E·XFL

NXP USA Inc. - SPC5604BACLL6R Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64К х 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bacll6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ¹ Feature set dependent on selected peripheral multiplexing—table shows example implementation
- ² Based on 125 °C ambient operating temperature
- ³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.
- ⁴ IC Input Capture; OC Output Compare; PWM Pulse Width Modulation; MC Modulus counter
- ⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.
- ⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
- ⁷ CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
- ⁸ I/O count based on multiplexing with peripherals
- ⁹ 208 MAPBGA available only as development package for Nexus2+

4

Block	Function
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
Nexus development interface (NDI)	Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Real-time counter (RTC)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode)
System integration unit (SIU)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System status configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	The wakeup unit supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.

3.1 Package pinouts

The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions, please refer to the device reference manual.

		-					uo	Pin number			ber	
Port pin	PCR	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PB[3]	PCR[19]	AF0 AF1	GPIO[19] —	SIUL	I/O —	S	Tristate	1	1	1	1	C3
		AF2 AF3	SCL	I2C_0 —	I/O —							
		— —	WKPU[11] ⁴ LIN0RX	WKPU LINFlex_0	I							
PB[4]	PCR[20]	AF0 AF1	GPIO[20] —	SIUL		I	Tristate	32	32	50	72	T16
		AF2 AF3	—	—	_							
		-	GPI[0]	ADC	1							210
PB[5]	PCR[21]	AF0 AF1	GPIO[21] —	SIUL	 	I	Iristate	35		53	75	R16
		AF2 AF3			_							
PB[6]	PCR[22]	AF0	GPI[1]	SILI		1	Tristate	36		54	76	P15
1 0[0]	1 01 ([22]	AF1					motato	00		01	10	1 10
		AF3			_							
PB[7]	PCR[23]	AF0	GPIO[23]	SIUL	1	I	Tristate	37	35	55	77	P16
		AF1 AF2	—	_	_							
		AF3 —	 GPI[3]	 ADC	— 							
PB[8]	PCR[24]	AF0 AF1	GPIO[24]	SIUL		I	Tristate	30	30	39	53	R9
		AF2	_	_	_							
		— —	ANS[0] OSC32K_XTAL ⁷	ADC SXOSC	І І/О							
PB[9]	PCR[25]	AF0 AF1	GPIO[25] —	SIUL		I	Tristate	29	29	38	52	Т9
		AF2 AF3	—	—								
			ANS[1] OSC32K_EXTAL ⁷	ADC SXOSC	І І/О							

Table 6. Functional port pin descriptions (continued)

		1					uo	Pin number			ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate		—		134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPI0[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O 	S	Tristate				135	B6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC	I/O I/O — O	М	Tristate	_	_		136	D5
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate				137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate	_	_		138	A5
PH[9] ⁹	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	60	60	88	127	B8
PH[10] ⁹	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	53	53	81	120	B9

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ 208 MAPBGA available only as development package for Nexus2+

⁴ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.

⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁶ "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details. ¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 10. OSCILLATOR_MARGIN field description

Value ¹	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 11. WATCHDOG_EN field description

Value ¹	Description
0	Disable after reset
1	Enable after reset

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.15.2 I/O input DC characteristics

Table 16 provides input DC electrical characteristics as described in Figure 7.

Figure 7. I/O input DC electrical characteristics definition

Symt	Symbol C Parameter		Condit	ions ¹		Unit			
Cynn		Ŭ	i arameter	Contait	Min	Тур	Max	onne	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} +0.4	V	
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_	-0.4	—	0.35V _{DD}		
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	—	—		
I _{LKG}	СС	D	Digital input leakage	No injection	T _A = -40 °C	—	2	200	nA
		D		on adjacent	T _A = 25 °C	—	2	200	
		D			T _A = 85 °C	—	5	300	
		D			T _A = 105 °C	_	12	500	
		Ρ			T _A = 125 °C		70	1000	
W_{FI}^2	SR	Ρ	Wakeup input filtered pulse	_	_	—		40	ns
$W_{\rm NFl}^2$	SR	Ρ	Wakeup input not filtered pulse		-	1000		—	ns

