

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS-I
Number of Cores/Bus Width	1 Core, 64-Bit
Speed	133MHz
Co-Processors/DSP	System Control; CP0
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 85°C (TC)
Security Features	-
Package / Case	179-PGA
Supplier Device Package	179-PGA
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79r4700-133g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I ₀	11	21	1R	2R	1A	2A	1D	2D	1W	2W				
I ₁			11	21	1R	2R	1A	2A	1D	2D	1W	2W		
l ₂					11	21	1R	2R	1A	2A	1D	2D	1W	•••
l ₃							11	21	1R	2R	1A	2A	1D	•••
					•									
I ₄					•				11	21	1R	2R	1A	•••
					•									•
					•				one	cycle				

Key to Figure

1I-1R	Instruction cache access

2I Instruction virtual-to-physical address translation in ITLB

2A-2D Data cache access and load align

1D Data virtual-to-physical address translation in DTLB
 1D-2D Virtual-to-physical address translation in JTLB

2R Register file read
2R Bypass calculation
2R Instruction decode
2R Branch address calculation
1A Issue or slip decision
1A-2A Integer add, logical, shift
1A Data virtual address calculation

2A Store align 1A Branch decision 2W Register file write

Figure 3 RC4700 Pipeline Stages

IDT79R4700

Because the cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access, further increasing performance by allowing these two operations to occur simultaneously. The tag holds a 24-bit physical address and valid bit and is parity protected.

The instruction cache is 64-bits wide and can be refilled or accessed in a single processor cycle. For a peak instruction bandwidth of 800MB/sec at 200MHz, instruction fetches require only 32 bits per cycle. To reduce power dissipation, sequential accesses take advantage of the 64-bit fetch. To minimize the cache miss penalty, cache miss refill writes use 64 bits-per-cycle, and to maximize cache performance, the line size is eight instructions (32 bytes).

Data Cache

For fast, single cycle data access, the RC4700 includes a 16KB onchip data cache that is two-way set associative with a fixed 32-byte (eight words) line size.

The data cache is protected with byte parity and its tag is protected with a single parity bit. It is virtually indexed and physically tagged to allow simultaneous address translation and data cache access

The normal write policy is writeback, which means that a store to a cache line does not immediately cause memory to be updated. This increases system performance by reducing bus traffic and eliminating the bottleneck of waiting for each store operation to finish before issuing a subsequent memory operation. Software can however select write-through on a per-page basis when it is appropriate, such as for frame buffers.

Associated with the data cache is the store buffer. When the RC4700 executes a Store instruction, this single-entry buffer gets written with the store data while the tag comparison is performed. If the tag matches, then the data is written into the data cache in the next cycle that the data cache is not accessed (the next non-load cycle). The store buffer allows the R4700 to execute a store instruction every processor cycle and to perform back-to-back stores without penalty.

The data cache can provide 8 bytes each clock cycle, for a peak bandwidth of 1.6 GB/sec.

Write Buffer

Writes to external memory—whether they are cache miss write-backs, stores to uncached or write-through addresses—use the on-chip write buffer. The write buffer holds a maximum of four 64-bit address and 64-bit data pairs. The entire buffer is used for a data cache writeback and allows the processor to proceed in parallel with memory updates.

System Interface

The RC4700 supports a 64-bit system interface. This interface operates from two clocks—TClock[1:0] and RClock[1:0]—provided by the RC4700, at some division of the internal clock.

The system interface consists of a 64-bit Address/Data bus with eight check bits and a 9-bit command bus protected with parity. In addition, there are eight handshake signals and six interrupt inputs. The interface has a simple timing specification and is capable of transferring data between the processor and memory at a peak rate of 500MB/sec with a 67MHz bus.

System Address/Data Bus

The 64-bit System Address Data (SysAD) bus is used to transfer addresses and data between the RC4700 and the rest of the system. It is protected with an 8-bit parity check bus, SysADC.

The system interface is configurable to allow easier interfacing to memory and I/O systems of varying frequencies. The data rate and the bus frequency at which the RC4700 transmits data to the system interface are programmable via boot time mode control bits. Also, the rate at which the processor receives data is fully controlled by the external device. Therefore, either a low cost interface requiring no read or write buffering or a faster, high performance interface can be designed to communicate with the RC4700. Again, the system designer has the flexibility to make these price/performance trade-offs.

System Command Bus

The RC4700 interface has a 9-bit System Command (SysCmd) bus. The command bus indicates whether the SysAD bus carries an address or data. If the SysAD carries an address, then the SysCmd bus also indicates what type of transaction is to take place (for example, a read or write). If the SysAD carries data, then the SysCmd bus also gives information about the data (for example, this is the last data word transmitted, or the cache state of this data line is clean exclusive). The SysCmd bus is bidirectional to support both processor requests and external requests to the RC4700. Processor requests are initiated by the RC4700 and responded to by an external device. External requests are issued by an external device and require the RC4700 to respond.

The RC4700 supports one to eight byte and block transfers on the SysAD bus. In the case of a sub-doubleword transfer, the low-order three address bits give the byte address of the transfer, and the SysCmd bus indicates the number of bytes being transferred.

Handshake Signals

There are six handshake signals on the system interface. Two of these, RdRdy* and WrRdy* are used by an external device to indicate to the RC4700 whether it can accept a new read or write transaction. The RC4700 samples these signals before deasserting the address on read and write requests.

ExtRqst* and Release* are used to transfer control of the SysAD and SysCmd buses between the processor and an external device. When an external device needs to control the interface, it asserts ExtRqst*. The RC4700 responds by asserting Release* to release the system interface to slave state.

ValidOut* and ValidIn* are used by the RC4700 and the external device respectively to indicate that there is a valid command or data on the SysAD and SysCmd buses. The RC4700 asserts ValidOut* when it is driving these buses with a valid command or data, and the external device drives ValidIn* when it has control of the buses and is driving a valid command or data.

