

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	57
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke02z64vlh4

• Timers

- One 6-channel FlexTimer/PWM (FTM)
- Two 2-channel FlexTimer/PWM (FTM)
- One 2-channel periodic interrupt timer (PIT)
- One real-time clock (RTC)

• Communication interfaces

- Two SPI modules (SPI)
- Up to three UART modules (UART)
- One I2C module (I2C)

· Package options

- 64-pin QFP/LQFP
- 44-pin LQFP
- 32-pin LQFP
- 32-pin QFN

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE02Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE02
А	Key attribute	• Z = M0+ core
FFF	Program flash memory size	 16 = 16 KB 32 = 32 KB 64 = 64 KB
R	Silicon revision	(Blank) = Main A = Revision after main

Table continues on the next page...

Field	Description	Values
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LC = 32 LQFP (7 mm x 7 mm) FM = 32 QFN (5 mm x 5 mm) LD = 44 LQFP (10 mm x 10 mm) QH = 64 QFP (14 mm x 14 mm) LH = 64 LQFP (10 mm x 10 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 40 MHz
N	Packaging type	R = Tape and reel(Blank) = Trays

2.4 Example

This is an example part number:

MKE02Z64VQH4

3 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

KE02 Sub-Family Data Sheet, Rev. 4, 07/2016

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol Description Min. Unit Max. ٧ V_{DD} Digital supply voltage 6.0 -0.3120 I_{DD} Maximum current into V_{DD} mΑ $V_{DD} + 0.3^{1}$ ٧ V_{IN} Input voltage except true open drain pins -0.3-0.3Input voltage of true open drain pins -25 25 I_D Instantaneous maximum current single pin limit (applies to all mΑ port pins) V_{DDA} Analog supply voltage $V_{DD} - 0.3$ $V_{DD} + 0.3$ V

Table 2. Voltage and current operating ratings

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 3. DC characteristics

	Symbol	С	Descriptions	Min	Typical ¹	Max	Unit	
Ī	_	_	Operating voltage	_	2.7	_	5.5	V

Table continues on the next page...

KE02 Sub-Family Data Sheet, Rev. 4, 07/2016

^{1.} Maximum rating of V_{DD} also applies to V_{IN}.

Nonswitching electrical specifications

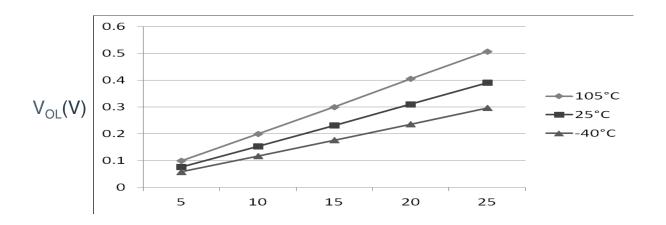
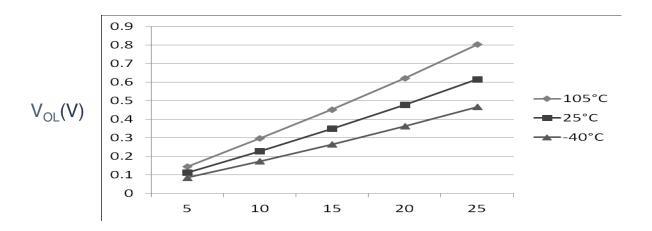

- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 4. LVD and POR specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ar	m voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold—hig	roltage detect ph range (LVDV 1) ²	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	Iligii railige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold—lov	voltage detect w range (LVDV 0)	2.56	2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold— low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	С		Low range low-voltage warning hysteresis		80	_	mV
V _{BG}	Р	Buffered ban	dgap output 3	1.14	1.16	1.18	V


- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

13

 $I_{OL}(mA)$

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$

Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 5. Supply current characteristics

