- Communication interfaces
 - Two SPI modules (SPI)
 - Up to three UART modules (UART)
 - One I2C module (I2C)
- Package options
 - 64-pin QFP/LQFP
 - 44-pin LQFP
 - 32-pin LQFP
 - 32-pin QFN

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE02Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE02
A	Key attribute	• Z = M0+ core
FFF	Program flash memory size	 16 = 16 KB 32 = 32 KB 64 = 64 KB
R	Silicon revision	 (Blank) = Main A = Revision after main

Table continues on the next page ...

Parameter classification

Field	Description	Values
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LC = 32 LQFP (7 mm x 7 mm) FM = 32 QFN (5 mm x 5 mm) LD = 44 LQFP (10 mm x 10 mm) QH = 64 QFP (14 mm x 14 mm) LH = 64 LQFP (10 mm x 10 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 40 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MKE02Z64VQH4

3 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 800 mA.
 - I/O pins pass +60/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

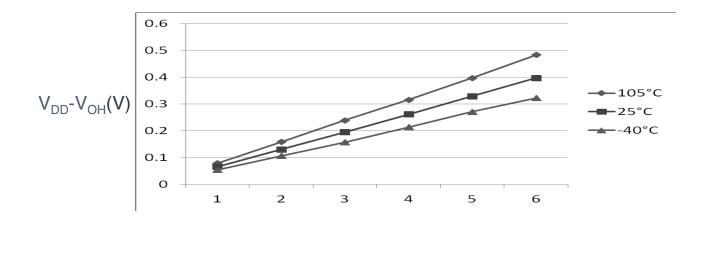

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-a	rm voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold-hig	Falling low-voltage detect threshold—high range (LVDV = $1)^2$		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100		mV
V _{LVDL}	С	threshold-lov	Falling low-voltage detect threshold—low range (LVDV = 0)		2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold— low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		v-voltage detect eresis	—	40	_	mV
V _{HYSWL}	С		low-voltage hysteresis	—	80	_	mV
V _{BG}	Р	Buffered ban	ndgap output ³	1.14	1.16	1.18	V

Table 4. LVD and POR specification

1. Maximum is highest voltage that POR is guaranteed.

2. Rising thresholds are falling threshold + hysteresis.

3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 25 °C

I_{OH}(mA)

Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

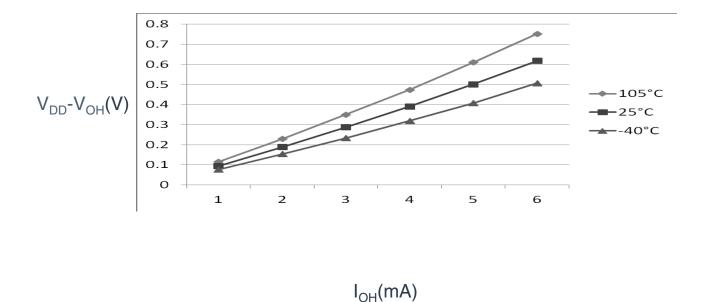
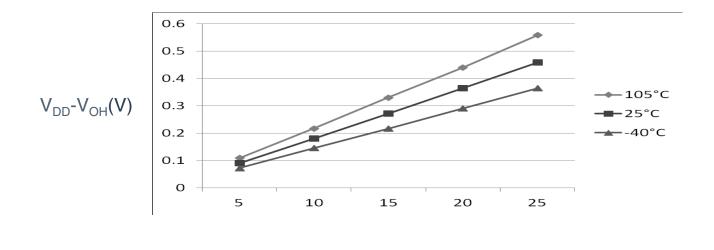
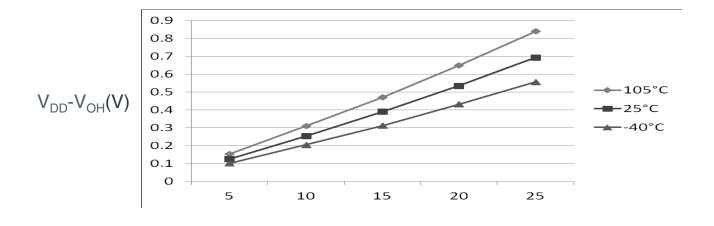
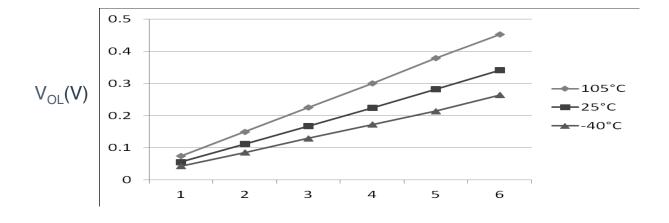




Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)



 $I_{OH}(mA)$ Figure 3. Typical V_{DD}-V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

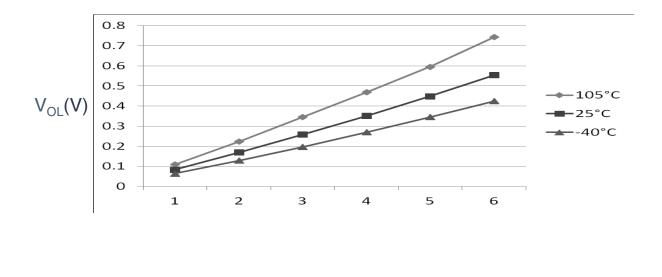

I_{OH}(mA)

Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

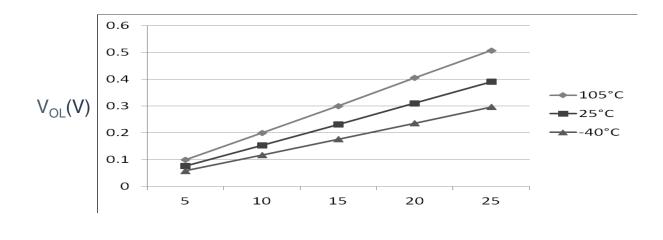

I_{OL}(mA)

Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 5 V)

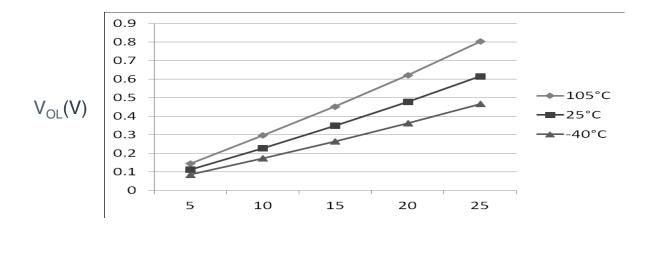

I_{OL}(mA)

Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

I_{OL}(mA)

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 5 V)

 $I_{OL}(mA) \label{eq:IOL}$ Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 3 V)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

C	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Run supply current FEI	RI _{DD}	40/20 MHz	5	7.8	_	mA	–40 to 105 °C
С	mode, all modules clocks enabled; run from flash		20/20 MHz		6.7	_		
С	enabled, full norm hash		10/10 MHz		4.5	_		
			1/1 MHz		1.5	_		
С			40/20 MHz	3	7.7	_		
С			20/20 MHz		6.6	_		
С			10/10 MHz		4.4			
			1/1 MHz		1.45			
С	Run supply current FEI	RI _{DD}	40/20 MHz	5	6.3		mA	–40 to 105 °C
С	mode, all modules clocks disabled; run from flash		20/20 MHz		5.3			
С			10/10 MHz		3.7			
			1/1 MHz		1.5			
С			40/20 MHz	3	6.2	—		
С			20/20 MHz		5.3			
C			10/10 MHz		3.7	—		
			1/1 MHz		1.4	—		
С	Run supply current FBE	RI _{DD}	40/20 MHz	5	10.3		mA	–40 to 105 °C
Р	mode, all modules clocks enabled; run from RAM		20/20 MHz		9	14.8		
С	,		10/10 MHz		5.2	—		
			1/1 MHz		1.45			
С			40/20 MHz	3	10.2	—		
Р			20/20 MHz		8.8	11.8		
С			10/10 MHz		5.1			
			1/1 MHz		1.4			
С	Run supply current FBE	RI _{DD}	40/20 MHz	5	8.9	—	mA	–40 to 105 °C
Р	mode, all modules clocks disabled; run from RAM		20/20 MHz		8	12.3		
С			10/10 MHz		4.4	—		
			1/1 MHz		1.35	—		
С			40/20 MHz	3	8.8			
Р			20/20 MHz		7.8	9.2		
С			10/10 MHz		4.2			
			1/1 MHz		1.3			

Table 5. Supply current characteristics

Table continues on the next page ...

