E·XFL

NXP USA Inc. - SPC5604BACLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bacll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 3. MPC5604B/C series block summary

		-					uo		Pir	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] WKPU[3] ⁴	SIUL eMIOS_0 — WKPU	I/O I/O I	S	Tristate	3	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — EIRQ[0]	SIUL eMIOS_0 — SIUL	/O /O 	S	Tristate	43	39	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] WKPU[9] ⁴	SIUL eMIOS_0 WKPU	I/O I/O I	S	Tristate	20	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] — —	SIUL eMIOS_0 —	I/O I/O 	М	Tristate	51	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — EIRQ[1]	SIUL eMIOS_0 — SIUL	/O /O 	S	Tristate	52	52	80	119	D11
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2]	SIUL eMIOS_0 LINFlex_3 SIUL	/O /O 0 	S	Tristate	44	44	71	104	D16
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁶ —	GPIO[8] E0UC[8] — EIRQ[3] ABS[0] LIN3RX	SIUL eMIOS_0 — SIUL BAM LINFlex_3	/O /O 	S	Input, weak pull-up	45	45	72	105	C16
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁶	GPIO[9] E0UC[9] — — FAB	SIUL eMIOS_0 — BAM	/O /O 	S	Pull-down	46	46	73	106	C15

Table 6. Functional port pin descriptions (continued)

		-					Ľ		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[9]	PCR[57]	AF0 AF1 AF2 AF3 —	GPIO[57] — — — GPI[13]	SIUL — — — ADC	 - 	Ι	Tristate	_	_	56	78	N15
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 —	GPIO[58] — — — GPI[14]	SIUL — — — ADC	 	Ι	Tristate		_	57	79	N14
PD[11]	PCR[59]	AF0 AF1 AF2 AF3 —	GPIO[59] — — — GPI[15]	SIUL — — — ADC	 - 	Ι	Tristate	_	_	58	80	N16
PD[12] ⁸	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] ANS[4]	SIUL DSPI_0 eMIOS_0 — ADC	I/O O I/O I	J	Tristate	_	_	60	82	M15
PD[13]	PCR[61]	AF0 AF1 AF2 AF3 —	GPIO[61] CS0_1 E0UC[25] ANS[5]	SIUL DSPI_1 eMIOS_0 — ADC	I/O I/O I/O I	J	Tristate			62	84	M14
PD[14]	PCR[62]	AF0 AF1 AF2 AF3 —	GPIO[62] CS1_1 E0UC[26] — ANS[6]	SIUL DSPI_1 eMIOS_0 — ADC	I/O O /O I/O -	J	Tristate			64	86	L15
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ANS[7]	SIUL DSPI_1 eMIOS_0 ADC	I/O O I/O I	J	Tristate	—	—	66	88	L14
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 —	GPIO[64] E0UC[16] — CAN5RX ¹¹ WKPU[6] ⁴	SIUL eMIOS_0 FlexCAN_5 WKPU	/0 /0 - 	S	Tristate	_	_	6	10	F1

Table 6. Functional port pin descriptions (continued)

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows how NVUSRO[PAD3V5V] controls the device configuration.

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

Table 9. PAD3V5V field description

3.13 Recommended operating conditions

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	—	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ³	SR	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
		respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁴	SR	5 <u> </u>	—	3.0 ⁵	3.6	V
		with respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	_	V
		(V _{SS})	Relative to V_{DD}	_	V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition		-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—		0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias		-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
T _{A M-Grade Part}	SR	Ambient temperature under bias		-40	125	1
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	1

Table 13. Recommended operating conditions (3.3 V)

 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

³ 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 4 100 nF capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

Sum	Symbol	<u>ر</u>	Parameter		Conditions ¹		Unit		
Syn	Symbol C Parameter			Min	Тур	Max	Unit		
V _{OL}	СС		Output low level FAST configuration	Push Pull	I_{OL} = 14mA, V_{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_		0.1V _{DD}	V
		С			I _{OL} = 7mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	_	0.1V _{DD}	
		С			I _{OL} = 11mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5	

 Table 20. FAST configuration output buffer electrical characteristics (continued)

