E·XFL

NXP USA Inc. - PPC5604BCLL48 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc5604bcll48

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

1.2 Description

The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture[®] embedded category.

The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

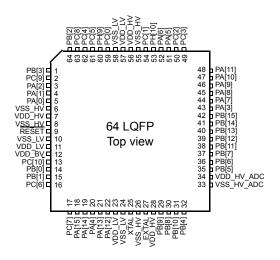


Figure 2. MPC560xB LQFP 64-pin configuration

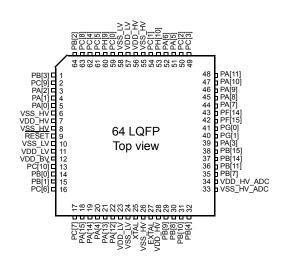


Figure 3. MPC560xC LQFP 64-pin configuration

				uo		Pir	n num	ber				
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O I/O I	J	Tristate				57	T10
PF[3]	PCR[83]	AF0 AF1 AF2 AF3 —	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	—	_	58	R10
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O O I	J	Tristate	_	_	_	59	N11
PF[5]	PCR[85]	AF0 AF1 AF2 AF3 —	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O O I	J	Tristate	_	_	_	60	P11
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — ANS[14]	SIUL eMIOS_0 — ADC	/O /O 	J	Tristate	_	_	_	61	T11
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — — ANS[15]	SIUL — — — ADC	I/O — — — I	J	Tristate	_	—	_	62	R11
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O	М	Tristate		_		34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] — CS5_0 — CAN2RX ¹⁵ CAN3RX ¹⁴	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — 0 — I I	S	Tristate				33	N2

Table 6. Functional port pin descriptions (continued)

		Lu io		u		Pin	num	ber				
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate	—	—		8	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — WKPU[17] ⁴	SIUL eMIOS_1 WKPU	I/O I/O — I	S	Tristate	_	_		7	E3
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate		_		6	E1
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] ⁴	SIUL eMIOS_1 WKPU	I/O I/O I	S	Tristate	_	_	_	5	E2
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	—	—		30	M2
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	_		29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 DSPI_2 SIUL	/O /O /O 	S	Tristate	_		_	26	L2
PG[9]	PCR[105]	AF0 AF1 AF2 AF3	GPIO[105] E1UC[18] SCK_2	SIUL eMIOS_1 DSPI_2	I/O I/O I/O	S	Tristate	—	—		25	L1
PG[10]	PCR[106]	AF0 AF1 AF2 AF3	GPIO[106] E0UC[24] — —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate				114	D13

Table 6. Functional port pin descriptions (continued)

Package pinouts and signal descriptions

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows how NVUSRO[PAD3V5V] controls the device configuration.

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

Table 9. PAD3V5V field description

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 10. OSCILLATOR_MARGIN field description

Value ¹	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 11. WATCHDOG_EN field description

Value ¹	Description
0	Disable after reset
1	Enable after reset

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

Package pinouts and signal descriptions

- $^2~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C
- ³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.
- ⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- ⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

3.14.2 Power considerations

The average chip-junction temperature, T_J, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

 $P_{\rm INT}$ is the product of $I_{\rm DD}$ and $V_{\rm DD}$, expressed in watts. This is the chip internal power.

P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_{A} . Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.15 I/O pad electrical characteristics

3.15.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low
 electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- · Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.
- Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC) providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

3.15.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 17 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 18 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 19 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 20 provides output driver characteristics for I/O pads when in FAST configuration.

Table 17. I/O pull-up/pull-down DC electrical characteristics

Sym	Symbol		Parameter	Conditions ¹		Unit			
- Cynn	501	С	i urumeter	Conditions	Min	Тур	Мах	onic	
I _{WPU}	СС	Ρ	Weak pull-up current	$V_{IN} = V_{IL}, V_{DD} = 5.0 V \pm 10\%$	PAD3V5V = 0	10	—	150	μA
		С	absolute value		PAD3V5V = 1 ²	10		250	
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 V \pm 10\%$	PAD3V5V = 1	10	—	150	
I _{WPD}	СС	Ρ	Weak pull-down current	$V_{IN} = V_{IH}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10	—	150	μA
		С	absolute value		PAD3V5V = 1	10	_	250	
		Ρ		V _{IN} = V _{IH} , V _{DD} = 3.3 V ± 10%	PAD3V5V = 1	10	—	150	

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified.

