

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	123
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	64K × 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 36x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602bk0clq4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

сл
_

Table 2. MPC5604B/C device comparison¹

Feature		Device													
	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2				
CPU						e200z0h	I		I	I					
Execution speed ²					Stat	ic – up to 64	MHz								
Code Flash			256 KB					512	2 KB						
Data Flash					64	KB (4 × 16 I	KB)								
RAM		24 KB		32	KB		32 KB			48 KB					
MPU						8-entry									
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch				
СТИ	Yes														
Total timer I/O ³ eMIOS	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	ch, 12 ch, 28 ch, bit 16-bit 16-bit		56 ch, 16-bit				
• PWM + MC + IC/OC ⁴	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch				
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch				
• IC/OC ⁴	—	3 ch	6 ch		3 ch	_	3 ch	6 ch	_	3 ch	6 ch				
SCI (LINFlex)		3 ⁵					۱ ، ،	4	1	1					
SPI (DSPI)	2	3	3	2	3	2	3	3	2		3				
CAN (FlexCAN)	I	2 ⁶		5	6		37		5		6				
l ² C						1			1	1					
32 kHz oscillator	Yes														
GPIO ⁸	45	5 79 123 45 79 45 79 123 45 79						123							
Debug	JTAG						Nexus2+								
Package I	LQFP64 ⁹	LQFP100	LQFP144	LQFP64 ⁹	LQFP100	LQFP64 ⁹	LQFP100	LQFP144	LQFP64 ⁹	LQFP100	LBGA208 ¹⁰				

¹ Feature set dependent on selected peripheral multiplexing—table shows example implementation
 ² Based on 125 °C ambient operating temperature
 ³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.

⁴ IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter

⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.

Freescale Semiconductor

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Introduction

			Pin nu			num	umber					
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[10]	PCR[10]	AF0 AF1 AF2 AF3	GPIO[10] E0UC[10] SDA —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O —	S	Tristate	47	47	74	107	B16
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O —	S	Tristate	48	48	75	108	B15
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — — SIN_0	SIUL — — DSPI0	I/O — — — I	S	Tristate	22	22	31	45	Τ7
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 —	SIUL DSPI_0 —	I/O O —	Μ	Tristate	21	21	30	44	R7
PA[14]	PCR[14]	AF0 AF1 AF2 AF3	GPIO[14] SCK_0 CS0_0 — EIRQ[4]	SIUL DSPI_0 DSPI_0 — SIUL	/O /O /O 	Μ	Tristate	19	19	28	42	P6
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 WKPU[10] ⁴	SIUL DSPI_0 DSPI_0 — WKPU	/O /O /O 	Μ	Tristate	18	18	27	40	R6
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX — —	SIUL FlexCAN_0 —	I/O O —	М	Tristate	14	14	23	31	N3
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 —	GPIO[17] — — — WKPU[4] ⁴ CAN0RX	SIUL — — WKPU FlexCAN_0	I/O — — — — — —	S	Tristate	15	15	24	32	N1
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX SDA —	SIUL LINFlex_0 I2C_0 —	I/O O I/O —	Μ	Tristate	64	64	100	144	B2

		1					uo	Pin number				
Port pin	PCR	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O I/O I	J	Tristate	_	_	_	57	T10
PF[3]	PCR[83]	AF0 AF1 AF2 AF3	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	_	_	58	R10
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	_		59	N11
PF[5]	PCR[85]	AF0 AF1 AF2 AF3	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate		_		60	P11
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — — ANS[14]	SIUL eMIOS_0 — ADC	/O /O 	J	Tristate				61	T11
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — — ANS[15]	SIUL — — — ADC	I/O — — — I	J	Tristate		_	_	62	R11
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O O	М	Tristate		—		34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 	GPIO[89] CS5_0 CAN2RX ¹⁵ CAN3RX ¹⁴	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — — — — — —	S	Tristate				33	N2

Table 6. Functional port pin descriptions (continued)

		1					uo	Pin number			ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate				8	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — — WKPU[17] ⁴	SIUL eMIOS_1 WKPU	/O /O 	S	Tristate	—	—	—	7	E3
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_			6	E1
PG[5]	PCR[101]	AF0 AF1 AF2 AF3	GPIO[101] E1UC[14] — WKPU[18] ⁴	SIUL eMIOS_1 WKPU	/O /O 	S	Tristate	_	_	_	5	E2
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	—	—	—	30	M2
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	—	_		29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 DSPI_2 SIUL	/O /O /O 	S	Tristate		_		26	L2
PG[9]	PCR[105]	AF0 AF1 AF2 AF3	GPIO[105] E1UC[18] 	SIUL eMIOS_1 DSPI_2	1/0 1/0 1/0	S	Tristate	—	—	—	25	L1
PG[10]	PCR[106]	AF0 AF1 AF2 AF3	GPIO[106] E0UC[24] —	SIUL eMIOS_0 	I/O I/O —	S	Tristate	_	_	_	114	D13

Table 6. Functional port pin descriptions (continued)

							num	umber				
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate		—		134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPI0[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O 	S	Tristate				135	B6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC	I/O I/O — O	М	Tristate	_	_		136	D5
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate		_		137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate	_	_		138	A5
PH[9] ⁹	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	60	60	88	127	B8
PH[10] ⁹	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	53	53	81	120	B9

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ 208 MAPBGA available only as development package for Nexus2+

⁴ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.

⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁶ "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details.

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Parameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to	—	4.5	5.5	V
		ground (V _{SS})	Voltage drop ²	3.0	5.5	
V _{SS_LV} ³	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ⁴	SR	Voltage on VDD_BV pin (regulator supply)	_	4.5	5.5	V
		with respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁵	SR	Voltage on VDD_HV_ADC pin (ADC	—	4.5	5.5	V
		reference) with respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to	—	V _{SS} -0.1	—	V
		ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	_	—	0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade} Part	SR	Ambient temperature under bias	1	-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias	1	-40	130	
T _{A M-Grade} Part	SR	Ambient temperature under bias	1	-40	125	
T _{J M-Grade} Part	SR	Junction temperature under bias	1	-40	150	

Table 14. Recommended operating conditions (5.0 V)

 $^1\,$ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

³ 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair. ⁴ 100 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 $^5\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁶ Guaranteed by device validation

NOTE

RAM data retention is guaranteed with $V_{DD\ LV}$ not below 1.08 V.

Symbo		C	Paramotor	Condi	tions ¹		Value		Unit
Symbo	1	C	Falameter	Condi		Min	Тур	Мах	Unit
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$			6.6	mA
			configuration	C _L = 25 pF, 40 MHz	— PAD3V5V = 0	_	_	13.4	
				C _L = 100 pF, 13 MHz		_	_	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			5	
				C _L = 25 pF, 40 MHz	PAD3V5V=1	_	_	8.5	
				C _L = 100 pF, 13 MHz				11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,			22	mA
			configuration	C _L = 25 pF, 64 MHz	PAD3V5V=0	_	_	33	
				C _L = 100 pF, 40 MHz		_	_	56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,			14	
				C _L = 25 pF, 64 MHz	PAD3V5V=1	_	_	20	
				C _L = 100 pF, 40 MHz		_	_	35	
IAVGSEG	I _{AVGSEG} SR [Sum of all the static I/O	V _{DD} = 5.0 V ± 10%, PA	AD3V5V = 0	_	_	70	mA
			segment	V _{DD} = 3.3 V ± 10%, PA	AD3V5V = 1	_	_	65	

 Table 23. I/O consumption (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 24 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Supply segment				144/100	LQFP		64 LQFP						
		ment	Pad	Weight 5 V		Weigh	t 3.3 V	Weigl	nt 5 V	Weight 3.3 V			
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1		
4	4	3	PB[3]	10%	_	12%	—	10%		12%			
			PC[9]	10%	_	12%	—	10%		12%			
		_	PC[14]	9%		11%	—				_		
		—	PC[15]	9%	13%	11%	12%	_	—	_			
	_	—	PG[5]	9%	_	11%	—	_	—	_			
		_	PG[4]	9%	12%	10%	11%						
	_	—	PG[3]	9%	_	10%	_	_	_	_	_		

Table 24. I/O weight¹

- HV—High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV power pin.
- BV—High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with V_{DD}.
- LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
 - LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.

- LV_PLL-Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

Figure 10. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 3.13, Recommended operating conditions).

The internal voltage regulator requires a controlled slew rate of both V_{DD HV} and V_{DD BV} as described in Figure 11.

Figure 11. $V_{DD HV}$ and $V_{DD BV}$ maximum slope

When STANDBY mode is used, further constraints are applied to the both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit. This is described on Figure 12.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application external regulator.