 $\overline{}^{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

3.15.4 Output pin transition times

e.	mbol	c	Parameter		Conditions ¹		Value	e	Unit
J		C	Falameter		Conditions	Min	Тур	Мах	Unit
t _{tr}	CC		Output transition time output	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	—	50	ns
		Т	pin ² SLOW configuration	C _L = 50 pF		_	—	100	
		D	0	C _L = 100 pF		_		125	
		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	50	
		Т		C _L = 50 pF		—	—	100	
		D		C _L = 100 pF		—	—	125	
t _{tr}	CC	D	Output transition time output	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0		—	10	ns
		Т	pin ² MEDIUM configuration	C _L = 50 pF	-SIUL.PCRx.SRC = 1 -	—	—	20	
		D	0	C _L = 100 pF		—	—	40	
		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		12	
		Т		C _L = 50 pF	SIUL.PCRx.SRC = 1	_	—	25	1
		D		C _L = 100 pF		—	—	40	
t _{tr}	CC	D	Output transition time output	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		4	ns
			pin ² FAST configuration	C _L = 50 pF		_		6	
			Ŭ	C _L = 100 pF		—	—	12	
				C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	4	
				C _L = 50 pF	1	—	—	7	
				C _L = 100 pF		—	—	12	

Table 21. Output pin transition times

 $\overline{}^{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

					144/100) LQFP			64 L	QFP	
Sup	ply seg	ment	Pad	Weigl	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
2	2	2	PB[13]	10%	—	12%		18%		21%	_
			PD[14]	10%	_	12%	_				
		2	PB[14]	10%	—	12%	_	18%		21%	
			PD[15]	10%	—	11%	—	—	_	—	—
		2	PB[15]	9%	—	11%	—	18%		21%	—
			PA[3]	9%	—	11%	_	18%		21%	—
			PG[13]	9%	13%	10%	11%	—	_	—	—
			PG[12]	9%	12%	10%	11%	_	_	—	_
			PH[0]	5%	8%	6%	7%	—		—	—
			PH[1]	5%	7%	6%	6%	—	_	—	—
			PH[2]	5%	6%	5%	6%	_	_	—	—
			PH[3]	4%	6%	5%	5%	—		—	—
			PG[1]	4%	—	4%	—	—	_	—	—
			PG[0]	3%	4%	4%	4%	—		—	—
3			PF[15]	3%	—	4%	—	—		—	—
			PF[14]	4%	5%	5%	5%	—	_	—	—
			PE[13]	4%	—	5%	—	—		—	—
	3	2	PA[7]	5%	—	6%	—	16%		19%	—
			PA[8]	5%	—	6%	—	16%	_	19%	—
			PA[9]	5%	—	6%	—	15%		18%	—
			PA[10]	6%	_	7%	—	15%	_	18%	—
			PA[11]	6%	—	8%	—	14%	_	17%	—
			PE[12]	7%	_	8%	—	—	_	_	—
			PG[14]	7%	_	8%	—	_	_	—	—
	_		PG[15]	7%	10%	8%	9%		_	—	_
	_		PE[14]	7%	—	8%	—	—		—	—
	_		PE[15]	7%	9%	8%	8%	—			—
	_		PG[10]	6%		8%		_	_	—	—
	_		PG[11]	6%	9%	7%	8%	—		—	—
	3	2	PC[3]	6%		7%		7%	_	9%	
			PC[2]	6%	8%	7%	7%	6%	9%	8%	8%

Table 24. I/O weight¹ (continued)

Symbol		с	Parameter	Conditions ¹		Value		Unit
Symbol		C	Falanielei	Conditions	Min	Тур	Max	Onic
$\frac{\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right }{\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right }$	SR		Maximum slope on V _{DD} during standby exit		—		15	mV/µs
V _{MREG} CC		Т	Main regulator output voltage	Before exiting from reset	_	1.32		V
		Ρ		After trimming	1.16	1.28	—	
I _{MREG}	SR	_	Main regulator current provided to V_{DD_LV} domain	_	-		150	mA
I _{MREGINT}	СС	D	Main regulator module current	I _{MREG} = 200 mA	_		2	mA
			consumption	I _{MREG} = 0 mA	_		1	
V _{LPREG}	СС	Ρ	Low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to V_{DD_LV} domain	_	—		15	mA
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	—		600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C	_	5		-
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V
IULPREG	SR	—	Ultra low power regulator current provided to V_{DD_LV} domain	_	_		5	mA
IULPREGINT	СС	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	—		100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	-	2	_	
I _{DD_BV}	СС	D	In-rush average current on V_{DD_BV} during power-up 5		-		300 ⁶	mA

Table 26. Voltage regulator electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

- 2 This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.
- $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V
- ⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- ⁵ In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is dependant on the sum of the C_{REGn} capacitances.
- ⁶ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

The $|\Delta_{VDD(STDBY)}|$ and dVDD(STDBY)/dt system requirement can be used to define the component used for the V_{DD} supply generation. The following two examples describe how to calculate capacitance size:

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.20.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol		С	С	с	Parameter	Conditions		Unit	
Cynis		Ŭ	i urumeter	Conditions					
	SR		Scan range	_	0.150	_	1000	MHz	
f _{CPU}	SR		Operating frequency	_	—	64		MHz	
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	—	V
S _{EMI}	СС	Т		LQFP144 package	No PLL frequency modulation	—		18	dBµ V
					±2% PLL frequency modulation	_	_	14	dBµ V

Table 34. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.20.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.20.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

3.26 ADC electrical characteristics

3.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

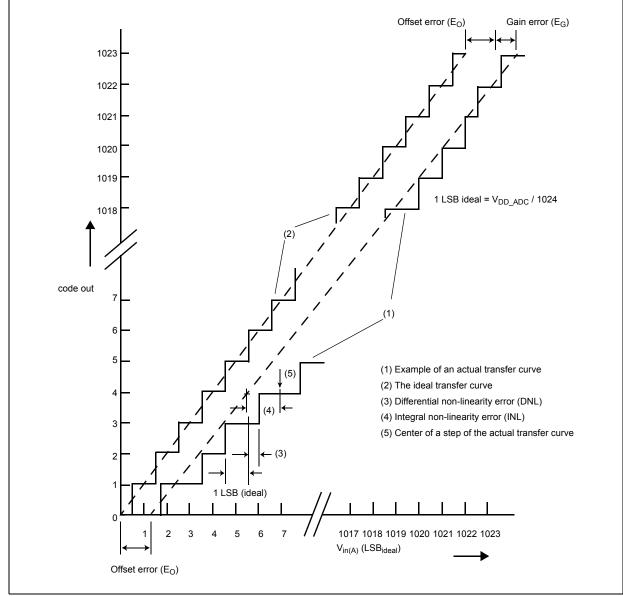


Figure 19. ADC characteristic and error definitions

3.26.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

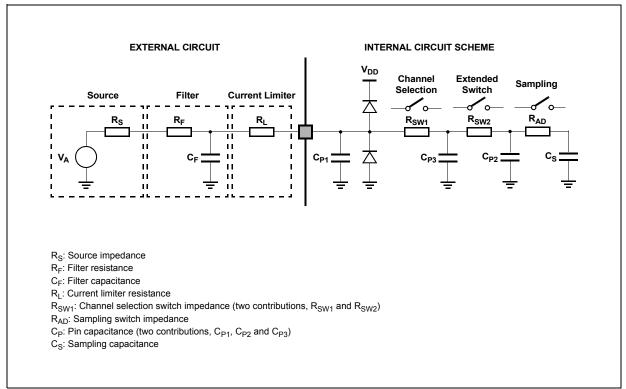


Figure 21. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

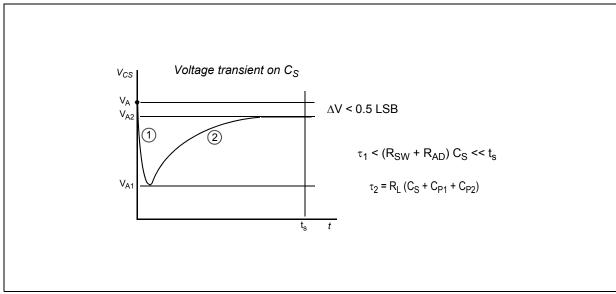


Figure 22. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

0		~	Demonster	Q a se d	tions ¹		Value		
Symbol		С	Parameter	Condi	tions'	Min	Тур	Мах	Unit
C _{P3}	СС	D	ADC input pin capacitance 3	_			-	1	pF
R _{SW1}	СС	D	Internal resistance of analog source	-	_	—	-	3	kΩ
R_{SW2}	СС	D	Internal resistance of analog source	-	_	—	-	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_			-	2	kΩ
I _{INJ}	injection on or ADC input, different from		injection on one	V _{DD} = 3.3 V ± 10%	-5	-	5	mA	
			different from the converted	V _{DD} = 5.0 V ± 10%	-5	-	5		
INL	СС	Т	Absolute value for integral non-linearity	No overload			0.5	1.5	LSB
DNL	СС	Т	Absolute differential non-linearity	No overload		—	0.5	1.0	LSB
E _O	СС	Т	Absolute offset error	-		—	0.5		LSB
E _G	СС	Т	Absolute gain error	_		—	0.6	—	LSB
TUEp	СС	Ρ	Total unadjusted error ⁷	Without current injection With current injection		-2	0.6	2	LSB
		Т	for precise channels, input only pins			-3		3	
TUEx	СС	Т	Total unadjusted error ⁷	Without current injection		-3	1	3	LSB
T for extended c		for extended channel	With current inje	ection	-4		4		

Table 45. ADC conversion	n characteristics	(continued)
--------------------------	-------------------	-------------

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.

