E·XFL

NXP USA Inc. - SPC5602BF2MLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

	• • • •
Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602bf2mll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C™) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 3. MPC5604B/C series block summary

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PE[10]	PCR[74]	AF0 AF1 AF2 AF3	GPIO[74] LIN3TX CS3_1 EIRQ[10]	SIUL LINFlex_3 DSPI_1 SIUL	I/O O - I	S	Tristate	_		11	15	G3
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] — CS4_1 — LIN3RX WKPU[14] ⁴	SIUL DSPI_1 LINFlex_3 WKPU	I/O — 0 — 1	S	Tristate		_	13	17	H2
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — E1UC[19] ¹³ — SIN_2 EIRQ[11]	SIUL — eMIOS_1 — DSPI_2 SIUL	/O /O 	S	Tristate			76	109	C14
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate		_		103	D15
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 —	GPIO[78] SCK_2 E1UC[21] — EIRQ[12]	SIUL DSPI_2 eMIOS_1 SIUL	/O /O /O 	S	Tristate	_	_	_	112	C13
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O —	Μ	Tristate	_		_	113	A13
PF[0]	PCR[80]	AF0 AF1 AF2 AF3 —	GPIO[80] E0UC[10] CS3_1 — ANS[8]	SIUL eMIOS_0 DSPI_1 — ADC	/O /O 	J	Tristate	_			55	N10
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 ANS[9]	SIUL eMIOS_0 DSPI_1 I	/O /O 0 	J	Tristate	_			56	P10

Table 6. Functional port pin descriptions (continued)

3.13 Recommended operating conditions

Symbol		Baramatar	Conditions	Va	lue	Unit
Symbol		Parameter	Conditions	Min	Мах	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	—	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})		V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ³	SR	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
		respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁴	SR	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁵	3.6	V
		with respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	—	V
		(V _{SS})	Relative to V_{DD}		V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—		0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias		-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
T _{A M-Grade Part}	SR	Ambient temperature under bias		-40	125	
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	

Table 13. Recommended operating conditions (3.3 V)

 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

³ 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 4 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

Symbol		Parametar	Conditions	Va	lue	Unit
Symbol		Parameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to	—	4.5	5.5	V
		ground (V _{SS})	Voltage drop ²	3.0	5.5	
V _{SS_LV} ³	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ⁴	SR	Voltage on VDD_BV pin (regulator supply)	_	4.5	5.5	V
		with respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁵	SR	Voltage on VDD_HV_ADC pin (ADC	—	4.5	5.5	V
		reference) with respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to	—	V _{SS} -0.1	—	V
		ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	_	—	0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade} Part	SR	Ambient temperature under bias	1	-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias	1	-40	130	
T _{A M-Grade} Part	SR	Ambient temperature under bias	1	-40	125	
T _{J M-Grade} Part	SR	Junction temperature under bias	1	-40	150	

Table 14. Recommended operating conditions (5.0 V)

 $^1\,$ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

³ 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair. ⁴ 100 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 $^5\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁶ Guaranteed by device validation

NOTE

RAM data retention is guaranteed with $V_{DD\ LV}$ not below 1.08 V.

- $^2~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C
- ³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.
- ⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- ⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

3.14.2 Power considerations

The average chip-junction temperature, T_J, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

 $P_{\rm INT}$ is the product of $I_{\rm DD}$ and $V_{\rm DD}$, expressed in watts. This is the chip internal power.

P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_{A} . Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.15 I/O pad electrical characteristics

3.15.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low
 electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- · Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.
- Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC) providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

3.15.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 17 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 18 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 19 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 20 provides output driver characteristics for I/O pads when in FAST configuration.