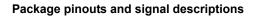

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 18. SLOW configuration output buffer electrical characteristics

Svm	Symbol		Parameter		Conditions ¹		Value		Unit
- Cym		Ŭ	i arameter			Min	Тур	Мах	onic
V _{OH}	CC		Output high level SLOW configuration	Push Pull	$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	V
		С			I _{OH} = –2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	_		
		С			I _{OH} = −1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8	_	—	
V _{OL}	CC	Ρ	Output low level SLOW configuration	Push Pull	I_{OL} = 2 mA, V_{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_		0.1V _{DD}	V
		С			I _{OL} = 2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	_	0.1V _{DD}	
		С			I_{OL} = 1 mA, V_{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)			0.5	

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

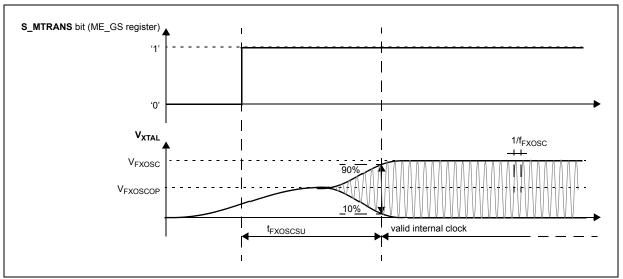
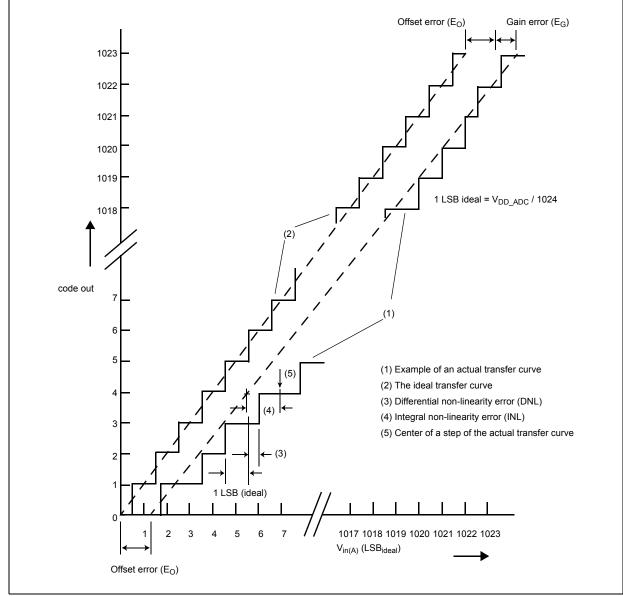


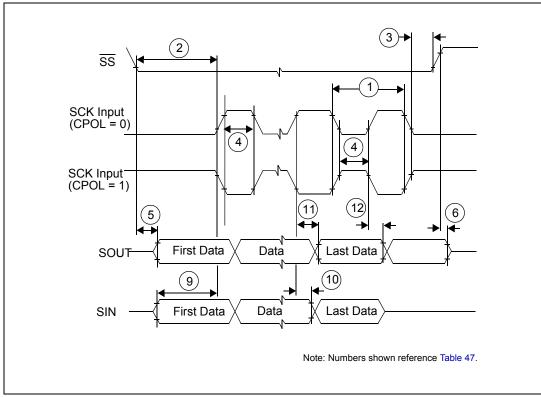
Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram

3.26 ADC electrical characteristics

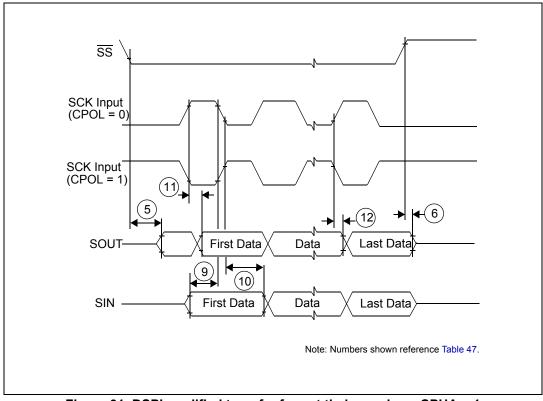
3.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.




Figure 19. ADC characteristic and error definitions

3.26.2 Input impedance and ADC accuracy


In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

Package pinouts and signal descriptions

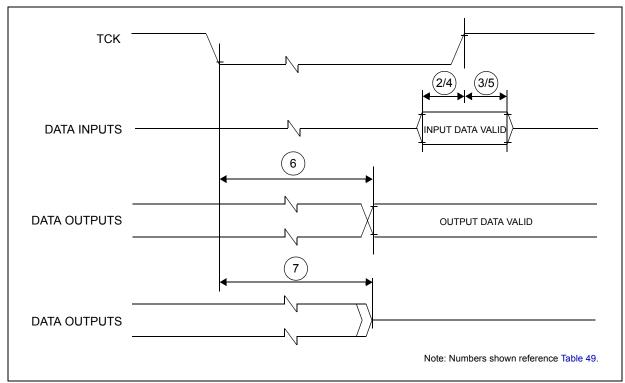


Figure 34. Timing diagram – JTAG boundary scan

4.1 Package mechanical data

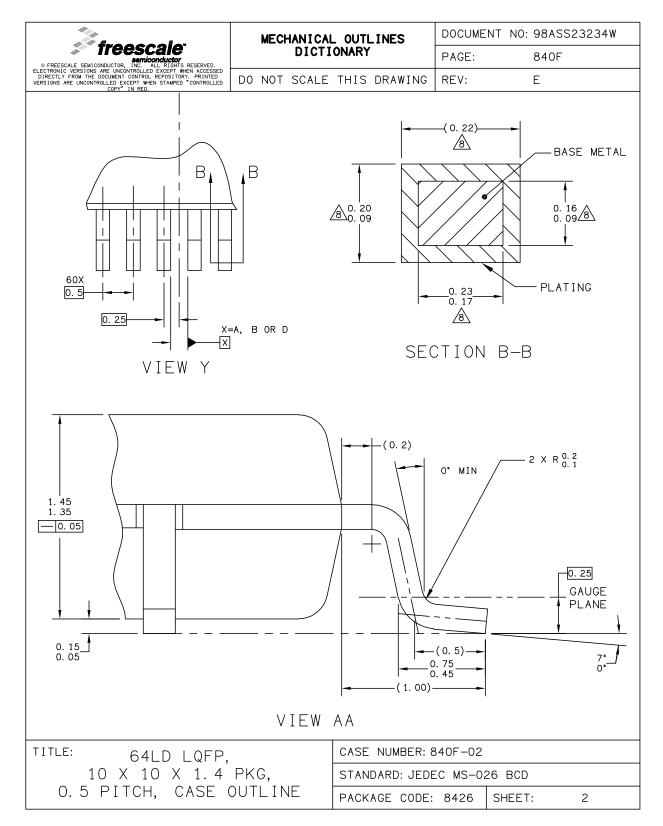


Figure 36. 64 LQFP package mechanical drawing (2 of 3)

