E·XFL

NXP USA Inc. - PPC5604BCLL64 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc5604bcll64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
- ⁷ CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
- ⁸ I/O count based on multiplexing with peripherals
- ⁹ All LQFP64information is indicative and must be confirmed during silicon validation.
- ¹⁰ LBGA208 available only as development package for Nexus2+

Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function							
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter							
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device							
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity							
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT							
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices							
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes							
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.							
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events							
Flash memory	Provides non-volatile storage for program code, constants and variables							
FlexCAN (controller area network)	Supports the standard CAN communications protocol							
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation							
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device							
Inter-integrated circuit (I ² C™) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices							
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests							
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode							
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load							
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks							
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications							
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU							
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device							

Table 3. MPC5604B/C series block summary

Note: Availability of port pin alternate functions depends on product selection.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	PC[8]	PC[13]	NC	NC	PH[8]	PH[4]	PC[5]	PC[0]	NC	NC	PC[2]	NC	PE[15]	NC	NC	NC	A
В	PC[9]	PB[2]	NC	PC[12]	PE[6]	PH[5]	PC[4]	PH[9]	PH[10]	NC	PC[3]	PG[11]	PG[15]	PG[14]	PA[11]	PA[10]	в
С	PC[14]	VDD_HV	PB[3]	PE[7]	PH[7]	PE[5]	PE[3]	VSS_LV	PC[1]	NC	PA[5]	NC	PE[14]	PE[12]	PA[9]	PA[8]	С
D	NC	NC	PC[15]	NC	PH[6]	PE[4]	PE[2]	VDD_LV	VDD_HV	NC	PA[6]	NC	PG[10]	PF[14]	PE[13]	PA[7]	D
Е	PG[4]	PG[5]	PG[3]	PG[2]					1				PG[1]	PG[0]	PF[15]	VDD_HV	Е
F	PE[0]	PA[2]	PA[1]	PE[1]									PH[0]	PH[1]	PH[3]	PH[2]	F
G	PE[9]	PE[8]	PE[10]	PA[0]			VSS_HV	VSS_HV	VSS_HV	VSS_HV	ſ		VDD_HV	NC	NC	MSEO	G
н	VSS_HV	PE[11]	VDD_HV	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			MDO3	MDO2	MDO0	MDO1	н
J	RESET	VSS_LV	NC	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	NC	NC	NC	J
к	EVTI	NC	VDD_BV	VDD_LV			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	PG[12]	PA[3]	PG[13]	к
L	PG[9]	PG[8]	NC	EVTO				I	1	1	L		PB[15]	PD[15]	PD[14]	PB[14]	L
М	PG[7]	PG[6]	PC[10]	PC[11]									PB[13]	PD[13]	PD[12]	PB[12]	М
Ν	PB[1]	PF[9]	PB[0]	NC	NC	PA[4]	VSS_LV	EXTAL	VDD_HV	PF[0]	PF[4]	NC	PB[11]	PD[10]	PD[9]	PD[11]	Ν
Ρ	PF[8]	NC	PC[7]	NC	NC	PA[14]	VDD_LV	XTAL	PB[10]	PF[1]	PF[5]	PD[0]	PD[3]	VDD_HV _ADC	PB[6]	PB[7]	Ρ
R	PF[12]	PC[6]	PF[10]	PF[11]	VDD_HV	PA[15]	PA[13]	NC	OSC32K _XTAL	PF[3]	PF[7]	PD[2]	PD[4]	PD[7]	VSS_HV _ADC	PB[5]	R
т	NC	NC	NC	МСКО	NC	PF[13]	PA[12]	NC	OSC32K _EXTAL	PF[2]	PF[6]	PD[1]	PD[5]	PD[6]	PD[8]	PB[4]	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Not	Note: 208 MAPBGA available only as development package for Nexus 2+.												NC	= Not c	connecte	ed	

Note: 208 MAPBGA available only as development package for Nexus 2+.

Figure 6. 208 MAPBGA configuration

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up. •
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion. •
- JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available). •
- Main oscillator pads (EXTAL, XTAL) are tristate. ٠
- Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.

