E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602bk0mll6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ¹ Feature set dependent on selected peripheral multiplexing—table shows example implementation
- ² Based on 125 °C ambient operating temperature
- ³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.
- ⁴ IC Input Capture; OC Output Compare; PWM Pulse Width Modulation; MC Modulus counter
- ⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.
- ⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
- ⁷ CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
- ⁸ I/O count based on multiplexing with peripherals
- ⁹ 208 MAPBGA available only as development package for Nexus2+

4

- ⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
- ⁷ CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
- ⁸ I/O count based on multiplexing with peripherals
- ⁹ All LQFP64information is indicative and must be confirmed during silicon validation.
- ¹⁰ LBGA208 available only as development package for Nexus2+

Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 3. MPC5604B/C series block summary

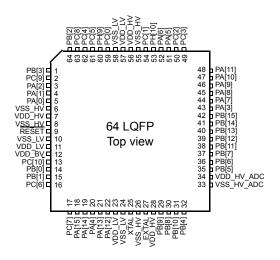


Figure 2. MPC560xB LQFP 64-pin configuration

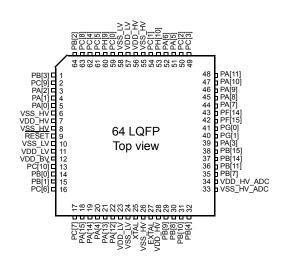


Figure 3. MPC560xC LQFP 64-pin configuration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
А	PC[8]	PC[13]	NC	NC	PH[8]	PH[4]	PC[5]	PC[0]	NC	NC	PC[2]	NC	PE[15]	NC	NC	NC	А
В	PC[9]	PB[2]	NC	PC[12]	PE[6]	PH[5]	PC[4]	PH[9]	PH[10]	NC	PC[3]	PG[11]	PG[15]	PG[14]	PA[11]	PA[10]	в
С	PC[14]	VDD_HV	PB[3]	PE[7]	PH[7]	PE[5]	PE[3]	VSS_LV	PC[1]	NC	PA[5]	NC	PE[14]	PE[12]	PA[9]	PA[8]	с
D	NC	NC	PC[15]	NC	PH[6]	PE[4]	PE[2]	VDD_LV	VDD_HV	NC	PA[6]	NC	PG[10]	PF[14]	PE[13]	PA[7]	D
Е	PG[4]	PG[5]	PG[3]	PG[2]				1			1		PG[1]	PG[0]	PF[15]	VDD_HV	Е
F	PE[0]	PA[2]	PA[1]	PE[1]									PH[0]	PH[1]	PH[3]	PH[2]	F
G	PE[9]	PE[8]	PE[10]	PA[0]			VSS_HV	VSS_HV	VSS_HV	VSS_HV	ſ		VDD_HV	NC	NC	MSEO	G
н	VSS_HV	PE[11]	VDD_HV	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			MDO3	MDO2	MDO0	MDO1	н
J	RESET	VSS_LV	NC	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	NC	NC	NC	J
к	EVTI	NC	VDD_BV	VDD_LV			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	PG[12]	PA[3]	PG[13]	к
L	PG[9]	PG[8]	NC	EVTO				1		1	1		PB[15]	PD[15]	PD[14]	PB[14]	L
М	PG[7]	PG[6]	PC[10]	PC[11]									PB[13]	PD[13]	PD[12]	PB[12]	м
Ν	PB[1]	PF[9]	PB[0]	NC	NC	PA[4]	VSS_LV	EXTAL	VDD_HV	PF[0]	PF[4]	NC	PB[11]	PD[10]	PD[9]	PD[11]	N
Ρ	PF[8]	NC	PC[7]	NC	NC	PA[14]	VDD_LV	XTAL	PB[10]	PF[1]	PF[5]	PD[0]	PD[3]	VDD_HV _ADC	PB[6]	PB[7]	Р
R	PF[12]	PC[6]	PF[10]	PF[11]	VDD_HV	PA[15]	PA[13]	NC	OSC32K _XTAL	PF[3]	PF[7]	PD[2]	PD[4]	PD[7]	VSS_HV _ADC	PB[5]	R
т	NC	NC	NC	МСКО	NC	PF[13]	PA[12]	NC	OSC32K _EXTAL	PF[2]	PF[6]	PD[1]	PD[5]	PD[6]	PD[8]	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Not	e: 208 l	MAPBG	A availa	ble only	y as dev	elopme	nt packa	age for l	Nexus 2	2+.				NC	= Not c	onnecte	эd