Table 17. I/O pull-up/pull-down DC electrical characteristics

Symbol		С	Paramotor	Conditions ¹	Value			Unit		
	Symbol			Farameter	Conditions		Min	Тур	Max	onne
	I _{WPU}	CC	Ρ	Weak pull-up current	$V_{IN} = V_{IL}, V_{DD} = 5.0 V \pm 10\%$	PAD3V5V = 0	10	_	150	μA
			С	absolute value		PAD3V5V = 1 ²	10	_	250	
			Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 V \pm 10\%$	PAD3V5V = 1	10		150	
	I _{WPD}	CC	Ρ	Weak pull-down current	$V_{IN} = V_{IH}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10		150	μA
			С	absolute value		PAD3V5V = 1	10	_	250	
			Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 18. SLOW configuration output buffer electrical characteristics

Symbol		C	Paramotor		Conditions ¹		Value		Unit
Joyin	1001	Ŭ	i arameter		Conditions	Min	Тур	Мах	onne
V _{OH}	СС	Ρ	Output high level SLOW configuration	Push Pull	Push Pull $I_{OH} = -2 \text{ mA}$, $V_{DD} = 5.0 \text{ V} \pm 10\%$, PAD3V5V = 0 (recommended)		_	_	V
		С			I _{OH} = -2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	_	_	
		С			I _{OH} = −1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8	_	—	
V _{OL}	СС	Ρ	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	_	0.1V _{DD}	V
		С			I _{OL} = 2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	_	0.1V _{DD}	
		С			I _{OL} = 1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5	

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Symbol		C	Paramotor		Conditions ¹	,		Unit	
Sym	1001	U	Falameter		Conditions	Min	Тур	Max	Omt
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}		—	V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}		_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}		_	
		С			I _{OH} = −1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8	_	_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_	_	
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	-	_	0.2V _{DD}	V
		Ρ			I_{OL} = 2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}	
		С			I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	—		0.1V _{DD}	
		С			I_{OL} = 1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	0.1V _{DD}	

Table 19.	MEDIUM	configuration	output buffer	electrical	characteristics
-----------	--------	---------------	---------------	------------	-----------------

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 ² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 20. FAST configuration output buffer	r electrical characteristics
--	------------------------------

Symbol		c	Parameter		Conditions ¹			Value			
			i didilotoi		Conditione	Min	Тур	Max	onic		
V _{OH}	СС	Ρ	Output high level FAST configuration	Push Pull	$I_{OH} = -14$ mA, $V_{DD} = 5.0$ V ± 10%, PAD3V5V = 0 (recommended)	0.8V _{DD}	_	_	V		
		С			I _{OH} = –7mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	—	_			
	C		I _{OH} = -11mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8	_	_					

Supply segment				144/100) LQFP			64 L	QFP		
Sup	piy seg	ment	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
2	2	2	PB[13]	10%	—	12%	—	18%	—	21%	—
			PD[14]	10%	—	12%	—	—	—	—	—
		2	PB[14]	10%	—	12%	—	18%	—	21%	—
			PD[15]	10%	—	11%	—	—	—	—	—
		2	PB[15]	9%	—	11%	—	18%	—	21%	_
			PA[3]	9%	_	11%	_	18%	_	21%	—
	—		PG[13]	9%	13%	10%	11%	_	_	—	—
	—		PG[12]	9%	12%	10%	11%	—	—	—	—
	—	_	PH[0]	5%	8%	6%	7%	—	—	—	—
			PH[1]	5%	7%	6%	6%	—	—	—	—
	—	_	PH[2]	5%	6%	5%	6%		_	_	
	—	_	PH[3]	4%	6%	5%	5%	—	—	—	—
			PG[1]	4%	—	4%	—	—	—	—	—
		_	PG[0]	3%	4%	4%	4%		_	_	_
3	_	_	PF[15]	3%	—	4%	—	—	—	—	—
			PF[14]	4%	5%	5%	5%	—	—	—	—
	_	_	PE[13]	4%	_	5%	—	_	_	—	—
	3	2	PA[7]	5%	_	6%	_	16%	_	19%	_
			PA[8]	5%	—	6%	—	16%	—	19%	_
			PA[9]	5%		6%	—	15%		18%	_
			PA[10]	6%	—	7%	—	15%	—	18%	—
			PA[11]	6%	—	8%	—	14%	—	17%	—
			PE[12]	7%	—	8%	—	—	—	—	—
	—	—	PG[14]	7%	—	8%	—	—	—	—	—
	—	—	PG[15]	7%	10%	8%	9%	—	—	—	—
	—	—	PE[14]	7%		8%					
	_	—	PE[15]	7%	9%	8%	8%				
	_	_	PG[10]	6%	—	8%	—	—	—	—	—
	_	—	PG[11]	6%	9%	7%	8%				
	3	2	PC[3]	6%		7%		7%		9%	
			PC[2]	6%	8%	7%	7%	6%	9%	8%	8%