⁶ This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.

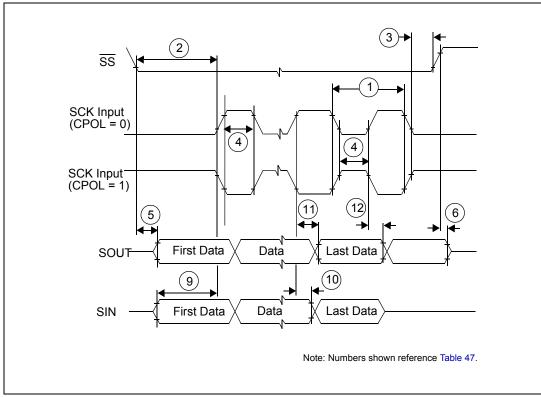
⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Table 47. DSPI characteristics¹ (continued)

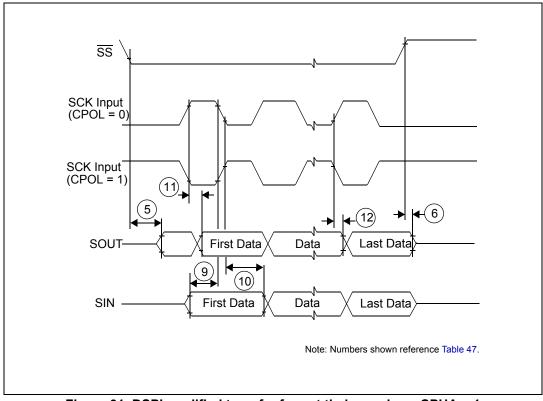
No.	Symbo	Symbol	wmbol		mbol	umbol		Symbol	с	Parameter		D	SPI0/DS	PI1		DSPI	2	Unit
NO.	No. Symbo			Falameter		Min Typ Ma		Max	Min	Тур	Мах							
10	t _{HI}	SR	D	Data hold time for inputs	Master mode	0	—	_	0	—	—	ns						
					Slave mode	2 ⁶	—	_	2 ⁶	—	_							
11	t _{SUO} 7	CC	D	Data valid after SCK edge	Master mode	_	—	32	_	—	50	ns						
					Slave mode	_	_	52	_	—	160	1						
12	t _{HO} 7	CC	D	Data hold time for outputs	Master mode	0	—	_	0	_	_	ns						
					Slave mode	8	—	_	13		_	1						

Operating conditions: C_L = 10 to 50 pF, Slew_{IN} = 3.5 to 15 ns.

² Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.


³ Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

⁴ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.


⁵ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{ASC} to ensure positive t_{ASCext}.

⁶ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.

⁷ SCK and SOUT configured as MEDIUM pad

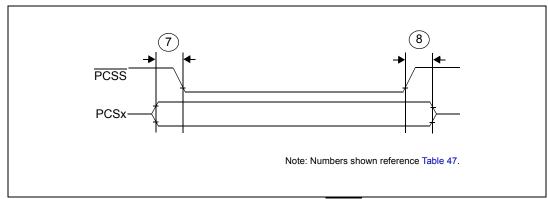


Figure 32. DSPI PCS strobe (PCSS) timing

3.27.3 Nexus characteristics

No.	Symbol		с	Parameter		Unit		
NO.	Symb	Зуший		Falameter	Min	Тур	Max	Onit
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns
2	t _{MCYC}	CC	D	MCKO cycle time	32	—	—	ns
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	_	—	8	ns
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	_	—	8	ns
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	_	—	8	ns
10	t _{NTDIS}	CC	D	TDI data setup time	15	—	—	ns
	t _{NTMSS}	CC	D	TMS data setup time	15	—	—	ns
11	t _{NTDIH}	CC	D	TDI data hold time	5	—	—	ns
	t _{NTMSH}	CC	D	TMS data hold time	5	—	—	ns
12	t _{TDOV}	CC	D	TCK low to TDO data valid	35	—	_	ns
13	t _{TDOI}	CC	D	TCK low to TDO data invalid	6	_	_	ns