Non-overlapping System Interface

The RC4700 bus uses a non-overlapping system interface. This means that only one processor request may be outstanding at a time and that the request must be serviced by an external device before the RC4700 issues another request. The RC4700 can issue read and write requests to an external device, and an external device can issue read and write requests to the RC4700.

For processor read transaction the RC4700 asserts ValidOut* and simultaneously drives the address and read command on the SysAD and SysCmd buses. If the system interface has RdRdy* asserted, then the processor tristates its drivers and releases the system interface to slave state by asserting Release*. The external device can then begin sending the data.

Figure 5 on page 10 shows a processor block read request and the external agent read response. The read latency is four cycles (ValidOut* to ValidIn*), and the response data pattern is DDxxDD. Figure 6 on page 10 shows a processor block write.

Write Reissue and Pipeline Write

The RC4700 implements additional write protocols that have been designed to improve performance. This implementation doubles the effective write bandwidth. The write re-issue has a high repeat rate of two cycles per write. A write issues if WrRdy* is asserted two cycles earlier and is still asserted at the issue cycle. If it is not still asserted, the last write re-issues again. Pipelined writes have the same two cycle per write repeat rate but can issue one additional write after WrRdy* deasserts. They still follow the issue rule as R4x00 mode for other writes.

External Requests

The RC4700 responds to requests issued by an external device. The requests can take several forms. An external device may need to supply data in response to an RC4700 read request or it may need to gain control over the system interface bus to access other resources which may be on that bus. It also may issue requests to the processor, such as a request for the RC4700 to write to the RC4700 interrupt register. The RC4700 supports Write, Null, and Read Response external requests.

Boot-Time Options

Fundamental operational modes for the processor are initialized by the boot-time mode control interface. The boot-time mode control interface is a serial interface operating at a very low frequency (MasterClock divided by 256). The low-frequency operation allows the initialization information to be kept in a low-cost serial EEPROM; alternatively, the 20-or-so bits could be generated by the system interface ASIC or a simple PAL.

Immediately after the VCCOK signal is asserted, the processor reads a bit stream of 256 bits to initialize all fundamental operational modes. After initialization is complete, the processor continues to drive the serial clock output, but no further initialization bits are read.

JTAG Interface

The RC4700 supports the JTAG interface pins, with the serial input connected to serial output. Boundary scan is not supported.

Boot-Time Modes

The boot-time serial mode stream is defined in Table 3. Bit 0 is the first bit presented to the processor when VCCOK is asserted; bit 255 is the last.

Power Management¹

CP0 is also used to control the power management for the RC4700. This is the standby mode and can be used to reduce the power consumption of the internal core of the CPU. Standby mode is entered by executing the WAIT instruction with the SysAD bus idle and is exited by an interrupt.

Standby Mode Operations

The RC4700 provides a means to reduce the amount of power consumed by the internal core when the CPU would otherwise not be performing any useful operations. This is known as "Standby Mode."

Entering Standby Mode

Executing the WAIT instruction enables interrupts and enters Standby mode. When the WAIT instruction finishes the W pipe-stage, if the SysAd bus is currently idle, the internal clocks will shut down, thus freezing the pipeline. The PLL, internal timer, some of the input pin clocks (Int[5:0]*, NMI*, ExtReq*, Reset*, and ColdReset*), and the output clocks—TClock[1:0], RClock[1:0] SyncOut, Modeclock and MasterOut—will continue to run. If the conditions are not correct when the WAIT instruction finishes the W pipe-stage (such as the SysAd bus is not idle), the WAIT is treated as a NOP.

Once the CPU is in Standby Mode, any interrupt— including the internally generated timer interrupt—will cause the CPU to exit Standby Mode.

^{1.} The R4700 implements advanced power management, to substantially reduce the average power dissipation of the device. This operation is described in the R4700 Microprocessor Hardware User's Manual.

Thermal Considerations

The RC4700 uses special packaging techniques to improve the thermal properties of high-speed processors. The RC4700 is packaged using cavity down packaging in a 179-pin PGA package, and a 208-lead QFP package. These packages effectively dissipate the power of the CPU, increasing device reliability.

The R4700 is guaranteed in a case temperature range of 0° to $+85^{\circ}$ C. The type of package, speed (power) of the device, and airflow conditions affect the equivalent ambient temperature conditions that will meet this specification.

The equivalent allowable ambient temperature, TA, can be calculated using the thermal resistance from case to ambient (\varnothing CA) of the given package. The following equation relates ambient and case temperatures:

where P is the maximum power consumption at hot temperature, calculated by using the maximum ICC specification for the device.

Typical values for \varnothing CA at various airflows are shown in Table 2:.

	∅ca					
Airflow (ft/min)	0	200	400	600	800	1000
PGA	16	7	5	3	2.5	2
QFP	21	13	10	9	8	7

Table 2: Thermal Resistance (ØCA) at Various Airflows

Revision History

January 1996: Initial draft.

March 1997: Deleted data on 150MHz speed for 5V part only.

August 1997: Upgraded 80 to 175 MHz speed specs from "Preliminary" to "Final."

June 1999: Upgraded speed to 200MHz on 3V part specs. Package change to DP.

June 29, 2000: Added back 175 and 200 MHz speeds.

April 10, 2001: In the Data Output category of the System Interface Parameters tables, changed values in the Min column for all speeds from 1.0 to 0.

December 5, 2008: Removed IDT from ordering codes on Ordering Information page.