	Table 16. I	/O input l	DC electrical	characteristics
--	-------------	------------	---------------	-----------------

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

Symbol		C	Paramotor	Condi	tions ¹		Unit			
Symbo	1	C	Falameter	Conditions			Тур	Мах		
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$			6.6	mA	
			configuration	C _L = 25 pF, 40 MHz	 z	_	_	13.4		
				C _L = 100 pF, 13 MHz		_	_	18.3	-	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			5		
				C _L = 25 pF, 40 MHz	-PAD3V5V = 1	_	_	8.5		
				C _L = 100 pF, 13 MHz				11		
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,			22	mA	
			configuration	C _L = 25 pF, 64 MHz	PAD3VSV=U	_	_	33		
				C _L = 100 pF, 40 MHz		_	_	56		
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$			14		
				C _L = 25 pF, 64 MHz	- PAD3V5V = 1	_	_	20	1	
				C _L = 100 pF, 40 MHz		_	_	35		
IAVGSEG	SR	D	Sum of all the static I/O	V _{DD} = 5.0 V ± 10%, PA	AD3V5V = 0	_	_	70	mA	
			segment	V _{DD} = 3.3 V ± 10%, PA	AD3V5V = 1	_	_	65		

 Table 23. I/O consumption (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 24 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Supply segment				144/100	LQFP		64 LQFP				
		Pad	Weight 5 V		Weight 3.3 V		Weigl	nt 5 V	Weight 3.3 V		
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
4	4	3	PB[3]	10%	_	12%	—	10%		12%	
			PC[9]	10%	_	12%	—	10%		12%	
		_	PC[14]	9%		11%	—				_
		—	PC[15]	9%	13%	11%	12%	_	—	_	
	_	—	PG[5]	9%	_	11%	—	_	—	_	
		_	PG[4]	9%	12%	10%	11%				
	_	—	PG[3]	9%	_	10%	_	_	_	_	_

Table 24. I/O weight¹

Figure 11. $V_{DD HV}$ and $V_{DD BV}$ maximum slope

When STANDBY mode is used, further constraints are applied to the both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit. This is described on Figure 12.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application external regulator.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.20.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symb	ol	C	Parameter	Conditions			Value		
Oymo		•	i arameter	Min				Max	onne
	SR	_	Scan range	_		0.150	_	1000	MHz
f _{CPU}	SR		Operating frequency	_		—	64	_	MHz
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	_	V
S _{EMI}	СС	Т	Peak level	$V_{DD} = 5 V, T_A = 25 °C,$ LQFP144 package	No PLL frequency modulation	—	_	18	dBµ V
				$f_{OSC} = 8 \text{ MHz/}f_{CPU} = 64 \text{ MHz}$	±2% PLL frequency modulation	_	_	14	dBµ V

Table 34. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.20.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.20.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Figure 17. Equivalent circuit of a quartz crystal

Table 39. Crystal motional characteristics¹

Symbol	Parameter	Conditions		Unit		
Symbol	Falanetei	Conditions	Min	Тур	Мах	Onic
L _m	Motional inductance	_	_	11.796	_	KH
C _m	Motional capacitance	_	_	2	_	fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ²	_	18	—	28	pF
R _m ³	Motional resistance	AC coupled @ C0 = 2.85 pF^4	_	—	65	kΩ
		AC coupled @ C0 = 4.9 pF^4		_	50	
		AC coupled @ C0 = 7.0 pF^4	_	—	35	
		AC coupled @ C0 = 9.0 pF^4		_	30	

¹ Crystal used: Epson Toyocom MC306

Symbo		C	Parameter	Conditions ¹	Value		Unit	
Gymbo	01	Ŭ	i didineter	Conditions	Min	Тур	Мах	onic
f _{PLLIN}	SR	_	FMPLL reference clock ²	_	4		64	MHz
Δ_{PLLIN}	SR		FMPLL reference clock duty cycle ²	_	40	_	60	%
f _{PLLOUT}	СС	D	FMPLL output clock frequency	—	16	—	64	MHz
f _{VCO} ³	СС	Ρ	VCO frequency without frequency modulation	_	256	_	512	MHz
		С	VCO frequency with frequency modulation	_	245	_	533	
f _{CPU}	SR	_	System clock frequency	—	_		64	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20	—	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)	_	40	100	μs
Δt_{STJIT}	СС		FMPLL short term jitter ⁴	f _{sys} maximum	-4	_	4	%
Δt_{LTJIT}	СС		FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} @ 64 MHz, 4000 cycles	—	_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	_	_	4	mA

Table 41. FMPLL electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered ±4%

⁴ Short term jitter is measured on the clock rising edge at cycle n and n+4.