Table 48. Nexu	us characteristics
----------------	--------------------

Package characteristics

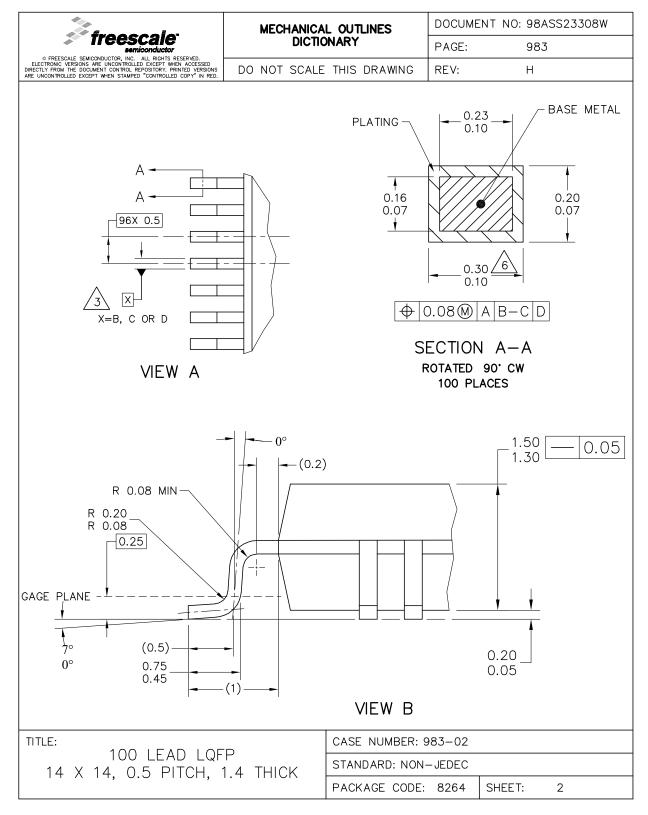


Figure 39. 100 LQFP package mechanical drawing (2 of 3)

Document revision history

Revision	Date	Description of Changes
2 (cont.)	06-Mar-2009	Updated Table 16, Table 17, Table 18, Table 19 and Table 20 Added Section 3.15.4, Output pin transition times Updated Table 23 Updated Table 25 Section 3.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL Figure 10: Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated Table 26 Added Figure 13 Updated Table 27 and Table 28 Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Updated Table 41, Table 42 and Table 43 Added Section 3.27, On-chip peripherals Added Table 44 Updated Table 45 Updated Table 47 Added Section Appendix A, Abbreviations

Document revision history

Revision	Date	Description of Changes
6	15-Mar-2010	In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding SCI and CAN. In the "Absolute maximum ratings" table, removed the min value of V _{IN} relative to V _{DD} . In the "Recommended operating conditions (3.3 V)" table: * T _A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part; added new rows. * TV _{DD} : made single row. In the "LQFP thermal characteristics" table, added more rows. Removed '208 MAPBGA thermal characteristics" table. In the "I/O consumption" table: * Removed I _{DVNSEG} row. * Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: * Updated the values. * Removed I _{VREGREF} and I _{VREDLVD12} . * Added a note about I _{DD_BC} . In the "Low voltage monitor electrical characteristics" table: * Updated V _{PORH} values. * Updated V _{PORH} values. * Updated V _{DORH} value. Entirely updated the "Flash power supply DC electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table: Nemoved g _{INXOSC} row. * Inserted values of I _{SXOSCEIAS} . Entirely updated the "Fast internal RC oscillator (16 MHz) electrical characteristics" table: In the "ADC conversion characteristics" table: updated the "DSPI characteristics" table. In the "ADC conversion characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the "DSPI characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the note shout the condition from "Flash read access timing" table Removed the note shout the condition from "Flash read access timing" table Remov

Table 50. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
9	16 June 2011	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature
		Removed all instances of note "All 64 LQFP information is indicative and must be
		confirmed during silicon validation."
		Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP TEST to VSS HV
		Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pins"
		Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[WATCHDOG EN] field description"
		Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics
		Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value
		I/O consumption: replaced instances of "Root medium square" with "Root mean square" I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package
		Reset electrical characteristics: updated parameter classification for I _{WPU} Updated Voltage regulator electrical characteristics
		Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for V _{LVDLVBKPL} and V _{LVDLVCORL} ; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption"
		Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter classification for V _{FXOSCOP}
		Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor
		Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1 FMPLL electrical characteristics: added short term jitter characteristics; inserted "—" in empty min value cell of t _{lock} row
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 11
		ADC input leakage current: updated I _{LKG} characteristics ADC conversion characteristics: updated symbols
		On-chip peripherals current consumption: changed "supply current on "V _{DD_HV_ADC} " to "supply current on" V _{DD_HV} " in I _{DD_HV(FLASH)} row; updated I _{DD_HV(PLL)} value—was 3 * f _{periph} , is 30 * f _{periph} ; updated footnotes DSPI characteristics: added rows t _{PCSC} and t _{PASC}
		Added DSPI PCS strobe (PCSS) timing diagram

Table 50. Revision history (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

MPC5604BC Rev. 11 12/2012