Mode bit	Description	Mode bit	Description
0	reserved (must be zero)	14:13	Output driver strength $10 \rightarrow 100\%$ strength (fastest), $11 \rightarrow 83\%$ strength, $00 \rightarrow 67\%$ strength, $01 \rightarrow 50\%$ strength (slowest)
4:1	Writeback data rate $0 \rightarrow \Delta$, $1 \rightarrow DDx$, $2 \rightarrow DDxx$, $3 \rightarrow DxDx$, $4 \rightarrow DDxxx$, $5 \rightarrow DDxxxx$, $6 \rightarrow DxxDxx$, $7 \rightarrow DDxxxxx$, $8 \rightarrow DxxDxx$, $9 \rightarrow reserved$	bit 15	0 → TClock[0] enabled 1 → TClock[0] disabled
7:5	Clock divisor $0 \rightarrow 2$, $1 \rightarrow 3$, $2 \rightarrow 4$, $3 \rightarrow 5$, $4 \rightarrow 6$, $5 \rightarrow 7$, $6 \rightarrow 8$, 7 reserved	bit 16	0 → TClock[1] enabled 1 → TClock[1] disabled
8	0 → Little endian, 1 → Big endian	bit 17	$0 \rightarrow RClock[0]$ enabled $1 \rightarrow RClock[0]$ disabled
10:9	00 → R4000 compatible, 01 → reserved, 10 → pipelined writes, 11 → write re-issue	bit 18	0 → RClock[1] enabled 1 →RClock[1] disabled
11	Disable the timer interrupt on Int[5]. 0 → Enabled 1 → Disabled	255:19	Reserved (must be zero)
12	reserved (must be zero)		

Table 3 Boot-time Serial Mode Stream

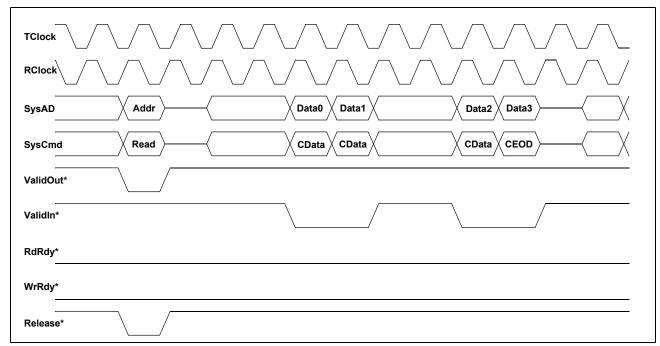


Figure 5 Processor Block Read

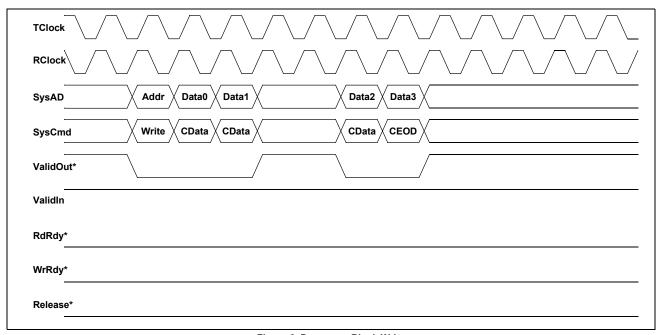


Figure 6 Processor Block Write

Pin Description

The table below provides a list of interface, interrupt and miscellaneous pins that are available on the RC4700. Note that signals marked with an asterisk are active when low. Boundary scan is not supported.

Pin Name	Туре	Description
System Interfa	се	
ExtRqst*	I	External request Signals that the system interface needs to submit an external request.
Release*	0	Release interface Signals that the processor is releasing the system interface to slave state.
RdRdy*	I	Read Ready Signals that an external agent can now accept a processor read.
WrRdy*	I	Write Ready Signals that an external agent can now accept a processor write request.
ValidIn*	I	Valid Input Signals that an external agent is now driving a valid address or data on the SysAD bus and a valid command or data identifier on the SysCmd bus.
ValidOut*	0	Valid output Signals that the processor is now driving a valid address or data on the SysAD bus and a valid command or data identifier on the SysCmd bus.
SysAD(63:0)	I/O	System address/data bus A 64-bit address and data bus for communication between the processor and an external agent.
SysADC(7:0)	I/O	System address/data check bus An 8-bit bus containing parity check bits for the SysAD bus during data bus cycles.
SysCmd(8:0)	I/O	System command/data identifier bus A 9-bit bus for command and data identifier transmission between the processor and an external agent.
SysCmdP	I/O	Reserved system command/data identifier bus parity for the R4700 unused on input and zero on output.
Clock/Control	Interface	

Clock/Control Interface

MasterClock	I	Master clock Master clock input at one half the processor operating frequency.
MasterOut	0	Master clock out Master clock output aligned with MasterClock.
RClock(1:0)	0	Receive clocks Two identical receive clocks at the system interface frequency.
TClock(1:0)	0	Transmit clocks Two identical transmit clocks at the system interface frequency.
IOOut	0	Reserved for future output Always HIGH.
IOIn	I	Reserved for future input Should be driven HIGH.
SyncOut	0	Synchronization clock out Must be connected to SyncIn through an interconnect that models the interconnect between MasterOut, TClock, RClock, and the external agent.
SyncIn	I	Synchronization clock in Synchronization clock input. See SyncOut.
Fault*	0	Fault Always HIGH.

Pin Name	Туре	ype Description			
VccP	I	Quiet Vcc for PLL Quiet Vcc for the internal phase locked loop.			
VssP	I Quiet Vss for PLL Quiet Vss for the internal phase locked loop.				

Interrupt Interface

Int*(5:0)	I	Interrupt Six general processor interrupts, bit-wise ORed with bits 5:0 of the interrupt register.
NMI*	I	Non-maskable interrupt Non-maskable interrupt, ORed with bit 6 of the interrupt register.

Initialization Interface

Vccok	l	Vcc is OK When asserted, this signal indicates to the R4700 that the power supply has been above the Vcc minimum for more than 100 milliseconds and will remain stable. The assertion of Vccok initiates the reading of the boot-time-mode-control serial stream.
ColdReset*	I	Cold reset This signal must be asserted for a power on reset or a cold reset. The clocks SClock, TClock, and RClock begin to cycle and are synchronized with the de-assertion edge of ColdReset. ColdReset must be de-asserted synchronously with MasterOut.
Reset*	I	Reset This signal must be asserted for any reset sequence. It may be asserted synchronously or asynchronously for a cold reset, or synchronously to initiate a warm reset. Reset must be de-asserted synchronously with MasterOut.
ModeClock	0	Boot-mode clock Serial boot-mode data clock output at the system clock frequency divided by two hundred fifty-six.
Modeln	ı	Boot-mode data in Serial boot-mode data input.