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Run supply current FEI	RI _{DD}	40/20 MHz	5	7.8	_	mA	–40 to 105 °C
С	mode, all modules clocks enabled; run from flash		20/20 MHz		6.7	_		
С	enabled, full from flash		10/10 MHz		4.5	_		
			1/1 MHz		1.5	_		
С			40/20 MHz	3	7.7	_		
С			20/20 MHz		6.6	_		
С			10/10 MHz		4.4	_		
			1/1 MHz		1.45	_		
С	Run supply current FEI	RI _{DD}	40/20 MHz	5	6.3	_	mA	–40 to 105 °C
С	mode, all modules clocks disabled; run from flash		20/20 MHz		5.3	_		
С	albabioa, rair iroin naoir		10/10 MHz		3.7	_		
			1/1 MHz		1.5	_		
С			40/20 MHz	3	6.2	_		
С			20/20 MHz		5.3	_		
С			10/10 MHz		3.7	_		
			1/1 MHz		1.4	_		
С	Run supply current FBE	RI_DD	40/20 MHz	5	10.3	_	mA	–40 to 105 °C
Р	mode, all modules clocks enabled; run from RAM		20/20 MHz		9	14.8		
С			10/10 MHz		5.2	_		
			1/1 MHz		1.45	_		
С			40/20 MHz	3	10.2	_		
Р			20/20 MHz		8.8	11.8		
С			10/10 MHz		5.1	_		
			1/1 MHz		1.4	_		
С	Run supply current FBE	RI_DD	40/20 MHz	5	8.9	_	mA	–40 to 105 °C
Р	mode, all modules clocks disabled; run from RAM		20/20 MHz		8	12.3		
С			10/10 MHz		4.4	_		
			1/1 MHz		1.35	_		
С			40/20 MHz	3	8.8	_		
Р			20/20 MHz		7.8	9.2		
С			10/10 MHz		4.2	_		
			1/1 MHz		1.3	_		

Table continues on the next page...

Table 5.	Supply current	t characteristics	(continued)
----------	----------------	-------------------	-------------

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	40/20 MHz	5	6.4	_	mA	–40 to 105 °C
Р	mode, all modules clocks enabled		20/20 MHz		5.5	_		
С	Onabioa		20/10 MHz		3.5	_		
			1/1 MHz		1.4	_		
С			40/20 MHz	3	6.3	_		
С			20/20 MHz		5.4	_		
			10/10 MHz		3.4	_		
			1/1 MHz		1.4			
Р	Stop mode supply current	SI _{DD}	_	5	2	85	μΑ	–40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³		_	3	1.9	80		–40 to 105 °C
С	ADC adder to Stop	_	_	5	86 (64-, 44-	_	μΑ	–40 to 105 °C
	ADLPC = 1				pin packages)			
	ADLSMP = 1				42 (32-pin			
	ADCO = 1				package)			
С	MODE = 10B			3	82 (64-, 44-	_		
	ADICLK = 11B				pin packages)			
					41 (32-pin package)			
С	ACMP adder to Stop	_	_	5	12	_	μΑ	–40 to 105 °C
С			_	3	12			
С	LVD adder to stop ⁴	_	_	5	128		μA	–40 to 105 °C
С				3	124	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 105 °C.
- 3. RTC adder causes I_{DD} to increase typically by less than 1 µA; RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers

KE02 Sub-Family Data Sheet, Rev. 4, 07/2016

Table 8. FTM input timing (continued)

С	Function	Symbol	Min	Max	Unit
D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

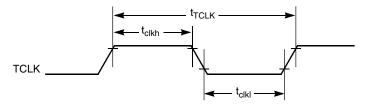


Figure 11. Timer external clock

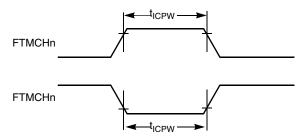


Figure 12. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal operating requirements

Table 9. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _J	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} x$ chip power dissipation

Peripheral operating requirements and behaviors

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_I + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and P_D and P_D are obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	20	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns

Table continues on the next page...