Figure 6. 208 MAPBGA configuration

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up. •
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion. •
- JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available). •
- Main oscillator pads (EXTAL, XTAL) are tristate. ٠
- Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.

		-	5		u		Pin	num	ber			
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 —	I/O I/O 	Μ	Tristate				134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate				135	B6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC	I/O I/O — O	М	Tristate				136	D5
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	Μ	Tristate				137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate	l			138	A5
PH[9] ⁹	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	60	60	88	127	B8
PH[10] ⁹	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	53	53	81	120	B9

Table 6. F	unctional	port pin	descriptions	(continued)
				(

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ 208 MAPBGA available only as development package for Nexus2+

⁴ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.

⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁶ "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details. ¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 10. OSCILLATOR_MARGIN field description

Value ¹	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.3 NVUSRO[WATCHDOG_EN] field description

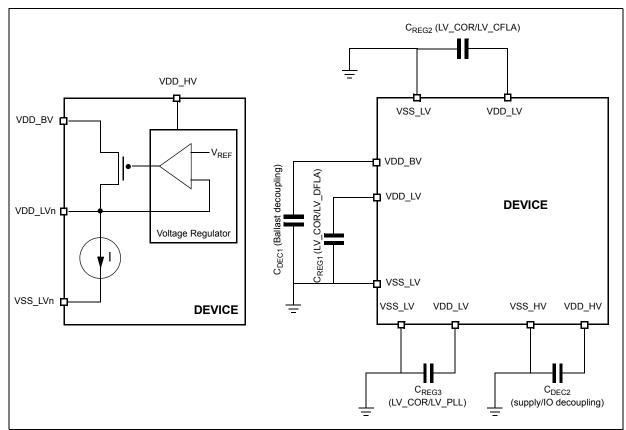
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 11. WATCHDOG_EN field description

Value ¹	Description
0	Disable after reset
1	Enable after reset

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

Sym	bol	<u>د</u>	Parameter		Conditions ¹	\ \	/ alue		Unit
J	1001	C	Falameter	ation Push Pull $I_{OH} = -3.8 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $0.8V_{DD}$ $I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $0.8V_{DD}$ $I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 1^2$ $0.8V_{DD}$ $I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 1^2$ $V_{DD} - 0.8$ $I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 1$ $V_{DD} - 0.8$ $I_{OH} = -100 \mu A,$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $0.8V_{DD}$ $I_{OH} = -100 \mu A,$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $0.8V_{DD}$ $I_{OH} = -200 \mu A,$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $$ $I_{OH} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $$ $I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 0$ $$ $I_{OL} = 1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{PAD3V5V} = 1^2$ $$ $I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{PAD3V5V} = 1$ $$ $$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ $$ $$	Тур	Max	Unit		
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull		0.8V _{DD}			V
		Ρ			$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	0.8V _{DD}		_	
		С				0.8V _{DD}	-	—	
		С			$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$	V _{DD} -0.8		_	
		С				0.8V _{DD}	-	—	
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	OL I	_		0.2V _{DD}	V
		Ρ			V_{DD}^{2} = 5.0 V ± 10%, PAD3V5V = 0	_		0.1V _{DD}	
		С				_	-	0.1V _{DD}	
		С			V_{DD}^{2} = 3.3 V ± 10%, PAD3V5V = 1	—		0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—		0.1V _{DD}	


¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 ² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Svn	Symbol	C	Parameter		Conditions ¹		Unit		
- Oyn		ľ	i arameter		Conditions	Min Typ Max		Unit	
V _{OH}	СС		Output high level FAST configuration	Push Pull	$I_{OH} = -14$ mA, $V_{DD} = 5.0$ V ± 10%, PAD3V5V = 0 (recommended)	0.8V _{DD}	_	_	V
		С			I _{OH} = -7mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}		_	
		С			I _{OH} = -11mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8		_	

C					144/100) LQFP		64 LQFP					
Sup	ply seg	ment	Pad	Weight 5 V		Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V		
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1		
2	2	2	PB[9]	1%	—	1%	—	1%	—	1%			
			PB[8]	1%	—	1%	—	1%	—	1%	—		
			PB[10]	6%	—	7%	—	6%	—	7%	—		
			PF[0]	6%	—	7%	—	—	—	—	—		
			PF[1]	7%	—	8%	—	—	—	—			
			PF[2]	7%	—	8%	—	—	—	—			
			PF[3]	7%		9%	_	—	_				
			PF[4]	8%	—	9%	—	—	—	—			
			PF[5]	8%	—	10%	—	—	—	—			
			PF[6]	8%	_	10%	—	—	_	_			
			PF[7]	9%	_	10%	_	_	_	—	_		
	2	_	PD[0]	1%		1%	_	_	_	_			
			PD[1]	1%		1%	_	_	_	_			
			PD[2]	1%	_	1%	_	_	_				
			PD[3]	1%		1%	_	_	_	_			
			PD[4]	1%		1%	_	_	_	_			
			PD[5]	1%		1%	_	_	_		_		
			PD[6]	1%		1%					_		
			PD[7]	1%		1%					_		
			PD[8]	1%		1%					_		
		2	PB[4]	1%		1%		1%		1%	_		
			PB[5]	1%		1%		1%		2%	_		
			PB[6]	1%		1%		1%		2%	_		
			PB[7]	1%		1%		1%		2%	_		
			PD[9]	1%		1%							
			PD[10]	1%		1%					_		
			PD[11]	1%		1%							
		2	PB[11]	11%		13%		17%		21%			
			PD[12]	11%		13%							
		2	PB[12]	11%		13%		18%		21%			
		_	PD[13]			12%		_					
			[_[,]			,.							

Table 24. I/O weight¹ (continued)

- HV—High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV power pin.
- BV—High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with V_{DD}.
- LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
 - LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.

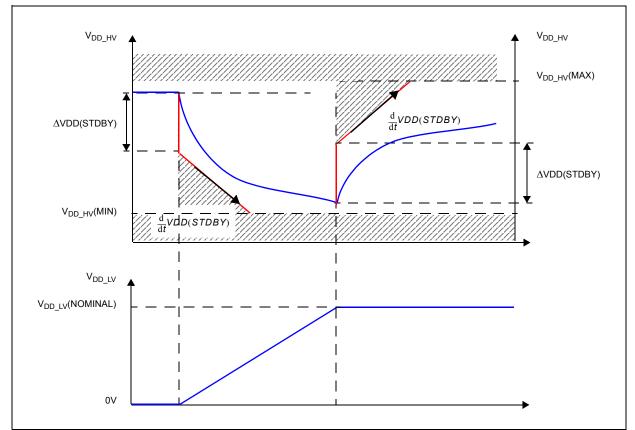

- LV_PLL-Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

Figure 10. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 3.13, Recommended operating conditions).

The internal voltage regulator requires a controlled slew rate of both V_{DD HV} and V_{DD BV} as described in Figure 11.