Absolute Maximum Ratings

Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Symbol	Rating	RV4700 3.3V±5%	R4700 5.0V±5%	Unit
		Commercial	Commercial	
V _{TERM}	Terminal Voltage with respect to GND	-0.5 ¹ to +4.6	-0.5 ¹ to +7.0	V
T _C	Operating Temperature (case)	0 to +85	0 to +85	°C
T _{BIAS}	Case Temperature Under Bias	-55 to +125	-55 to +125	°C
T _{STG}	Storage Temperature	-55 to +125	-55 to +125	°C
I _{IN}	DC Input Current	20 ²	20 ²	mA
I _{OUT}	DC Output Current	50	50 ³	mA

 $^{^{1.}}$ V_{IN} minimum = -2.0V for pulse width less than 15ns. V_{IN} should not exceed V_{CC} +0.5V.

 $^{^{2.}}$ When V_{IN} < 0.0V or V_{IN} > V_{CC} .

 $^{^{3\}cdot}$ Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.

Recommended Operation Temperature and Supply Voltage

Grade	Temperature	GND	RV4700	R4700
Orace	remperature	CIND	V _{CC}	v_{cc}
Commercial	0°C to +85°C (Case)	0V	3.3V±5%	5.0V±5%

DC Electrical Characteristics—R4700

 $(V_{cc} = 5.0 \pm 5\%, T_{CASE} = 0^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	R4700	BO MHz	R4700 1	100MHz	R4700 1	133MHz	Conditions
	Min	Мах	Min	Max	Min	Max	
V _{OL}	_	0.1V	_	0.1V	_	0.1V	I _{OUT} = 20uA
V _{OH}	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_	
V _{OL}		0.4V	_	0.4V	_	0.4V	I _{OUT} = 4mA
V _{OH}	3.5V	_	3.5V	_	3.5V	_	
V _{IL}	-0.5V	0.8V	-0.5V	0.8V	-0.5V	0.8V	_
V _{IH}	2.0V	V _{CC} + 0.5V	2.0V	V _{CC} + 0.5V	2.0V	V _{CC} + 0.5V	_
I _{IN}		±10uA	_	±10uA	_	±10uA	$0 \le V_{IN} \le V_{CC}$
C _{IN}		15pF	_	15pF	_	15pF	_
C _{OUT}	_	15pF	_	15pF	_	15pF	_
I/O _{LEAK}	_	20uA	_	20uA	_	20uA	Input/Output Leakage

Power Consumption—R4700

		R4700	80 MHz	R4700	100MHz	R4700	133MHz	
Par	ameter	Typical	Max	Typical ¹	Мах	Typical ¹	Max	- Conditions
	ystem ndition:	80/20	MHz	100/2	5MHz	133/3	ЗМН	_
		_	150mA ²	_	175mA ²	_	225mA ²	$C_L = 0pF^3$
	standby	_	215mA ²	_	250mA ²	_	325mA ²	C _L = 50pF
		750mA ²	850 mA ²	875mA ²	1000mA ²	1175mA ²	1300mA ²	C _L = 0pF No SysAd activity ³
I _{CC}	active	850mA ²	1050mA ²	975mA ²	1200mA ²	1275mA ²	1500mA ²	$C_L = 50 pF$ R4x00 compatible writes $T_C = 25^{\circ}C$
1-		850mA ²	1250mA ^a	975mA ²	1400mA ⁴	1275mA ²	1675mA ⁴	C _L = 50pF Pipelined writes or write re-issue T _C = 25°C

^{1.} Typical integer instruction mix and cache miss rates.

^{2.} These are not tested. They are the result of engineering analysis and are provided for reference only.

^{3.} Guaranteed by design.

^{4.} These are the specifications IDT tests to insure compliance.

AC Electrical Characteristics—R4700

(V_{CC}=5.0V \pm 5%; T_{CASE} = 0°C to +85°C)

Clock Parameters—R4700

Parameter	Symbol	Test Conditions	_	R4700 BOMHz	_	R4700 DOMHz	R4700 133MHz		Units
		Conditions	Min	Max	Min	Мах	Min	Max	
MasterClock HIGH	t _{MCHIGH}	$Transition \leq t_{MCRise}$	4	_	4	_	3	_	ns
MasterClock LOW	t _{MCLOW}	$Transition \leq t_{MCFall}$	4	_	4	_	3	_	ns
MasterClock Frequency ¹	_	_	25	40	25	50	25	67	MHz
MasterClock Period	t _{MCP}	_	25	40	20	40	15	40	ns
Clock Jitter for MasterClock	t _{JitterIn} ²	_	_	±250	-	±250	_	±250	ps
Clock Jitter for MasterOut, SyncOut, TClock, RClock	t _{JitterOut} ²	_	_	±500	-	±500	_	±500	ps
MasterClock Rise Time	t _{MCRise} ²	_	_	5.5	_	5	_	4	ns
MasterClock Fall Time	t _{MCFall} ²	_	_	5.5	_	5	_	4	ns
ModeClock Period	t _{ModeCKP} ²	_	_	256*t _{MCP}	_	256*t _{MCP}	_	256*t _{MCP}	ns
JTAG Clock Period	t _{JTAGCKP} ²	_	_	4*t _{MCP}	_	4*t _{MCP}	_	4*t _{MCP}	ns
SyncOut to SyncIn Delay	t _{Sync} ^{2,3}	_	_	2*t _{MCP}	_	2*t _{MCP}	_	2*t _{MCP}	ns

^{1.} Operation of the R4700 is only guaranteed with the Phase Lock Loop enabled.

System Interface Parameters—R4700

Note: Timings are measured from 1.5V of the clock to 1.5V of the signal.