Switching specifications

- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 64-pin QFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	14	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	15	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	3	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	4	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	М	—	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \text{ °C}$, $f_{OSC} = 10 \text{ MHz}$ (crystal), $f_{BUS} = 20 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock	f _{Sys}	DC	—	40	MHz	
2	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	—	20	MHz
3	Р	Internal low power oscillato	f _{LPO}	0.67	1.0	1.25	KHz	
4	D	External reset pulse width ²		t _{extrst}	1.5 ×	—	—	ns
					t _{cyc}			
5	D	Reset low drive		t _{rstdrv}	$34 imes t_{cyc}$		—	ns
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100			ns
	D		Synchronous path ³	t _{IHIL}	1.5 × t _{cyc}		_	ns

Table 7. Control timing

Table continues on the next page...

5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Board type	Symbo I	Description	64 LQFP	64 QFP	44 LQFP	32 LQFP	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	71	61	75	86	97	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	47	53	57	33	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	59	50	62	72	81	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	46	41	47	51	27	°C/W	1, 3
—	R _{θJB}	Thermal resistance, junction to board	35	32	34	33	12	°C/W	4
—	R _{θJC}	Thermal resistance, junction to case	20	23	20	24	1.3	°C/W	5
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5	8	5	6	3	°C/W	6

Table 10. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in $^{\circ}C$ can be obtained from:

 $T_J = T_A + (P_D \times \theta_{JA})$

Peripheral operating requirements and behaviors

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = \mathrm{K} \div (\mathrm{T_J} + 273 \ ^{\circ}\mathrm{C})$

Solving the equations above for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit	
	Operating voltage	2.7	5.5	V	
J1	SWD_CLK frequency of operation				
	Serial wire debug	0	20	MHz	
J2	SWD_CLK cycle period	1/J1		ns	
J3	SWD_CLK clock pulse width				
	Serial wire debug	20	_	ns	
J4	SWD_CLK rise and fall times		3	ns	
J9	SWD_DIO input data setup time to SWD_CLK rise	10		ns	
J10	SWD_DIO input data hold time after SWD_CLK rise	3		ns	

Table continues on the next page...

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)(continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Мах	Unit
14	С	FLL acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷	C _{Jitter}		0.02	0.2	%f _{dco}

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

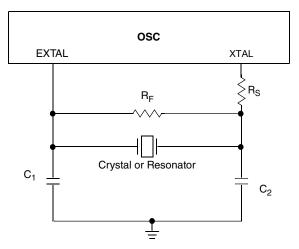


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V

Table 13. Flash and EEPROM characteristics

Table continues on the next page...

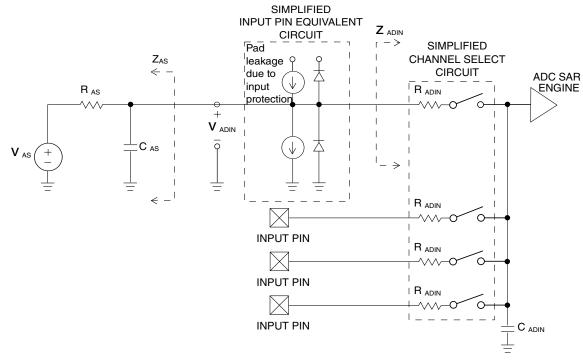


Figure 16. ADC input impedance equivalency diagram

Table 15. 12-bit ADC characteristics	$(V_{REFH} = V_{DDA})$, V _{REFL} = V _{SSA})
--------------------------------------	------------------------	--

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Мах	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

Table continues on the next page ...

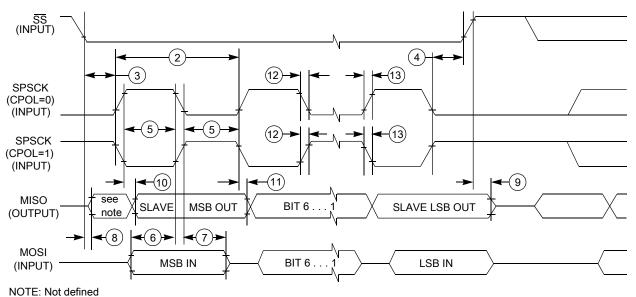


Figure 20. SPI slave mode timing (CPHA=1)