Symbol		c	Paramatar	Conditional	Value			Unit	
		C	Falameter	Conditions	Conditions			Max	Unit
I _{DDMAX} ²	СС	D	RUN mode maximum average current	_			115	140 ³	mA
I _{DDRUN} ⁴	СС	Т	RUN mode typical	f _{CPU} = 8 MHz			7	_	mA
		Т	average current ^o	f _{CPU} = 16 MHz			18		
		Т		f _{CPU} = 32 MHz		_	29		
		Ρ		f _{CPU} = 48 MHz		_	40	100	
		Ρ		f _{CPU} = 64 MHz		_	51	125	
I _{DDHALT}	СС	С	HALT mode current ⁶	Slow internal RC oscillator	T _A = 25 °C	_	8	15	mA
		Ρ		(128 KHZ) running	T _A = 125 °C	_	14	25	
IDDSTOP	СС	Ρ	STOP mode current ⁷	Slow internal RC oscillator	T _A = 25 °C	_	180	700 ⁸	μA
	D (128 kHz) running		T _A = 55 °C	_	500				
		D			T _A = 85 °C	_	1	6 ⁸	mA
		D			T _A = 105 °C	_	2	9 ⁸	
		Ρ			T _A = 125 °C	_	4.5	12 ⁸	
I _{DDSTDBY2}	СС	Ρ	STANDBY2 mode	Slow internal RC oscillator	T _A = 25 °C	_	30	100	μA
		D	current	(128 KHZ) running	T _A = 55 °C	_	75		
	D		T _A = 85 °C	_	180	700			
		D			T _A = 105 °C	_	315	1000	
		Ρ			T _A = 125 °C	_	560	1700	
I _{DDSTDBY1}	СС	Т	STANDBY1 mode	Slow internal RC oscillator	T _A = 25 °C	_	20	60	μA
		D		(128 KHZ) running	T _A = 55 °C	_	45		
		D			T _A = 85 °C	_	100	350	
		D			T _A = 105 °C	—	165	500	
		D			T _A = 125 °C	_	280	900	

Table 28.	Power	consum	ption o	n VDD	BV and	ΗV

 $\frac{1}{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

³ Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.

- ⁴ I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.
- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.20.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol		C	Parameter	Conditions			Value		Unit	
Oymo		•	i arameter	Conditions		Min	Тур	Max	onne	
	SR	_	Scan range	_		0.150	_	1000	MHz	
f _{CPU}	SR		Operating frequency	_		—	64	_	MHz	
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	_	V	
S _{EMI}	СС	Т	Peak level	$V_{DD} = 5 V, T_A = 25 °C,$ LQFP144 package	No PLL frequency modulation	—	_	18	dBµ V	
				$f_{OSC} = 8 \text{ MHz/}f_{CPU} = 64 \text{ MHz}$	±2% PLL frequency modulation	_	_	14	dBµ V	

Table 34. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.20.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.20.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Figure 14. Crystal oscillator and resonator connection scheme

Table 37. Crystal description

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8	NX5032GA	300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

¹ The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		C	Paramotor	Conditions ¹		Unit		
Symbo	•	C	Falameter	Conditions	Min	Тур	Max	Unit
f _{FXOSC}	SR		Fast external crystal oscillator frequency	_	4.0	_	16.0	MHz
9 _{mFXOSC}	СС	С	Fast external crystal oscillator transconductance	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 0	2.2	_	8.2	mA/V
	СС	Ρ	*	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0	2.0	_	7.4	
	СС	С	*	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 1	2.7	_	9.7	
	СС	С	*	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1	2.5	_	9.2	
V _{FXOSC}	СС	Т	Oscillation amplitude at EXTAL	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	1.3	_	—	V
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	1.3	_	_	
V _{FXOSCOP}	СС	С	Oscillation operating point	—	—	0.95	—	V
I _{FXOSC} ,2	СС	Т	Fast external crystal oscillator consumption	_	_	2	3	mA
t _{FXOSCSU}	СС	Т	Fast external crystal oscillator start-up time	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	—	_	6	ms
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	—		1.8	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD}	_	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 38. Fast external cr	vstal oscillator ((4 to 16 MHz)) electrical	characteristics
Table So. Table Chieffian Ci	ystar oscinator (characteristics

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified

² Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

3.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

- $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%, T_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified.}$ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator isON.

Table 47. DSPI characteristics¹ (continued)

No	Symbo	Sympol		Devementer	Deveryoter		SPI0/DS	PI1		DSPI	2	llmit
NO.	Symbo	01		Parameter		Min	Тур	Мах	Min	Тур	Max	Onit
10	t _{HI}	SR	D	Data hold time for inputs	Master mode	0		_	0	—	_	ns
					Slave mode	2 ⁶	-	—	2 ⁶	—	—	-
11	t _{SUO} 7	СС	D	Data valid after SCK edge	Master mode	—	-	32	—	—	50	ns
					Slave mode	—	—	52	—	—	160	-
12	t _{HO} 7	СС	D	Data hold time for outputs	Master mode	0	-	—	0	—	—	ns
					Slave mode	8	—	—	13	—	—	1

Operating conditions: C_L = 10 to 50 pF, Slew_{IN} = 3.5 to 15 ns.

² Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.

³ Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

⁴ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.

⁵ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{ASC} to ensure positive t_{ASCext}.

⁶ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.

⁷ SCK and SOUT configured as MEDIUM pad

Figure 27. DSPI classic SPI timing – slave, CPHA = 1

Figure 28. DSPI modified transfer format timing – master, CPHA = 0

4.1.1 64 LQFP

Figure 35. 64 LQFP package mechanical drawing (1 of 3)

Package characteristics

5 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

6 Document revision history

Table 50 summarizes revisions to this document.

Table 50. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.