Parameter	Symbol	Test Conditions		700 MHz			R4700 R4700 100MHz 133MHz		Units
			Min	Max	Min	Max	Min	Max	
Data Output	t _{DO}	mode ₁₄₁₃ = 10 (fastest)	01	9	01	9	01	9	ns
		mode ₁₄₁₃ = 01 (slowest)	01	15	01	15	0 ¹	12	ns
Input Data Setup	t _{DS}	t _{rise} = 5ns	3.5	_	3.5	_	3.5	_	ns
Input Data Hold	t _{DH}	t _{fall} = 5ns	1.5	_	1.5	_	1.5	_	ns

^{1.} Guaranteed by design.

Boot-Time Interface Parameters—R4700

Parameter	Symbol	Test Conditions	R4700 80MHz			R4700 100MHz		700 MHz	Units
		Conditions	Min	Max	Min	Max	Min	Max	
Mode Data Setup	t _{DS}	_	3	_	3	_	3	_	Master ClockCycle
Mode Data Hold	t _{DH}	_	0	_	0	_	0	_	Master ClockCycle

^{2.} Guaranteed by design.

^{3.} Rise and fall times of the SyncIn signal must match those of MasterClock to avoid the introduction of additional clock skew.

Capacitive Load Deration—R4700

Parameter	Symbol	R4700	80MHz	R4700	R4700 100MHz R4700 133MHz		R4700 133MHz	
raiametei	- Cynnbon	Min	Max	Min	Max	Min	Max	Units
Load Derate	C _{LD}	_	2	_	2	_	2	ns/25pF

AC Electrical Characteristics — RV4700

 $(V_{CC}$ =3.3V \pm 5%; T_{CASE} = 0°C to +85°C)

Clock Parameters

Parameter	Symbol	Test Conditions		/4700 00MHz	RV4700 133MHz		R\ 15	Units	
		Conditions	Min	Max	Min	Max	Min	Max	
MasterClock HIGH	t _{MCHIGH}	$Transition \leq t_{MCRise/Fall}$	4	_	3	_	3	_	ns
MasterClock LOW	t _{MCLOW}	$Transition \leq t_{MCRise/Fall}$	4	_	3	_	3	_	ns
MasterClock Frequency ¹	_	_	25	50	25	67	25	75	MHz
MasterClock Period	t _{MCP}	_	20	40	15	40	13.3	40	ns
Clock Jitter for MasterClock	t _{JitterIn} ²	_	_	±250	_	±250	_	±250	ps
Clock Jitter for MasterOut, SyncOut, TClock, RClock	t _{JitterOut} ²	_	_	±500	_	±500	_	±500	ps
MasterClock Rise Time	t _{MCRise} ²	_	_	5	_	4	_	3.5	ns
MasterClock Fall Time	t _{MCFall} ²	_	_	5	_	4	_	3.5	ns
ModeClock Period	t _{ModeCKP}	_	_	256*t _{MCP}	_	256*t _{MCP}	_	256*t _{MCP}	ns
SyncOut to SyncIn Delay	t _{Sync} ^{2, 3}	_	_	2*t _{MCP}	_	2*t _{MCP}	_	2*t _{MCP}	ns

^{1.} Typical integer instruction mix and cache miss rates.

^{3.} Rise and fall times of the SyncIn signal must match those of MasterClock to avoid the introduction of additional clock skew.

Parameter	Symbol	Test Conditions		RV4700 175MHz ¹		RV4700 200MHz ¹		
			Min	Max	Min	Max		
MasterClock HIGH	t _{MCHIGH}	$Transition \leq t_{MCRise/Fall}$	3	_	3	_	ns	
MasterClock LOW	t _{MCLOW}	$Transition \leq t_{MCRise/Fall}$	3	_	3	_	ns	
MasterClock Frequency ²	_	_	25	87.5	25	100	MHz	
MasterClock Period	t _{MCP}	_	11.4	40	10	40	ns	
Clock Jitter for MasterClock	t _{JitterIn} 3	_	1-	±250	_	±250	ps	
Clock Jitter for MasterOut, SyncOut, TClock, RClock	t _{JitterOu} 3	_	_	±500	_	±500	ps	
MasterClock Rise Time	t _{MCRise} ³	_	_	3.5	_	3.5	ns	
MasterClock Fall Time	t _{MCFall} ³	_	_	3.5	_	3.5	ns	
ModeClock Period	t _{ModeCKP}	_	-	256*t _{MCP}	_	256*t _{MCP}	ns	
SyncOut to SyncIn Delay	t _{Sync} 3, 4	_	-	2*t _{MCP}	-	2*t _{MCP}	_	

^{1.} Operation of the R4700 is only guaranteed with the Phase Lock Loop enabled.

^{2.} Guaranteed by Design.

^{2.} Typical integer instruction mix and cache miss rates.

^{3.} Guaranteed by design.

^{4.} Rise and fall times of the Syncln signal must match those of MasterClock to avoid the introduction of additional clock skew.

DC Electrical Characteristics—RV4700

 $(V_{CC} = 3.3\pm5\%, T_{CASE} = 0^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	RV470	0 100MHz	RV470	0 133MHz	Conditions
Parameter	Min	Max	Min	Max	Conditions
V _{OL}	_	0.1V	_	0.1V	I _{OUT} = 20uA
V _{OH}	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_	
V _{OL}	_	0.4V	_	0.4V	I _{OUT} = 4mA
V _{OH}	2.4V	_	2.4V	_	
V _{IL}	-0.5V	0.2V _{CC}	-0.5V	0.2V _{CC}	_
V _{IH}	0.7V _{CC}	V _{CC} + 0.5V	0.7V _{CC}	V _{CC} + 0.5V	_
I _{IN}	_	±10uA	_	±10uA	$0 \le V_{IN} \le V_{CC}$
C _{IN}	_	15pF	_	15pF	_
C _{OUT}	_	15pF	_	15pF	_
I/O _{LEAK}	_	20uA	_	20uA	Input/Output Leakage