		1					uo		Pin	num	ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁴	SIUL — — LINFlex_2 WKPU	I/O — — — — —	S	Tristate	2	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ¹¹ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	I/O O O O	М	Tristate	13	13	22	28	М3
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ¹¹ WKPU[5] ⁴	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	I/O 	S	Tristate			21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3	GPIO[44] E0UC[12] — SIN_2	SIUL eMIOS_0 DSPI_2	/0 /0 	Μ	Tristate			97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate			98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I/O I	S	Tristate		_	3	3	C1
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O I/O	М	Tristate	-	—	4	4	D3
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — — GPI[4]	SIUL — — ADC	 	I	Tristate		_	41	63	P12

Table 6. Functional port pin descriptions (continued)

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — — GPI[5]	SIUL — — ADC	 - 	I	Tristate	_	_	42	64	T12
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — — GPI[6]	SIUL — — ADC	 - 	I	Tristate	_	_	43	65	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — — GPI[7]	SIUL — — — ADC	 - 	I	Tristate	_	_	44	66	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3	GPIO[52] — — — GPI[8]	SIUL — — — ADC	 	I	Tristate	_	_	45	67	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — GPI[9]	SIUL — — ADC	 - 	I	Tristate	_	_	46	68	T13
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — GPI[10]	SIUL — — ADC	 - 	I	Tristate	_	_	47	69	T14
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — — GPI[11]	SIUL — — ADC	 	I	Tristate	_	_	48	70	R14
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — GPI[12]	SIUL — — ADC	 - 	I	Tristate	_	_	49	71	T15

Table 6. Functional port pin descriptions (continued)

		1					uo		Pin	num	ber	
Port pin	PCR	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O I/O I	J	Tristate	_	_	_	57	T10
PF[3]	PCR[83]	AF0 AF1 AF2 AF3	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	_	_	58	R10
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	_		59	N11
PF[5]	PCR[85]	AF0 AF1 AF2 AF3	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate		_		60	P11
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — — ANS[14]	SIUL eMIOS_0 — ADC	/O /O 	J	Tristate				61	T11
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — — ANS[15]	SIUL — — — ADC	I/O — — — I	J	Tristate	_	_	_	62	R11
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O O	М	Tristate		—		34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 	GPIO[89] CS5_0 CAN2RX ¹⁵ CAN3RX ¹⁴	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — — — — — —	S	Tristate				33	N2

Table 6. Functional port pin descriptions (continued)

3.14 Thermal characteristics

3.14.1 Package thermal characteristics

Sym	nbol	С	Parameter	Conditions ²	Pin count	Value	Unit
R_{\thetaJA}	CC	D	Thermal resistance,	Single-layer board - 1s	64	60	°C/W
			junction-to-ambient natural		100	64	
					144	64	
				Four-layer board - 2s2p	64	42	1
					100	51	
					144	49	1
$R_{\theta JB}$	CC	D	Thermal resistance,	Single-layer board - 1s	64	24	°C/W
			junction-to-board*		100	36	1
					144	37	1
				Four-layer board - 2s2p	64	24	1
					100	34	1
					144	35	1
R_{\thetaJC}	СС	D	Thermal resistance,	Single-layer board - 1s	64	11	°C/W
			junction-to-case		100	22	1
				144	22	1	
				Four-layer board - 2s2p	64	11	1
					100	22	1
					144	22	1
Ψ_{JB}	CC	D	Junction-to-board thermal	Single-layer board - 1s	64	TBD	°C/W
			characterization parameter, natural convection		100	33	1
					144	34	1
				Four-layer board - 2s2p	64	TBD	1
					100	34	1
					144	35	1
Ψ_{JC}	CC	D	Junction-to-case thermal	Single-layer board - 1s	64	TBD	°C/W
			characterization parameter, natural convection		100	9	1
					144	10	1
				Four-layer board - 2s2p	64	TBD	1
					100	9	1
					144	10	1

Table 15. LQFP thermal characteristics¹

¹ Thermal characteristics are based on simulation.