Peripheral operating requirements and behaviors

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	С	haracteristic	Symbol	Min	Typical ¹	Max	Unit
2	D	Lo	oad capacitors	C1, C2		See Note ²	-	
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F		_	_	ΜΩ
			Low Frequency, High-Gain Mode		-	10	_	ΜΩ
			High Frequency, Low- Power Mode		1	1	_	ΜΩ
			High Frequency, High-Gain Mode			1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R_S	_	0	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time low range = 32.768 kHz	Low range, high gain			800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain		-	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	Р	Internal reference	e clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Р	Internal reference clock frequency, factory trimmed	nternal T = 25 °C, V _{DD} = 5 V ence clock quency,		-	31.25	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	32	_	40	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	Δf_{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	Δf_{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from 0 °C to 105°C	∆f _{int_t}	-0.5	_	0.5	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	Δf_{dco_ft}	-1.5	_	1	%
	DCO output using factory trim value		Over temperature range from 0 °C to 105°C	Δf_{dco_ft}	-1	_	1	

Table continues on the next page...

23

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
14	С	FLL acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}.
 Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

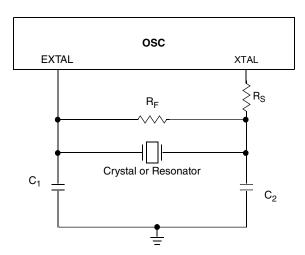


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 13. Flash and EEPROM characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V

Table continues on the next page...

Peripheral operating requirements and behaviors

Table 13. Flash and EEPROM characteristics (continued)

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to $T_H = -40$ °C to 105 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

Table 15. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit	
	Low power (ADLPC = 1)			1.25	2	3.3		
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles	
time)	Long sample (ADLSMP = 1)			_	40	_		
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles	
	Long sample (ADLSMP = 1)			_	23.5	_		
Total unadjusted	12-bit mode ³	Т	E _{TUE}	_	±3.6	_	LSB ⁴	
Error ²	10-bit mode	Р		_	±1.5	±2.0		
	8-bit mode	Т		_	±0.7	±1.0		
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ⁴	
Liniarity	10-bit mode ⁵	Р		_	±0.25	±0.5		
	8-bit mode ⁵	Т		_	±0.15	±0.25		
Integral Non-Linearity	12-bit mode ³	Т	INL	_	±1.0	_	LSB ⁴	
	10-bit mode	Т		_	±0.3	±0.5		
	8-bit mode	Т		_	±0.15	±0.25		
Zero-scale error ⁶	12-bit mode	С	E _{zs}	_	±2.0	_	LSB ⁴	
	10-bit mode	Р		_	±0.25	±1.0		
	8-bit mode	Т		_	±0.65	±1.0		
Full-scale error ⁷	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ⁴	
	10-bit mode	Т		_	±0.5	±1.0		
	8-bit mode	Т		_	±0.5	±1.0		
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ⁴	
Input leakage error ⁸	all modes	D	E _{IL}		I _{In} * R _{AS}		mV	
Temp sensor slope	-40 °C–25 °C	D	m	_	3.266	_	mV/°C	
	25 °C–125 °C			_	3.638	_		
Temp sensor voltage	25 °C	D	V _{TEMP25}	_	1.396	_	V	

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization

^{3.} This parameter is valid for the temperature range of 25 $^{\circ}$ C to 50 $^{\circ}$ C.