Parameter	RV470	0 150MHz	RV470	0 175MHz	RV470	0 200MHz	Conditions
Parameter	Min	Max	Min	Max	Min	Max	Conditions
V _{OL}	_	0.1V	_	0.1V	_	0.1V	I _{OUT} = 20uA
V _{OH}	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_	
V _{OL}	_	0.4V	_	0.4V	_	0.4V	I _{OUT} = 4mA
V _{OH}	2.4V	_	2.4V	_	2.4V	_	
V _{IL}	-0.5V	0.2V _{CC}	-0.5V	0.2V _{CC}	-0.5V	0.2V _{CC}	_
V _{IH}	0.7V _{CC}	V _{CC} + 0.5V	0.7V _{CC}	V _{CC} + 0.5V	0.7V _{CC}	V _{CC} + 0.5V	_
I _{IN}	_	±10uA	_	±10uA	_	±10uA	$0 \le V_{IN} \le V_{CC}$
C _{IN}	_	15pF	_	15pF	_	15pF	_
C _{OUT}	_	15pF	_	15pF	-	15pF	_
I/O _{LEAK}	_	20uA	_	20uA	_	20uA	Input/Output Leakage

System Interface Parameters—RV4700

Note: Operation of the R4700 is only guaranteed with the Phase Lock Loop enabled.

Parameter	Symbol	Test Conditions	RV4700 100MHz		RV4700 133MHz		100MHz 133MHz 150MHz				Units
			Min	Max	Min	Max	Min	Max			
Data Output ¹	t _{DM} = Min	mode ₁₄₁₃ = 10 (fastest)	0	9	0	9	0	8	ns		
	t _{DO} = Max	mode ₁₄₁₃ = 01 (slowest)	0	15	0	12	0	12	ns		
Input Data Setup	t _{DS}	t _{rise} = 3ns	3.5	_	3.5	_	3.5	_	ns		
Input Data Hold	t _{DH}	t _{fall} = 3ns	1.5	_	1.5	_	1.5	_	ns		

^{1.} Timings are measured from 1.5V of the clock to 1.5V of the signal.

Parameter	Symbol	Test Conditions		RV4700 175MHz		RV4700 200MHz		
			Min Max	Max	Min	Max		
Data Output ¹	t _{DM} = Min	mode ₁₄₁₃ = 10 (fastest)	0	8	0	8	ns	
	t _{DO} = Max	mode ₁₄₁₃ = 01 (slowest)	0	12	0	12	ns	
Input ata Setup	t _{DS}	t _{rise} = 3ns	3.5	_	3.5	_	ns	
Input Data Hold	t _{DH}	t _{fall} = 3ns	1.5	_	1.5	_	ns	

^{1.} Capacitive load for all output timings is 50pF.

Boot-Time Interface Parameters—RV4700

Parameter	Symbol	mbol lest	RV4700	0 133MHz RV4700 150MHz			Units		
Parameter Symbol	Conditions	Min	Мах	Min	Мах	Min	Мах		
Mode Data Setup	t _{DS}	_	3	_	3	_	3	_	Master Clock Cycle
Mode Data Hold	t _{DH}	_	0	_	0	_	0	_	Master Clock Cycle

Parameter	Symbol	Test	RV4700	175MHz	RV4700	200MHz	Units
raiametei	Cymbol	Conditions	Min	Мах	Min	Мах	Onits
Mode Data Setup	t _{DS}	_	3		3	_	Master Clock Cycle
Mode Data Hold	t _{DH}	_	0	_	0	_	Master Clock Cycle

Power Consumption—RV4700

Do.	rameter	RV4700 1	100MHz	RV4700 1	133MHz	RV4700 1	50MHz	Conditions
Ра	rameter	Typical ¹	Max	Typical ¹	Max	Typical ¹	Max	Conditions
	ystem ondition	100/25	MHz	133/33	MHz	150/38	MHz	_
	standby	_	125mA ²	_	175mA ²	_	200mA ²	$C_L = 0 pF^3$
		_	175mA ²	_	225mA ²	_	250mA ²	C _L = 50pF
I _{CC}	active	575mA ²	875mA ²	775mA ²	1150mA ²	875mA ²	1300mA ²	C _L = 0pF, No SysAd activity ³
		650mA ²	1100mA ²	850mA ²	1375mA ²	950mA ²	1550mA ²	$C_L = 50 pF R4x00$ compatible writes, $T_C = 25 C^3$
		650mA ²	1275mA ⁴	850mA ²	1525mA ⁴	950mA ²	1725mA ²	C_L = 50pF Pipelined writes or write re-issue, T_C = 25°C

^{1.} Typical integer instruction mix and cache miss rates.

^{4.} These are the specifications IDT tests to insure compliance.

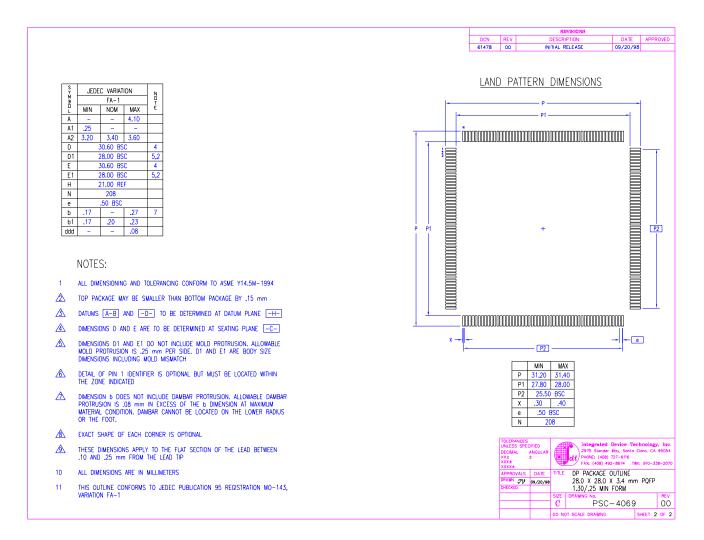
	D	RV4700 175MHz		RV4700	200MHz		
Parameter		Typical ¹	Max	Typical ¹	Max	Conditions	
System Condition		175/4	4MHz	200/5	0MHz	-	
	standby	_	200mA ²	_	200mA ²	C _L = 0pF ³	
		_	250mA ²	_	250mA ²	C _L = 50pF	
I_{CC}	active	1025mA ²	1500mA ²	1025mA ²	1500mA ²	C _L = 0pF, No SysAd activity ³	
		1200mA ²	1800mA ²	1200mA ²	1800mA ²	C_L = 50pF R4x00 compatible writes, T_C = 25 $^{\circ}$ C ³	
		1200mA ²	2000mA ⁴	1200mA ²	2000mA ⁴	C_L = 50pF Pipelined writes or write re-issue, T_C = 25°C	