Symbo		C	Paramotor	Condi	tions ¹		Value		Unit
Symbo	1	C	Falameter	Condi		Min	Тур	Мах	Unit
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$			6.6	mA
			configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	_	_	13.4	
				C _L = 100 pF, 13 MHz		_	_	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,	%,		5	
				C _L = 25 pF, 40 MHz		_	_	8.5	
				C _L = 100 pF, 13 MHz				11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,			22	mA
			configuration	C _L = 25 pF, 64 MHz	PAD3V5V=0	_	_	33	
				C _L = 100 pF, 40 MHz		_	_	56	
		$C_L = 25 \text{ pF}, 40 \text{ MHz}$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$			14				
				C _L = 25 pF, 64 MHz	PAD3V5V=1	_	_	20	
				C _L = 100 pF, 40 MHz		_	_	35	
IAVGSEG	SR	D	Sum of all the static I/O	V _{DD} = 5.0 V ± 10%, PA	AD3V5V = 0	_	_	70	mA
			segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	_	65	

 Table 23. I/O consumption (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 24 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Supply segment				144/100	LQFP		64 LQFP					
oup	piy seg	ment	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weigl	nt 5 V	Weight 3.3 V		
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
4	4	3	PB[3]	10%	_	12%	—	10%		12%		
			PC[9]	10%	_	12%	—	10%		12%		
		_	PC[14]	9%		11%	—				_	
		—	PC[15]	9%	13%	11%	12%	_	—	_		
	_	—	PG[5]	9%	_	11%	—	_	—	_		
		_	PG[4]	9%	12%	10%	11%					
	_	—	PG[3]	9%	_	10%	_	_	_	_	_	

Table 24. I/O weight¹

0					144/100	LQFP			64 L	QFP	
Sup	piy seg	ment	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
4	—	—	PG[2]	8%	12%	10%	10%	—	_	—	—
	4	3	PA[2]	8%		9%	—	8%		9%	—
		_	PE[0]	8%	_	9%	—	—		—	_
		3	PA[1]	7%	_	9%	—	7%	_	9%	—
		_	PE[1]	7%	10%	8%	9%	—		—	_
		_	PE[8]	7%	9%	8%	8%	—	_	—	_
		_	PE[9]	6%	_	7%	—	—	_	—	_
		_	PE[10]	6%	_	7%	—	—	_	—	
		3	PA[0]	5%	8%	6%	7%	5%	8%	6%	7%
			PE[11]	5%	_	6%	_	_		—	_
1	_	—	PG[9]	9%	_	10%	—	—	_	—	—
		—	PG[8]	9%	_	11%	—	—	_	—	—
	1	—	PC[11]	9%	_	11%	_	_		—	_
		1	PC[10]	9%	13%	11%	12%	9%	13%	11%	12%
		—	PG[7]	10%	14%	11%	12%	—	_	—	—
		_	PG[6]	10%	14%	12%	12%	_		—	_
	1	1	PB[0]	10%	14%	12%	12%	10%	14%	12%	12%
			PB[1]	10%	_	12%	—	10%	_	12%	—
		—	PF[9]	10%	_	12%	_	_	_	—	—
		—	PF[8]	10%	15%	12%	13%	—	_	—	—
		_	PF[12]	10%	15%	12%	13%	—	_	—	_
	1	1	PC[6]	10%	_	12%	—	10%	_	12%	—
			PC[7]	10%	_	12%	—	10%		12%	—
	—	—	PF[10]	10%	14%	12%	12%	—		—	—
		—	PF[11]	10%	_	11%	—	—	_	_	—
	1	1	PA[15]	9%	12%	10%	11%	9%	12%	10%	11%
	_		PF[13]	8%		10%	_		_		
	1	1	PA[14]	8%	11%	9%	10%	8%	11%	9%	10%
			PA[4]	8%		9%		8%		9%	
			PA[13]	7%	10%	9%	9%	7%	10%	9%	9%
			PA[12]	7%		8%		7%		8%	

Table 24. I/O weight¹ (continued)