Table 26.	Voltage regul	ator electrica	l characteristics	

Symbol	Symbol		Symbol		Parameter	Conditions ¹		Value		Unit
Symbol			C Parameter Conditions ¹		Min	Тур	Max	0.int		
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	_	500	nF		
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_		0.2	Ω		
C _{DEC1}	SR		Decoupling capacitance ² ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ³	470 ⁴		nF		
				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400					
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF		
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR	—	Maximum slope on V _{DD}			_	250	mV/µs		
$ \Delta_{VDD(STDBY)} $	SR		Maximum instant variation on V _{DD} during standby exit				30	mV		

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.20.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symb	Symbol		Parameter	Conditions		Unit			
Symbol C			i urumeter				Тур	Мах	
	SR		Scan range				_	1000	MHz
f _{CPU}	SR		Operating frequency	_			64		MHz
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	—	V
S _{EMI}	СС	Т		LQFP144 package	No PLL frequency modulation	—		18	dBµ V
					±2% PLL frequency modulation	—	_	14	dBµ V

Table 34. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.20.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.20.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

- ² This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.
- 3 Maximum ESR (R_m) of the crystal is 50 k Ω

⁴ C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins

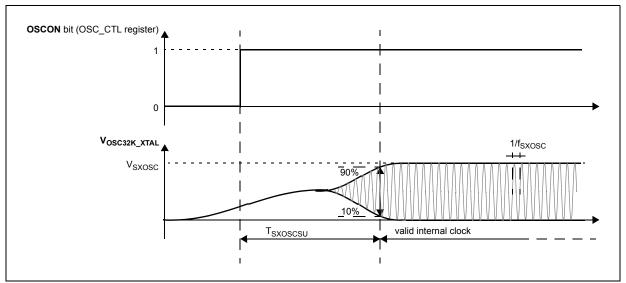


Figure 18. Slow external crystal oscillator (32 kHz) timing diagram

Symbol	Symbol		Parameter	Conditions ¹		Unit		
Gymbol			i arameter	Conditions	Min	Тур	Max	onne
f _{SXOSC}	SR		Slow external crystal oscillator frequency	_	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	—	2.1	_	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_	_	2.5	_	μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	_	—	8	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_	_	_	2 ²	S

Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

² Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

3.27.2 DSPI characteristics

No	Sumh	.	с	Parameter		D	SPI0/DS	PI1		DSPI2	2	Unit
No.	Symbo	וכ	C	Parameter		Min	Тур	Мах	Min	Тур	Max	
1	t _{SCK}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125	-	_	333	—	_	ns
			D		Slave mode (MTFE = 0)	125	—	_	333	_	_	
			D		Master mode (MTFE = 1)	83	-	_	125	—	_	
			D		Slave mode (MTFE = 1)	83	-		125	—	_	
—	f _{DSPI}	SR	D	DSPI digital controller frequ	iency	_	—	f _{CPU}	_	—	f _{CPU}	MHz
_	Δt_{CSC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→0		_	_	130 ²	_		15 ³	ns
_	Δt_{ASC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→1		_	_	130 ³	_	_	130 ³	ns
2	t _{CSCext} ⁴	SR	D	CS to SCK delay	Slave mode	32	_		32	_		ns
3	t _{ASCext} 5	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	_	1/f _{DSPI} + 5			ns
4	t _{SDC}	СС	D	SCK duty cycle	Master mode	_	t _{SCK} /2	_		t _{SCK} /2		ns
		SR	D		Slave mode	t _{SCK} /2	—		t _{SCK} /2	—	_	
5	t _A	SR	D	Slave access time	Slave mode	—	—	1/f _{DSPI} + 70		—	1/f _{DSPI} + 130	ns
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7	—	_	7	—	_	ns
7	t _{PCSC}	SR	D	PCSx to PCSS time		0	—	_	0	—	_	ns
8	t _{PASC}	SR	D	PCSS to PCSx time		0	—	_	0	—		ns
9	t _{SUI}	SR	D	Data setup time for inputs	Master mode	43	—	—	145	—	_	ns
					Slave mode	5	—	_	5		_	1

Table 47. DSPI characteristics¹

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Package pinouts and signal descriptions