^{4.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{5.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{6.} $V_{ADIN} = V_{SSA}$

^{7.} $V_{ADIN} = V_{DDA}$

^{8.} I_{In} = leakage current (refer to DC characteristics)

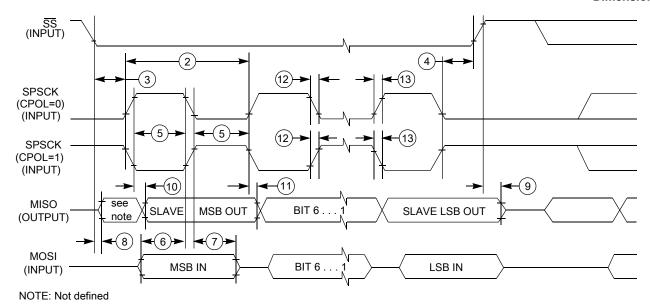


Figure 20. SPI slave mode timing (CPHA=1)

Dimensions

7.1 **Obtaining package dimensions**

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
32-pin QFN	98ASA00473D
44-pin LQFP	98ASS23225W
64-pin QFP	98ASB42844B
64-pin LQFP	98ASS23234W

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 19. Pin availability by package pin-count

64-QFP/ LQFP	44-LQFP	32-					Lowest Priority <> Highest					
		LQFP/QFN	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4					
1	1	1	PTD1 ¹	KBI1_P1	FTM2_CH3	SPI1_MOSI	_					
2	2	2	PTD0 ¹	KBI1_P0	FTM2_CH2	SPI1_SCK	_					
3	_	_	PTH7	_	_	_	_					
4	_	_	PTH6	_	_	_	_					
5	3	_	PTE7	_	FTM2_CLK	_	FTM1_CH1					
6	4	_	PTH2	_	BUSOUT	_	FTM1_CH0					
7	5	3	_	_	_	_	VDD					
8	6	4	_	_	_	VDDA	VREFH ²					
9	7	5	_	_	_	_	VREFL					
10	8	6	_	_	_	VSSA	VSS ³					
11	9	7	PTB7	_	I2C0_SCL	_	EXTAL					
12	10	8	PTB6	_	I2C0_SDA	_	XTAL					
13	11	_	_	_	_	_	VSS					
14	_	_	PTH1 ¹	_	FTM2_CH1	_	_					
15	_	_	PTH0 ¹	_	FTM2_CH0	_	_					
16	_	_	PTE6	_	_	_	_					
17	_	_	PTE5	_	_	_	_					
18	12	9	PTB5 ¹	FTM2_CH5	SPI0_PCS0	ACMP1_OUT	_					
19	13	10	PTB4 ¹	FTM2_CH4	SPI0_MISO	NMI	ACMP1_IN2					
20	14	11	PTC3	FTM2_CH3	_	_	ADC0_SE11					
21	15	12	PTC2	FTM2_CH2	_	_	ADC0_SE10					
22	16	_	PTD7	KBI1_P7	UART2_TX	_	_					
23	17	_	PTD6	KBI1_P6	UART2_RX	_	_					
24	18	_	PTD5	KBI1_P5	_	_	_					
25	19	13	PTC1	_	FTM2_CH1	_	ADC0_SE9					
26	20	14	PTC0	_	FTM2_CH0	_	ADC0_SE8					
27	_	_	PTF7	_	_	_	ADC0_SE15					

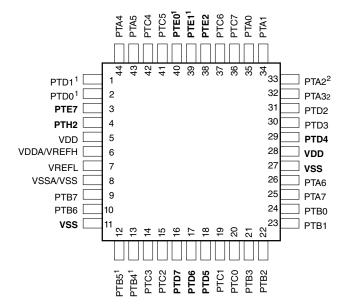

Table continues on the next page...

Table 19. Pin availability by package pin-count (continued)