	MECHANICAL	OUTLINES	DOCUMENT NO: 98ASS23234W						
Treescale somiconductor o FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTION	IARY	PAGE:	840F					
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE TH	HIS DRAWING	REV:	E					
NOTES:									
1. DIMENSIONS ARE IN MI	LLIMETERS.								
2. DIMENSIONING AND TOL	ERANCING PER AS	ME Y14.5M-19	94.						
3. DATUMS A, B AND D TO	3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.								
A DIMENSIONS TO BE DET	ERMINED AT SEAT	ING PLANE C.							
THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.									
IS 0.25 mm PER SIDE.	A THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.								
A EXACT SHAPE OF EACH	CORNER IS OPTIO	NAL.							
THESE DIMENSIONS APP 0. 1 mm AND 0.25 mm F			HE LEAD	DBETWEEN					
TITLE: 64LD LQFP,	С	ASE NUMBER: 8	40F-02						
10 X 10 X 1.4	PKG, s	TANDARD: JEDE	C MS-02	26 BCD					
0.5 PITCH, CASE (DUTLINE P	ACKAGE CODE:	8426	SHEET: 3					

Figure 37. 64 LQFP package mechanical drawing (3 of 3)

4.1.2 100 LQFP

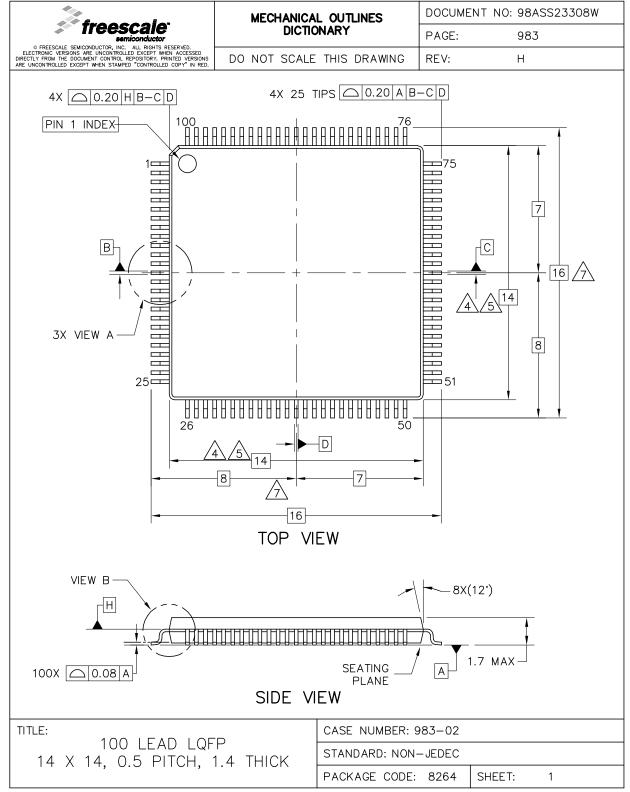


Figure 38. 100 LQFP package mechanical drawing (1 of 3)