80

4.1.1 64 LQFP

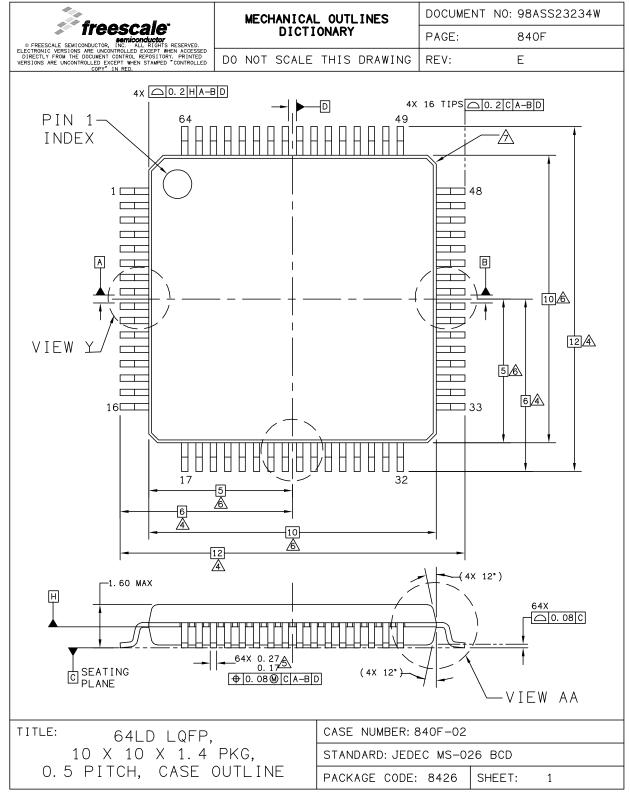


Figure 35. 64 LQFP package mechanical drawing (1 of 3)

Package characteristics

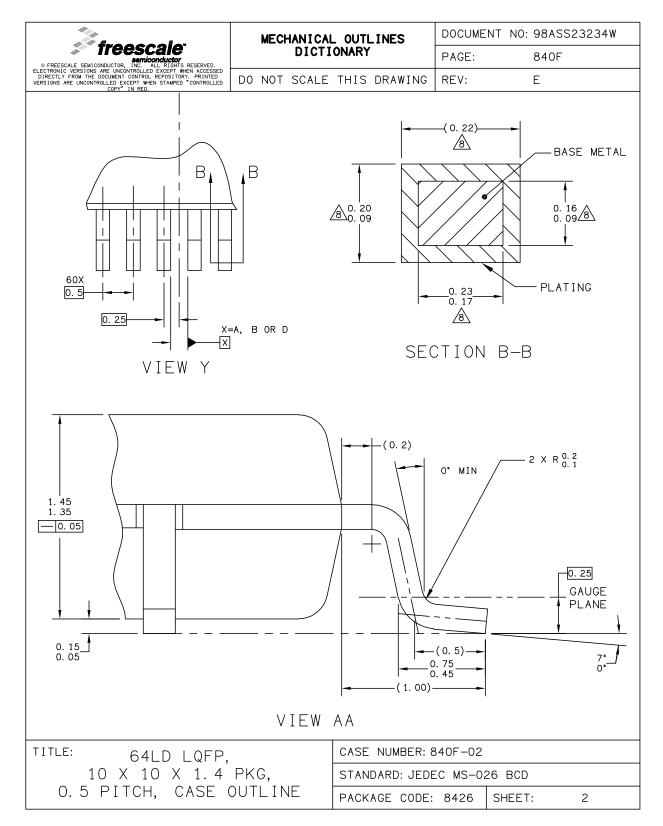
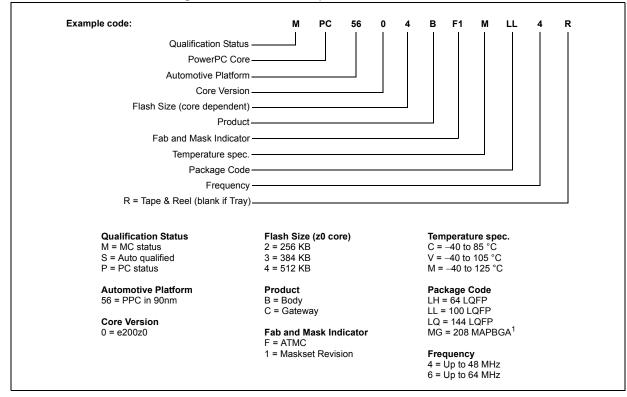