3.24 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.

Symbo		C	Parameter	Conditions ¹	Value			Unit	
Oymbo	•	Ŭ	i arameter	Conditions	Min	Тур	Мах	Unit	
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, trimmed	_	16	_	MHz	
	SR		Trequency	_	12		20		
I _{FIRCRUN} ^{2,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_	_	200	μA	
IFIRCPWD	CC	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 125 °C	_	_	10	μA	

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics

3.27.2 DSPI characteristics

No	Symbo	a l	C	Paramotor	D	SPI0/DS	PI1	DSPI2			Unit		
NO.	Symbo	JI	C	Farameter		Min	Тур	Max	Min	Тур	Мах	Unit	
1	t _{scк}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125	_	—	333		_	ns	
			D		Slave mode (MTFE = 0)	125	_	_	333	—	_		
			D		Master mode (MTFE = 1)	83		_	125	_	_		
			D		Slave mode (MTFE = 1)	83		_	125	_			
—	f _{DSPI}	SR	D	DSPI digital controller frequ	iency	—	—	f _{CPU}	_	—	f _{CPU}	MHz	
_	∆t _{CSC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→0	Master mode	_	_	130 ²	_	_	15 ³	ns	
—	∆t _{ASC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→1	Master mode	_	_	130 ³	_	_	130 ³	ns	
2	t _{CSCext} ⁴	SR	D	CS to SCK delay	Slave mode	32	—	_	32	—	_	ns	
3	t _{ASCext} 5	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	_	1/f _{DSPI} + 5	—	_	ns	
4	t _{SDC}	CC	D	SCK duty cycle	Master mode	—	t _{SCK} /2	_	_	t _{SCK} /2	_	ns	
		SR	D		Slave mode	t _{SCK} /2	—	_	t _{SCK} /2	—	_		
5	t _A	SR	D	Slave access time	Slave mode	—	—	1/f _{DSPI} + 70	_	—	1/f _{DSPI} + 130	ns	
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7	—	_	7	—	_	ns	
7	t _{PCSC}	SR	D	PCSx to PCSS time		0	—	_	0	—	_	ns	
8	t _{PASC}	SR	D	PCSS to PCSx time		0	—	—	0	—	—	ns	
9	t _{SUI}	SR	D	Data setup time for inputs	Master mode	43	—	—	145	—	—	ns	
					Slave mode	5	—	—	5	—	—	1	

Table 47. DSPI characteristics¹

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Package pinouts and signal descriptions