^{2.} These are not tested. They are the result of engineering analysis and are provided for reference only.

^{3.} Guaranteed by design.

^{2.} These are not tested. They are the result of engineering analysis and are provided for reference only.

^{3.} Guaranteed by design.

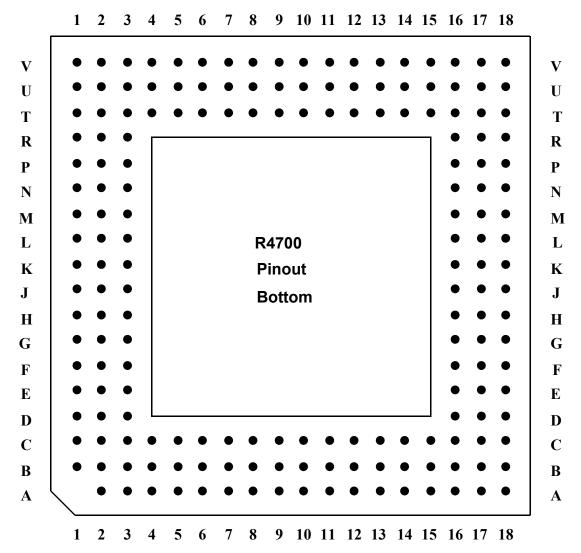

^{4.} These are the specifications IDT tests to insure compliance.

RC4700 QFP Package Pin-Out

Note: N.C. pins should be left floating for maximum flexibility and compatibility with future designs.

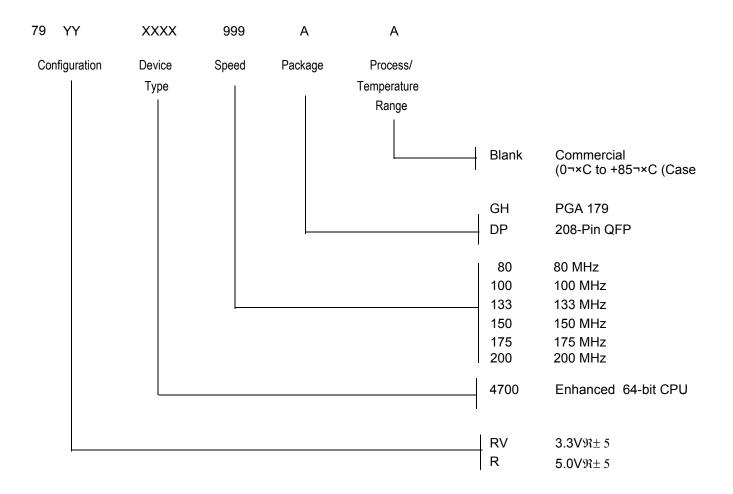
	Function	Pin	Function	Pin	Function	Pin	Function
1	N.C.	53	N.C.	105	N.C.	157	N.C.
2	N.C.	54	N.C.	106	N.C.	158	N.C.
3	VSS	55	SysCmd2	107	N.C.	159	RClock0
4	VCC	56	SysAD36	108	N.C.	160	RClock1
5	SysAD45	57	SysAD4	109	VCC	161	SyncOut
6	SysAD13	58	SysCmd1	110	VSS	162	SysAD30
7	Fault*	59	VSS	111	SysAD21	163	VCC
8	SysAD44	60	VCC	112	SysAD53	164	VSS
9	VSS	61	SysAD35	113	RdRdy*	165	SysAD62
10	VCC	62	SysAD3	114	Modeln	166	MasterOut
11	SysAD12	63	SysCmd0	115	SysAD22	167	SysAD31
12	SysCmdP	64	SysAD34	116	SysAD54	168	SysAD63
13	SysAD43	65	VSS	117	VCC	169	VCC
14	SysAD11	66	VCC	118	VSS	170	VSS
15	VSS	67	N.C.	119	Release*	171	VCCOK
16	VCC	68	N.C.	120	SysAD23	172	SysADC3
17	SysCmd8	69	SysAD2	121	SysAD55	173	SysADC7
18	SysAD42	70	Int5*	122	NMI*	174	VCC
19	SysAD10	71	SysAD33	123	VCC	175	VSS
20	SysCmd7	72	SysAD1	124	VSS	176	N.C.
21	VSS	73	VSS	125	SysADC2	177	N.C.
22	VCC	74	VCC	126	SysADC6	178	N.C.
23	SysAD41	75	Int4*	127	VCC	179	N.C.
24	SysAD9	76	SysAD32	128	SysAD24	180	N.C.
25	SysCmd6	77	SysAD0	129	VCC	181	VCCP
26	SysAD40	78	Int3*	130	VSS	182	VSSP
27	N.C.	79	VSS	131	SysAD56	183	N.C.
28	N.C.	80	VCC	132	N.C.	184	N.C.
29	VSS	81	Int2*	133	SysAD25	185	MasterClock
30	VCC	82	SysAD16	134	SysAD57	186	VCC
31	SysAD8	83	SysAD48	135	VCC	187	VSS
32	SysCmd5	84	Int1*	136	VSS	188	SyncIn
33	SysADC4	85	VSS	137	IOOut	189	VCC
34	SysADC0	86	VCC	138	SysAD26	190	VSS
35	VSS	87	SysAD17	139	SysAD58	191	N.C.
36	VCC	88	SysAD49	140	IOIn	192	SysADC5
37	SysCmd4	89	Int0*	141	VCC	193	SysADC3
38	SysAD39	90	SysAD18	142	VSS	193	JTDI
39	SysAD39 SysAD7	91	VSS	143	SysAD27	195	VCC
40	SysCMD3	92	VCC	144	SysAD59	196	VSS
41	VSS	93	SysAD50	145	ColdReset*	190	SysAD47
42	VCC	93	ValidIn*	145	SysAD28	197	SysAD47 SysAD15
42 43	SysAD38	95	SysAD19	147	VCC	198	JTDO
	SysAD38 SysAD6				VSS	200	
44		96	SysAD51 VSS	148			SysAD46 VCC
45 46	ModeClock WrDdv*	97		149	SysAD60	201	VSS
46	WrRdy*	98	VCC	150	Reset*	202	
47	SysAD5	99	ValidOut*	151	SysAD29	203	SysAD14
48	SysAD5	100	SysAD20	152	SysAD61	204	N.C.
49	VSS	101	SysAD52	153	VCC	205	TClock0
L()	VCC	102	ExtRqst*	154 155	VSS N.C.	206	TClock1 N.C.
50 51	N.C.	103	N.C.				