Pin Number			Lowest Priority <> Highest						
64-QFP/ LQFP	44-LQFP	32- LQFP/QFN	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4		
28	_	_	PTF6	_	_	_	ADC0_SE14		
29	_	_	PTF5	_	_	_	ADC0_SE13		
30	_	_	PTF4	_	_	_	ADC0_SE12		
31	21	15	PTB3	KBI0_P7	SPI0_MOSI	FTM0_CH1	ADC0_SE7		
32	22	16	PTB2	KBI0_P6	SPI0_SCK	FTM0_CH0	ADC0_SE6		
33	23	17	PTB1	KBI0_P5	UART0_TX	_	ADC0_SE5		
34	24	18	PTB0	KBI0_P4	UART0_RX	_	ADC0_SE4		
35	_	_	PTF3	_	_	_	_		
36	_	_	PTF2	_	_	_	_		
37	25	19	PTA7	_	FTM2_FLT2	ACMP1_IN1	ADC0_SE3		
38	26	20	PTA6	_	FTM2_FLT1	ACMP1_IN0	ADC0_SE2		
39	_	_	PTE4	_	_	_	_		
40	27	_	_	_	_	_	VSS		
41	28	_	_	_	_	_	VDD		
42	_	_	PTF1	_	_	_	_		
43	_	_	PTF0	_	_	_	_		
44	29	_	PTD4	KBI1_P4	_	_	_		
45	30	21	PTD3	KBI1_P3	SPI1_PCS0	_	_		
46	31	22	PTD2	KBI1_P2	SPI1_MISO	_	_		
47	32	23	PTA3 ⁴	KBI0_P3	UART0_TX	I2C0_SCL	_		
48	33	24	PTA2 ⁴	KBI0_P2	UART0_RX	I2C0_SDA	_		
49	34	25	PTA1	KBI0_P1	FTM0_CH1	ACMP0_IN1	ADC0_SE1		
50	35	26	PTA0	KBI0_P0	FTM0_CH0	ACMP0_IN0	ADC0_SE0		
51	36	27	PTC7	_	UART1_TX	_	_		
52	37	28	PTC6	_	UART1_RX	_	_		
53	_	_	PTE3	_	SPI0_PCS0	_	_		
54	38	_	PTE2	_	SPI0_MISO	_	_		
55	_	_	PTG3	_	_	_	_		
56	_	_	PTG2	_	_	_	_		
57	_	_	PTG1	_	_	_	_		
58	_	_	PTG0	_	_	_	_		
59	39	_	PTE1 ¹	_	SPI0_MOSI	_	_		
60	40	_	PTE0 ¹	_	SPI0_SCK	FTM1_CLK	_		
61	41	29	PTC5	_	FTM1_CH1	_	RTCO		
62	42	30	PTC4	RTCO	FTM1_CH0	ACMP0_IN2	SWD_CLK		
63	43	31	PTA5	IRQ	FTM0_CLK	_	RESET		
64	44	32	PTA4	_	ACMP0_OUT	_	SWD_DIO		

^{1.} This is a high-current drive pin when operated as output.

35

Pins in **bold** are not available on less pin-count packages.

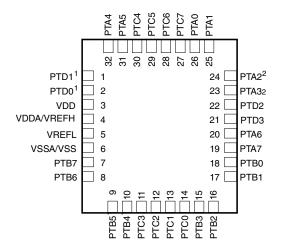

- 1. High source/sink current pins
- 2. True open drain pins

Figure 22. 44-pin LQFP package

- 1. High source/sink current pins
- 2. True open drain pins

Figure 23. 32-pin LQFP package

- 1. High source/sink current pins
- 2. True open drain pins

Figure 24. 32-pin QFN package

9 Revision history

The following table provides a revision history for this document.

Table 20. Revision history

Rev. No.	Date	Substantial Changes
2	3/2014	Initial public release.
3	10/2014	Added new package of 32-pin QFN information Updated pin-out Updated key features of UART, KBI and ADC in the front page Added a note to the Max. in Supply current characteristics Updated footnote f _{OSC} = 10 MHz (crystal) in EMC radiated emissions operating behaviors Added a new section of Thermal operating requirements Updated NVM specifications Added reference potential in ADC characteristics Updated to "All timing assumes high-drive strength is enabled for SPI output pins." in SPI switching specifications
4	07/2016	 Updated the Typical value of E_{TUE} in 12-bit mode and added a note to the 12-bit mode of E_{TUE} and INL in the ADC characteristics.

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE02P64M40SF0 Revision 4, 07/2016