80

Package characteristics

	MECHANICAL	OUTLINES	DOCUMENT NO: 98ASS23234		
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTION	IARY	PAGE:	840F	
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE TH	HIS DRAWING	REV:	E	
NOTES:					
1. DIMENSIONS ARE IN MI	LLIMETERS.				
2. DIMENSIONING AND TOL	ERANCING PER AS	ME Y14.5M-19	94.		
3. DATUMS A, B AND D TO) BE DETERMINED	AT DATUM PLA	NE H.		
A DIMENSIONS TO BE DET	ERMINED AT SEAT	ING PLANE C.			
THIS DIMENSION DOES PROTRUSION SHALL NOT BY MORE THAN 0.08 mr LOCATED ON THE LOWEF PROTRUSION AND ADJAC	NOT INCLUDE DAM CAUSE THE LEAD AT MAXIMUM MAT RADIUS OR THE CENT LEAD SHALL	BAR PROTRUSI WIDTH TO EX ERIAL CONDIT FOOT. MINIMU NOT BE LESS	ON. ALL CEED TH ION. D/ M SPACE THAN O.	LOWABLE DAMBAR HE UPPER LIMIT AMBAR CANNOT BE E BETWEEN 07 mm.	
THIS DIMENSION DOES IS 0.25 mm PER SIDE. DIMENSION INCLUDING	NOT INCLUDE MOL THIS DIMENSION MOLD MISMATCH.	D PROTRUSION IS MAXIMUM	. ALLOW/ PLASTI(ABLE PROTRUSION C BODY SIZE	
A EXACT SHAPE OF EACH	CORNER IS OPTIO	NAL.			
THESE DIMENSIONS APP 0. 1 mm AND 0.25 mm F	PLY TO THE FLAT ROM THE LEAD TI	SECTION OF TH P.	HE LEAD	DBETWEEN	
TITLE: 641 D LOFP	С	ASE NUMBER: 8	40F-02		
10 X 10 X 1. 4	PKG, s	TANDARD: JEDE	C MS-02	26 BCD	
0.5 PITCH, CASE	DUTLINE P	ACKAGE CODE:	8426	SHEET: 3	

Figure 37. 64 LQFP package mechanical drawing (3 of 3)

Package characteristics

4.1.2 100 LQFP

Figure 38. 100 LQFP package mechanical drawing (1 of 3)

Package characteristics

	MECHANICA	L OUTLINES	DOCUMENT NO: 98ASS233C					
	DICTIC	NARY	PAGE:	983				
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITOR'. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	Н				
NOTES:			1					
1. ALL DIMENSIONS ARE IN MILL	IMETERS.							
2. INTERPRET DIMENSIONS AND	TOLERANCES PER	ASME Y14.5M-1	994.					
3 DATUMS B, C AND D TO BE	DETERMINED AT I	DATUM PLANE H.						
$\overbrace{4.}$ The top package body size may be smaller than the bottom package size by a maximum of 0.1 mm.								
5. DIMENSIONS DO NOT INCLUDE PROTRUSION IS 0.25 mm PE SIZE DIMENSIONS INCLUDING	MOLD PROTRUSI R SIDE. THE DIMI MOLD MISMATCH.	ONS. THE MAXIMU ENSIONS ARE MAX	JM ALLOW KIMUM BC	VABLE IDY				
6. DIMENSION DOES NOT INCLUE CAUSE THE LEAD WIDTH TO AND AN ADJACENT LEAD SH	DE DAM BAR PRO EXCEED 0.35. MII IALL BE 0.07 MM.	TRUSION. PROTRU NIMUM SPACE BE	SIONS SH TWEEN PF	IALL NOT ROTRUSION				
7. dimensions are determined	AT THE SEATING	G PLANE, DATUM	A.					
TITLE:		CASE NUMBER: S	983-02					
100 LEAD LQF		STANDARD: NON	-JEDEC					
$\begin{bmatrix} 14 \land 14, 0.5 \ \Box \square, \end{bmatrix}$	1.+ 1111UN	PACKAGE CODE:	8264	SHEET: 3				

Figure 40. 100 LQFP package mechanical drawing (3 of 3)

4.1.3 144 LQFP

Figure 41. 144 LQFP package mechanical drawing (1 of 2)

Revision	Date	Description of Changes
2 (cont.)	06-Mar-2009	Updated Table 16, Table 17, Table 18, Table 19 and Table 20 Added Section 3.15.4, Output pin transition times Updated Table 23 Updated Table 25 Section 3.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL Figure 10: Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated Table 26 Added Figure 13 Updated Table 27 and Table 28 Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Updated Section 3.22, Slow external crystal oscillator (32 kHz) electrical characteristics Updated Table 41, Table 42 and Table 43 Added Section 3.27, On-chip peripherals Added Table 44 Updated Table 45 Updated Table 47 Added Section Appendix A, Abbreviations

Table 50. R	evision	history	(continued)
-------------	---------	---------	-------------