Sun	Supply segment			144/100) LQFP		64 LQFP					
Sup	piy seg	ment	Pad	Weigł	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V	
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
3	3	2	PA[5]	5%	7%	6%	6%	6%	8%	7%	7%	
			PA[6]	5%	—	6%	—	5%	—	6%	—	
			PH[10]	4%	6%	5%	5%	5%	7%	6%	6%	
			PC[1]	5%		5%	_	5%		5%		
4	4	3	PC[0]	6%	9%	7%	8%	6%	9%	7%	8%	
			PH[9]	7	7	8	8	7	7	8	8	
			PE[2]	7%	10%	9%	9%	_	_	—		
		_	PE[3]	8%	11%	9%	9%	—	—	—	—	
		3	PC[5]	8%	11%	9%	10%	8%	11%	9%	10%	
			PC[4]	8%	12%	10%	10%	8%	12%	10%	10%	
			PE[4]	8%	12%	10%	11%	_	—	—	—	
		_	PE[5]	9%	12%	10%	11%	—	—	—	—	
			PH[4]	9%	13%	11%	11%	_	_	—	_	
		_	PH[5]	9%	—	11%	—	—	—	—	—	
		_	PH[6]	9%	13%	11%	12%	—	—	—	—	
			PH[7]	9%	13%	11%	12%	_	_	—	_	
		_	PH[8]	10%	14%	11%	12%	—	—	—	—	
	4	_	PE[6]	10%	14%	12%	12%	—	—	—	—	
			PE[7]	10%	14%	12%	12%	_	_	—	_	
		—	PC[12]	10%	14%	12%	13%	—	—	—	—	
		—	PC[13]	10%	—	12%	—	—	—	—	—	
		3	PC[8]	10%	_	12%	—	10%	_	12%	—	
			PB[2]	10%	15%	12%	13%	10%	15%	12%	13%	

Table 24. I/O weight¹ (continued)

 $\overline{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to125 °C, unless otherwise specified

² Segments shown apply to MPC560xB devices only

³ SRC: "Slew Rate Control" bit in SIU_PCR

3.16 **RESET** electrical characteristics

The device implements a dedicated bidirectional RESET pin.

Figure 14. Crystal oscillator and resonator connection scheme

Table 37. Crystal description

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8	NX5032GA	300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

¹ The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the Equation 4:

Eqn. 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

Figure 20. Input equivalent circuit (precise channels)

Figure 23. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

$$\frac{V_{A2}}{V_{A}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}$$

Eqn. 11

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

Symbol		·	Deremeter	Conditional		Value			Unit
Symbo		C	Falameter	Conditions		Min	Тур	Max	
C _{P3}	СС	D	ADC input pin capacitance 3	—		—		1	pF
R _{SW1}	СС	D	Internal resistance of analog source	—		—	_	3	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	-		_	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_		_	—	2	kΩ
I _{INJ}	SR	_	Input current Injection	current Injection Current injection on one ADC input, different from the converted one	V _{DD} = 3.3 V ± 10%	-5	—	5	mA
					V _{DD} = 5.0 V ± 10%	-5	_	5	
INL	СС	Т	Absolute value for integral non-linearity	No overload		—	0.5	1.5	LSB
DNL	СС	Т	Absolute differential non-linearity	No overload		_	0.5	1.0	LSB
E _O	СС	Т	Absolute offset error	—		—	0.5	—	LSB
E _G	CC	Т	Absolute gain error	—		—	0.6	—	LSB
TUEp	TUEP CC P Total unadjusted error ⁷ Wi		Without current injection		-2	0.6	2	LSB	
T input o		for precise channels, input only pins	With current injection		-3		3		
TUEx	Ex CC T Total unadjusted error ⁷ Without current		injection	-3	1	3	LSB		
		Т	TIOT EXTENDED CHANNEL	With current injection		-4		4	

Table 45. ADC conversion	n characteristics	(continued)
--------------------------	-------------------	-------------

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.