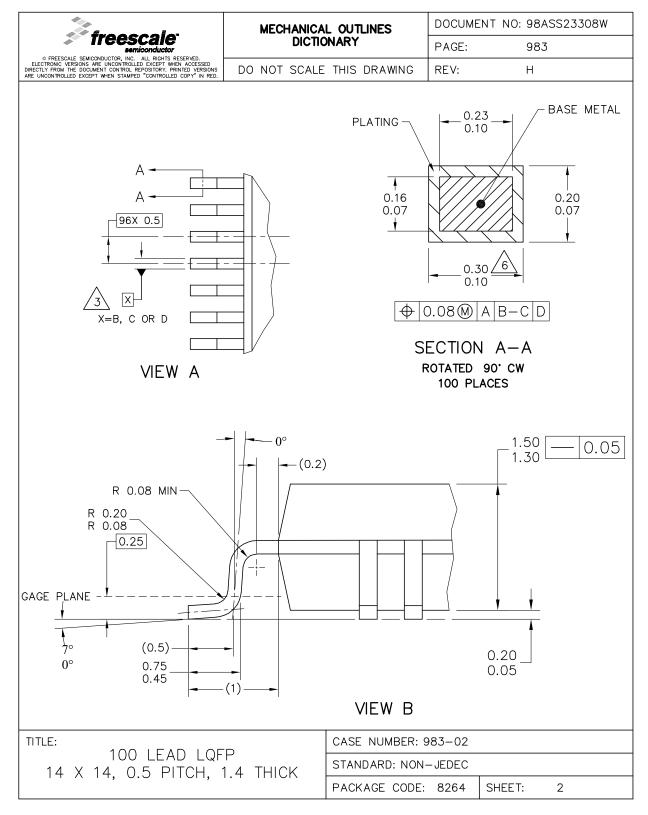
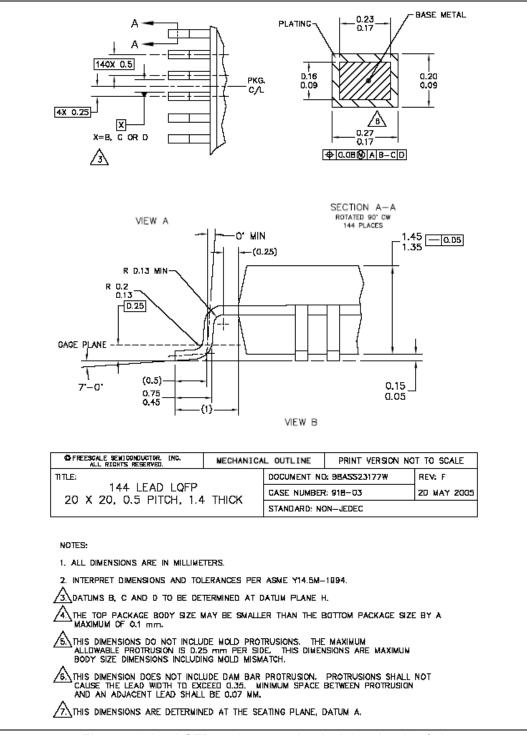



Figure 39. 100 LQFP package mechanical drawing (2 of 3)

Document revision history

Revision	Date	Description of Changes
4	06-Aug-2009	Updated Figure 6 Table 12 • V _{DD_ADC} : changed min value for "relative to V _{DD} " condition • V _{IN} : changed min value for "relative to V _{DD} " condition • I _{CORELV} : added new row Table 14 • Ta-C-Grade Part, TJ-C-Grade Part, TA-V-Grade Part, TJ-V-Grade Part, TA-M-Grade Part, TJ-M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • C _{DEC1} : changed min value • I _{MREG} : changed max value • I _{DD_BV} : added max value • I _{DD_BV} : added max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde m

Table 50. Revision history (continued)

Revision	Date	Description of Changes
10	15 Oct 2012	 Table 1 (MPC5604B/C device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability. Table 3 (MPC5604B/C series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 6 (Functional port pin descriptions): replaced footnote "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions, MPC5604B 208 MAPBGA devices", replaced VDD with VDD_HV Figure 10 (Voltage regulator capacitance connection), updated pin name apperence Renamed Figure 11 (V_{DD_HV} and V_{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") Renamed Figure 12 (V_{DD_HV} and V_{DD_BV} supply constraints during STANDBY mode exit) (was "VDD and VDD_BV supply constraints during STANDBY mode exit) Table 13 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 14 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Section 3.17.1, "Voltage regulator electrical characteristics: replaced "slew rate of V_{DD}/V_{DD_BV}" with "slew rate of both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints apply to the V_{DD}/N_{D_BV} in order to guarantee correct regulator function during STANDBY exit." Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I_{DDMAX} and I_{DDRUN} stating that both currents are drawn only from the V_{DD_BV} pin. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV.
11	14 Nov 2012	In the cover feature list: added "and ECC" at the end of "Up to 512 KB on-chip code flash supported with the flash controller" added "with ECC" at the end of "Up to 48 KB on-chip SRAM" Table 13 (Recommended operating conditions (3.3 V)), removed minimum value of T_{VDD} and relative footnote. Table 14 (Recommended operating conditions (5.0 V)), removed minimum value of T_{VDD} and relative footnote.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

MPC5604BC Rev. 11 12/2012