Table 24. I/O weight¹ (continued)

Table 26. Vo	oltage regula	ator electrical	characteristics

Symbol		c	Paramotor	Conditions ¹		Value		Unit
Symbol		C	Faianielei	Conditions	Min	Тур	Мах	Onic
C _{REGn}	SR		Internal voltage regulator external capacitance	_	200	—	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	—	0.2	Ω
C _{DEC1}	SR		Decoupling capacitance ² ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ³	470 ⁴	—	nF
				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400		—	
C _{DEC2}	SR	—	Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR	_	Maximum slope on V _{DD}			—	250	mV/µs
Δ _{VDD} (STDBY)	SR		Maximum instant variation on V _{DD} during standby exit		_	_	30	mV

Symbol		C	Paramotor	Conditions		Value		Unit
Symbo	,,	C	Falanielei			Тур	Мах	Onne
P/E	/E CC C Number of program/erase cycles		Number of program/erase cycles	16 KB blocks	100,000	_		cycles
			per block over the operating temperature range (T_1)	32 KB blocks	10,000	100,000	_	
				128 KB blocks	1,000	100,000	_	
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	_	_	years
				Blocks with 1,001–10,000 P/E cycles	10	—	_	
				Blocks with 10,001–100,000 P/E cycles	5	_	_	

Table 30. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 31. Flash read access timing

Symb	ool	С	Parameter	Conditions ¹	Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 $1 V_{DD}$ = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.19.2 Flash power supply DC characteristics

Table 32 shows the power supply DC characteristics on external supply.

Table 32. Flash memory power supply DC electrical characteristics

Symbo	ol.	C	Parameter	Conditions ¹	Value			Unit
Cymb		Ŭ	i didileter	Mi		Тур	Max	ome
I _{FREAD} ²	CC	D	Sum of the current consumption on VDD_HV and VDD_BV on read access	Code flash memory module read $f_{CPU} = 64 \text{ MHz}^3$	_	15	33	mA
				Data flash memory module read f _{CPU} = 64 MHz ³	-	15	33	
I _{FMOD} ²	CC	D	Sum of the current consumption on VDD_HV and VDD_BV on matrix modification (program/erase)	Program/Erase ongoing while reading code flash memory registers f _{CPU} = 64 MHz ³	_	15	33	mA
				Program/Erase ongoing while reading data flash memory registers f _{CPU} = 64 MHz ³	_	15	33	

Symbo	I	С	Ratings	Ratings Conditions C		Max value	Unit
V _{ESD(HBM)}	СС	Т	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	СС	Т	Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	СС	Т	Electrostatic discharge voltage	$T_A = 25 \degree C$	C3A	500	
			(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

 Table 35. ESD absolute maximum ratings^{1 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 36. Latch-up results

Sy	mbol	С	Parameter	Conditions	Class
LU	CC	Т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the Equation 4:

Eqn. 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

Figure 20. Input equivalent circuit (precise channels)

Figure 23. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

$$\frac{V_{A2}}{V_{A}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}$$

Eqn. 11

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

Table 47. DSPI characteristics¹ (continued)