Physical Specifications - page 2


RC4700 PGA Package Pin-Out

Note: N.C. pins should be left floating for maximum flexibility and compatibility with future designs.

Function	Pin	Function	Pin	Function	Pin
ColdReset*	T14	SysAD36	C3	VCC	B18
ExtRqst*	U2	SysAD37	B3	VCC	C1
Fault*	B16	SysAD38	C6	VCC	D18
Reserved O (NC)	U10	SysAD39	C7	VCC	F1
Reserved I (Vcc)	T9	SysAD40	C10	VCC	G18
IOIn	T13	SysAD41	C11	VCC	H1
IOOut	U12	SysAD42	B13	VCC	J18
Int0	N2	SysAD43	A15	VCC	K1
Int1	L3	SysAD44	C15	VCC	L18
Int2	K3	SysAD45	B17	VCC	M1
Int3	J3	SysAD46	E17	VCC	N18
Int4	H3	SysAD47	F17	VCC	R1
Int5	F2	SysAD48	L2	VCC	T18
MasterClock	J17	SysAD49	M3	VCC	U1
MasterOut	P17	SysAD50	N3	VCC	V3
ModeClock	B4	SysAD51	R2	VCC	V6
Modeln	U4	SysAD52	T3	VCC	V8
NMI	U7	SysAD53	U3	VCC	V10
RClock0	T17	SysAD54	T6	VCC	V12
RClock1	R16	SysAD55	T7	VCC	V14
RdRdy*	T5	SysAD56	T10	VCC	V17
Release	V5	SysAD57	T11	VSS	A3
Reset*	U16	SysAD58	U13	VSS	A6
SyncIn	J16	SysAD59	V15	VSS	A8
SyncOut	P16	SysAD60	T15	VSS	A10
SysAD0	J2	SysAD61	U17	VSS	A12
SysAD1	G2	SysAD62	N16	VSS	A14
SysAD2	E1	SysAD63	N17	VSS	A17
SysAD3	E3	SysADC0	C8	VSS	A18
SysAD4	C2	SysADC1	G17	VSS	B1
SysAD5	C4	SysADC2	T8	VSS	C18
SysAD6	B5	SysADC3	L16	VSS	D1
SysAD7	B6	SysADC4	B8	VSS	F18
SysAD8	B9	SysADC5	H16	VSS	G1
SysAD9	B11	SysADC6	U8	VSS	H18
SysAD10	C12	SysADC7	L17	VSS	J1
SysAD11	B14	SysCmd0	E2	VSS	K18
SysAD12	B15	SysCmd1	D3	VSS	L1
SysAD13	C16	SysCmd2	B2	VSS	M18
SysAD14	D17	SysCmd3	A5	VSS	N1
SysAD15	E18	SysCmd4	B7	VSS	P18
SysAD16	K2	SysCmd5	C9	VSS	R18
SysAD17	M2	SysCmd6	B10	VSS	T1
SysAD18	P1	SysCmd7	B12	VSS	U18
SysAD19	P3	SysCmd8	C13	VSS	V1
SysAD20	T2	SysCmdP	C14	VSS	V2


Function	Pin	Function	Pin	Function	Pin
SysAD21	T4	TClock1	C17	VSS	V4
SysAD22	U5	TClock0	D16	VSS	V7
SysAD23	U6	VCCOk	M17	VSS	V9
SysAD24	U9	ValidIn*	P2	VSS	V11
SysAD25	U11	ValidOut*	R3	VSS	V13
SysAD26	T12	WrRdy*	C5	VSS	V16
SysAD27	U14	VCCP	K17	VSS	V18
SysAD28	U15	VSSP	K16	JTMS	E16
SysAD29	T16	VCC	A2	JTDO	F16
SysAD30	R17	VCC	A4	JTDI	G16
SysAD31	M16	Reserved I (VCC)	A7	JTCK	H17
SysAD32	H2	VCC	A9		
SysAD33	G3	VCC	A11		
SysAD34	F3	VCC	A13		
SysAD35	D2	VCC	A16		

Physical Specifications — PGA

2884 drw 12

Ordering Information

Valid Combinations

79R4700 - 80, 100, 133 - GH, DP 79RV4700 -100, 133, 150, 175, 200 - GH, DP PGA, QFP Package PGA, QFP Package

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support:

email: rischelp@idt.com phone: 408-284-8208

The IDT logo is a trademark of Integrated Device Technology, Inc.

25 of 25

December 5, 2008