Figure 36. 64 LQFP package mechanical drawing (2 of 3)


Package characteristics

	MECHANICAL	OUTLINES	DOCUMENT NO: 98ASS23234W			
Treescale somiconductor o FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTI	ONARY	PAGE:	840F		
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E		
NOTES:						
1. DIMENSIONS ARE IN MI	LLIMETERS.					
2. DIMENSIONING AND TOL	ERANCING PER	ASME Y14.5M-19	994.			
3. DATUMS A, B AND D TO) BE DETERMINE	D AT DATUM PLA	NE H.			
A DIMENSIONS TO BE DET	FERMINED AT SE	ATING PLANE C.				
THIS DIMENSION DOES PROTRUSION SHALL NOT BY MORE THAN 0.08 mr LOCATED ON THE LOWEF PROTRUSION AND ADJAC	T CAUSE THE LE n AT MAXIMUM M R RADIUS OR TH	AD WIDTH TO EX ATERIAL CONDIT E FOOT. MINIMU	CEED TH ION. DA JM SPACE	HE UPPER LIMIT AMBAR CANNOT BE E BETWEEN		
THIS DIMENSION DOES IS 0.25 mm PER SIDE. DIMENSION INCLUDING	THIS DIMENSI	ON IS MAXIMUM				
A EXACT SHAPE OF EACH	CORNER IS OPT	IONAL.				
THESE DIMENSIONS APP 0. 1 mm AND 0.25 mm F			HE LEA	D BETWEEN		
TITLE: 64LD LQFP,		CASE NUMBER: 8	340F-02			
10 X 10 X 1.4	PKG,	STANDARD: JEDE	C MS-0	26 BCD		
0.5 PITCH, CASE (DUTLINE	PACKAGE CODE:	8426	SHEET: 3		

Figure 37. 64 LQFP package mechanical drawing (3 of 3)

5 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

6 Document revision history

Table 50 summarizes revisions to this document.

Table 50. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.

Document revision history

Revision	Date	Description of Changes
4	06-Aug-2009	Updated Figure 6 Table 12 • V _{DD_ADC} : changed min value for "relative to V _{DD} " condition • V _{IN} : changed min value for "relative to V _{DD} " condition • I _{CORELV} : added new row Table 14 • Ta-C-Grade Part, TJ-C-Grade Part, TA-V-Grade Part, TJ-V-Grade Part, TA-M-Grade Part, TJ-M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • C _{DEC1} : changed min value • I _{MREG} : changed max value • I _{DD_BV} : added max value • I _{DD_BV} : added max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde m

Table 50. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
9	16 June 2011	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature
		Removed all instances of note "All 64 LQFP information is indicative and must be
		confirmed during silicon validation."
		Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP TEST to VSS HV
		Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pins"
		Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[WATCHDOG EN] field description"
		Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics
		Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value
		I/O consumption: replaced instances of "Root medium square" with "Root mean square" I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package
		Reset electrical characteristics: updated parameter classification for I _{WPU} Updated Voltage regulator electrical characteristics
		Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for V _{LVDLVBKPL} and V _{LVDLVCORL} ; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption"
		Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter classification for V _{FXOSCOP}
		Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor
		Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1 FMPLL electrical characteristics: added short term jitter characteristics; inserted "—" in empty min value cell of t _{lock} row
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 11
		ADC input leakage current: updated I _{LKG} characteristics ADC conversion characteristics: updated symbols
		On-chip peripherals current consumption: changed "supply current on "V _{DD_HV_ADC} " to "supply current on" V _{DD_HV} " in I _{DD_HV(FLASH)} row; updated I _{DD_HV(PLL)} value—was 3 * f _{periph} , is 30 * f _{periph} ; updated footnotes DSPI characteristics: added rows t _{PCSC} and t _{PASC}
		Added DSPI PCS strobe (PCSS) timing diagram

Table 50. Revision history (continued)