⁶ This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

3.27.2 DSPI characteristics

No	No. Symbol		C	Parameter		DSPI0/DSPI1			DSPI2			Unit
NO.			C			Min	Тур	Max	Min Typ Max		Мах	
1	t _{scк}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125		—	333	_	_	ns
			D		Slave mode (MTFE = 0)	125		_	333	—	_	
			D		Master mode (MTFE = 1)	83		_	125	_	_	
			D		Slave mode (MTFE = 1)	83		_	125	_		
—	f _{DSPI}	SR	D	DSPI digital controller frequency		—	—	f _{CPU}	_	—	f _{CPU}	MHz
_	∆t _{CSC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→0	Master mode	_	_	130 ²	_	_	15 ³	ns
—	∆t _{ASC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→1	Master mode	_	_	130 ³	_	_	130 ³	ns
2	t _{CSCext} ⁴	SR	D	CS to SCK delay	Slave mode	32	_	_	32	—	_	ns
3	t _{ASCext} 5	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	_	1/f _{DSPI} + 5	—	_	ns
4	t _{SDC}	CC	D	SCK duty cycle	Master mode	—	t _{SCK} /2	_	_	t _{SCK} /2	_	ns
		SR	D		Slave mode	t _{SCK} /2	—	_	t _{SCK} /2	—	_	
5	t _A	SR	D	Slave access time	Slave mode	—	—	1/f _{DSPI} + 70	_	—	1/f _{DSPI} + 130	ns
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7	—	_	7	—	_	ns
7	t _{PCSC}	SR	D	PCSx to PCSS time		0	—	_	0	—	_	ns
8	t _{PASC}	SR	D	PCSS to PCSx time		0	—	—	0	—	—	ns
9	t _{SUI}	SR	D	Data setup time for inputs	Master mode	43	—	—	145	—	—	ns
					Slave mode	5	—	—	5	—	—	1

Table 47. DSPI characteristics¹

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Package pinouts and signal descriptions

80

Figure 28. DSPI modified transfer format timing – master, CPHA = 0

Package characteristics

	MECHANICAL OUTLINES DICTIONARY DO NOT SCALE THIS DRAWING		DOCUMENT NO: 98ASS23234W						
Treescale somiconductor o FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PAGE:	840F					
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.			REV:	E					
NOTES:									
1. DIMENSIONS ARE IN MI	LLIMETERS.								
2. DIMENSIONING AND TOL	ERANCING PER	ASME Y14.5M-19	994.						
3. DATUMS A, B AND D TO) BE DETERMINE	D AT DATUM PLA	NE H.						
A DIMENSIONS TO BE DET	FERMINED AT SE	ATING PLANE C.							
THIS DIMENSION DOES PROTRUSION SHALL NOT BY MORE THAN 0.08 mr LOCATED ON THE LOWEF PROTRUSION AND ADJAC	A THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.								
THIS DIMENSION DOES IS 0.25 mm PER SIDE. DIMENSION INCLUDING	NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE MOLD MISMATCH.								
A EXACT SHAPE OF EACH	A EXACT SHAPE OF EACH CORNER IS OPTIONAL.								
A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.									
TITLE: 641 D LOFP		CASE NUMBER: 8	340F-02						
10 X 10 X 1. 4	PKG,	STANDARD: JEDEC MS-026 BCD							
0.5 PITCH, CASE (DUTLINE	PACKAGE CODE:	8426	SHEET: 3					

Figure 37. 64 LQFP package mechanical drawing (3 of 3)

Package characteristics

Figure 39. 100 LQFP package mechanical drawing (2 of 3)

Document revision history

Revision	Date	Description of Changes
Revision 2	Date 06-Mar-2009	Description of Changes Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Features: —Replaced 32 KB with 48 KB as max SRAM size —Updated description of INTC —Changed max number of GPIO pins from 121 to 123 Updated Section 1.2, Description Updated Table 2 Added Section 2, Block diagram Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these are found in the device reference manual) Updated Figure 5: —Replaced VPP with VSS_HV on pin 18 —Added MA[1] as AF3 for PC[10] (pin 28) —Added MA[0] as AF2 for PC[3] (pin 116) —Changed description for pin 120 to PH[10] / GPIO[122] / TMS —Changed description for pin 127 to PH[9] / GPIO[121] / TCK —Replaced VPP with VSS_HV on pin 14 —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 77) —Changed description for pin 81 to PH[10] / GPIO[122] / TMS
		 Changed description for pin 88 to PH[9] / GPIO[121] / TCK Removed E1UC[19] from pin 76 Replaced [11] with WKUP[11] for PB[3] (pin 1) Replaced NMI[0] with NMI on pin 7 Updated Figure 6: Changed description for ball B8 from TCK to PH[9] Changed description for ball B9 from TMS to PH[10] Updated descriptions for balls R9 and T9 Added Section 3.10, Parameter classification and tagged parameters in tables where appropriate Added Section 3.11, NVUSRO register Updated Table 12 Section 3.13, Recommended operating conditions: Added note on RAM data retention to end of section Updated Table 13 and Table 14 Added Section 3.14.1, Package thermal characteristics Updated Figure 7

Table 50. Revision history (continued)