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
32-pin QFN	98ASA00473D
44-pin LQFP	98ASS23225W
64-pin QFP	98ASB42844B
64-pin LQFP	98ASS23234W

8 Pinout

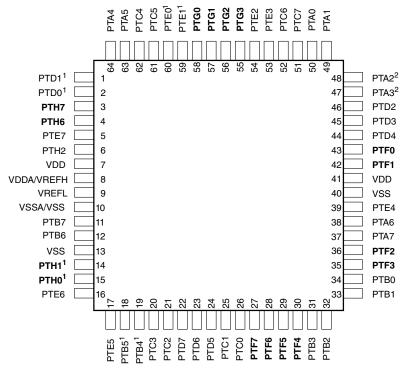
8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Pin Number			Lowest Priority <> Highest					
64-QFP/ LQFP	44-LQFP	32- LQFP/QFN	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
1	1	1	PTD1 ¹	KBI1_P1	FTM2_CH3	SPI1_MOSI	—	
2	2	2	PTD0 ¹	KBI1_P0	FTM2_CH2	SPI1_SCK	—	
3			PTH7	—	—	—	—	
4	_		PTH6	—	_	—	_	
5	3	—	PTE7	—	FTM2_CLK	—	FTM1_CH1	
6	4	_	PTH2	—	BUSOUT	—	FTM1_CH0	
7	5	3	—	—	—	—	VDD	
8	6	4	—	—	—	VDDA	VREFH ²	
9	7	5	—	—	—	—	VREFL	
10	8	6	—	—	—	VSSA	VSS ³	
11	9	7	PTB7	—	I2C0_SCL	—	EXTAL	
12	10	8	PTB6	—	I2C0_SDA	—	XTAL	
13	11	_	—	—	—	—	VSS	
14	—	—	PTH1 ¹	_	FTM2_CH1	—	—	
15	—	—	PTH0 ¹	_	FTM2_CH0	—	—	
16	_	—	PTE6	_	—	—	—	
17	—	—	PTE5	_	—	—	—	
18	12	9	PTB5 ¹	FTM2_CH5	SPI0_PCS0	ACMP1_OUT	—	
19	13	10	PTB4 ¹	FTM2_CH4	SPI0_MISO	NMI	ACMP1_IN2	
20	14	11	PTC3	FTM2_CH3	—	—	ADC0_SE11	
21	15	12	PTC2	FTM2_CH2	—	—	ADC0_SE10	
22	16		PTD7	KBI1_P7	UART2_TX	—	—	
23	17	—	PTD6	KBI1_P6	UART2_RX	—	—	
24	18		PTD5	KBI1_P5	_	—	—	
25	19	13	PTC1	-	FTM2_CH1	—	ADC0_SE9	
26	20	14	PTC0	—	FTM2_CH0	—	ADC0_SE8	
27	_	—	PTF7	—	—	—	ADC0_SE15	

Table 19. Pin availability by package pin-count

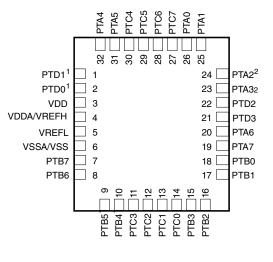
Table continues on the next page...


Pinout

- 2. VREFH and VDDA are internally connected.
- 3. VSSA and VSS are internally connected.
- 4. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. Table 19 illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.


8.2 Device pin assignment

Pins in **bold** are not available on less pin-count packages. 1. High source/sink current pins

2. True open drain pins

1. High source/sink current pins

2. True open drain pins

Figure 24. 32-pin QFN package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
2	3/2014	Initial public release.
3	10/2014	 Added new package of 32-pin QFN information Updated pin-out Updated key features of UART, KBI and ADC in the front page Added a note to the Max. in Supply current characteristics Updated footnote f_{OSC} = 10 MHz (crystal) in EMC radiated emissions operating behaviors Added a new section of Thermal operating requirements Updated NVM specifications Added reference potential in ADC characteristics Updated to "All timing assumes high-drive strength is enabled for SPI output pins." in SPI switching specifications
4	07/2016	• Updated the Typical value of E_{TUE} in 12-bit mode and added a note to the 12-bit mode of E_{TUE} and INL in the ADC characteristics.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE02P64M40SF0 Revision 4, 07/2016