No	Symbo	a.	0	Devementer	Parameter		SPI0/DS	PI1		DSPI	2	llmit
NO.	Symbo	01		Parameter			Тур	Мах	Min	Тур	Max	Onit
10	t _{HI}	SR	D	Data hold time for inputs	Master mode	0		_	0	—	_	ns
					Slave mode	2 ⁶	-	—	2 ⁶	—	—	-
11	t _{SUO} 7	СС	D	Data valid after SCK edge	Master mode	—	-	32	—	—	50	ns
					Slave mode	—	—	52	—	—	160	-
12	t _{HO} 7	СС	D	Data hold time for outputs	Master mode	0	-	—	0	—	—	ns
					Slave mode	8	—	—	13	—	—	1

Operating conditions: C_L = 10 to 50 pF, Slew_{IN} = 3.5 to 15 ns.

² Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.

³ Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

⁴ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.

⁵ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{ASC} to ensure positive t_{ASCext}.

⁶ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.

⁷ SCK and SOUT configured as MEDIUM pad

Figure 28. DSPI modified transfer format timing – master, CPHA = 0

5 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

6 Document revision history

Table 50 summarizes revisions to this document.

Table 50. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.

Document revision history

Revision	Date	Description of Changes
Revision 2	Date 06-Mar-2009	Description of Changes Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Features: —Replaced 32 KB with 48 KB as max SRAM size —Updated description of INTC —Changed max number of GPIO pins from 121 to 123 Updated Section 1.2, Description Updated Table 2 Added Section 2, Block diagram Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these are found in the device reference manual) Updated Figure 5: —Replaced VPP with VSS_HV on pin 18 —Added MA[1] as AF3 for PC[10] (pin 28) —Added MA[0] as AF2 for PC[3] (pin 116) —Changed description for pin 120 to PH[10] / GPIO[122] / TMS —Changed description for pin 127 to PH[9] / GPIO[121] / TCK —Replaced VPP with VSS_HV on pin 14 —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 77) —Changed description for pin 81 to PH[10] / GPIO[122] / TMS
		 Changed description for pin 88 to PH[9] / GPIO[121] / TCK Removed E1UC[19] from pin 76 Replaced [11] with WKUP[11] for PB[3] (pin 1) Replaced NMI[0] with NMI on pin 7 Updated Figure 6: Changed description for ball B8 from TCK to PH[9] Changed description for ball B9 from TMS to PH[10] Updated descriptions for balls R9 and T9 Added Section 3.10, Parameter classification and tagged parameters in tables where appropriate Added Section 3.11, NVUSRO register Updated Table 12 Section 3.13, Recommended operating conditions: Added note on RAM data retention to end of section Updated Table 13 and Table 14 Added Section 3.14.1, Package thermal characteristics Updated Figure 7

Table 50. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
4	06-Aug-2009	Updated Figure 6 Table 12 • V _{DD_ADC} : changed min value for "relative to V _{DD} " condition • V _{IN} : changed min value for "relative to V _{DD} " condition • I _{CORELV} : added new row Table 14 • T _{AC-Grade Part,} T _J C-Grade Part, T _A V-Grade Part, T _J V-Grade Part, T _A M-Grade Part, T _J M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • C _{DEC1} : changed min value • I _{MREG} : changed max value • I _{MREG} : changed max value • I _{DD_BV} : added max value • V _{LVDHV3L} : added max value • V _{LVDHV3L} : added max value • V _{LVDHV3L} : added max value • V _{LVDHV5L} : added max value Updated Table 28 Table 30 • Retention: deleted min value footnote for "Blocks with 100,000 P/E cycles" Table 38 • I _{FXOSC} : added typ value Table 40 • V _{SXOSC} : changed typ value • T _{SXOSCSU} : added max value footnote Table 41 • At _{LTJIT} : added max value

Table 50. Revision history (continued)