Revision	Date	Description of Changes
5	02-Nov-2009	 In the "MPC5604B/C series block summary" table, added a new row. In the "Absolute maximum ratings" table, changed max value of V_{DD_BV}, V_{DD_ADC}, and V_{IN}. In the "Recommended operating conditions (3.3 V)" table, deleted min value of TV_{DD}. In the "Reset electrical characteristics" table, changed footnotes 3 and 5. In the "Voltage regulator electrical characteristics" table: C_{REGn}: changed max value. C_{DEC1}: split into 2 rows. Updated voltage values in footnote 4 In the "Low voltage monitor electrical characteristics" table: Updated column Conditions. V_{LVDLVCORL}, V_{LVDLVBKPL}: changed min/max value. In the "Program and erase specifications" table, added initial max value of T_{dwprogram}. In the "Flash module life" table, changed min value for blocks with 100K P/E cycles In the "Flash power supply DC electrical characteristics" table: JFREAD, IFMOD: added typ value. Added footnote 1. Added footnote 1

6 15-Mar-2010 In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding In the "Absolute maximum ratings" table, removed the min value of V _{IN} re
 In the "Recommended operating conditions (3.3 V)" table: TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TA M-Grade Part added new rows. TV_{DD}: made single row. In the "LQFP thermal characteristics" table, added more rows. Removed "208 MAPBGA thermal characteristics" table. In the "LQFP thermal characteristics" table. In the "I/O consumption" table: Removed 1_{DYNSEG} row. Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: Updated the values. Removed 1_{VREGREF} and I_{VREDLVD12}. Added a note about 1_{DD_BC}. In the "Low voltage monitor electrical characteristics" table: Updated V_{PORH} values. Updated V_{PORH} values. Updated V_{PORH} values. Updated the "Low voltage power domain electrical characteristics" table: In the "Program and erase specifications" table, inserted T_{eslat} row. Entirely updated the "Flash power supply DC electrical characteristics" ta Entirely updated the "Start-up time/Switch-off time" table. In the "Crystal oscillator and resonator connection scheme" figure, reloca In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table: Inserted values of I_{SXOSC BLAS}. Entirely updated the "Tast internal RC oscillator (16 MHz) electrical characteristics of the "ADC conversion characteristics" table. In the "ADC conversion characteristics" table. In the "Orderable part number summary" table, modified some orderable Updated the "Commercial product code structure" figure. Removed the notes bout the condition from "Flash read access timing" ta Removed the order of "LQFP 100-pin configuration" and "LQFP 144-pir Exchanged the order of "LQFP 100-pin package mechanical drawing" and traverse mechanical drawing" and traverse mechanical drawing" and traverse mechanical drawing" and traverse mechanical drawing" and trav

Table 50. Revision history (continued)

Revision	Date	Description of Changes
9	16 June 2011	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature Removed all instances of note "All 64 LQFP information is indicative and must be confirmed during silicon validation."
		Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP_TEST to VSS_HV Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pine"
		Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[WATCHDOG EN] field description"
		Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics Section "I/O pad current specification": removed content referencing the I _{DYNSEG}
		 I/O consumption: replaced instances of "Root medium square" with "Root mean square" I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package
		Reset electrical characteristics: updated parameter classification for I _{WPU} Updated Voltage regulator electrical characteristics Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for
		 V_{LVDLVBKPL} and V_{LVDLVCORL}; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption" Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter classification for V_{FXOSCOP} Crystal oscillator and resonator connection scheme: added footnote about possibility of
		adding a series resistor Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1 FMPLL electrical characteristics: added short term jitter characteristics; inserted "—" in empty min value cell of t _{lock} row Section "Input impedance and ADC accuracy": changed "V _A /V _A 2" to "V _A 2/V _A " in
		Equation 11 ADC input leakage current: updated I _{LKG} characteristics ADC conversion characteristics: updated symbols On-chip peripherals current consumption: changed "supply current on "V _{DD_HV_ADC"} to "supply current on" V _{DD_HV} " in I _{DD_HV(FLASH)} row; updated I _{DD_HV(PLL)} value—was 3 * f _{periph} , is 30 * f _{periph} ; updated footnotes DSPI characteristics: added rows t _{PCSC} and t _{PASC} Added DSPI PCS strobe (PCSS) timing diagram

Table 50. Revision history (continued)