E·XFL

NXP USA Inc. - SPC5604BF2CLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bf2cll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

1.2 Description

The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture[®] embedded category.

The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

3.5 System pins

The system pins are listed in Table 5.

				ation	Pin number			
System pin	Function		Pad type	RESET configuration	64 LQFP ¹	100 LQFP	144 LQFP	208 MAPBGA ²
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	М	Input, weak pull-up only after PHASE2	9	17	21	J1
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. ³	I/O	х	Tristate	27	36	50	N8
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ³	I	Х	Tristate	25	34	48	P8

Table \$	5. Sy	stem	pin	descr	iptions
----------	-------	------	-----	-------	---------

¹ Pin numbers apply to both the MPC560xB and MPC560xC packages.

² 208 MAPBGA available only as development package for Nexus2+

³ See the relevant section of the datasheet

3.6 Functional ports

The functional port pins are listed in Table 6.

		+					u		Pin nur			
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁴	SIUL eMIOS_0 CGL — WKPU	/O /O 	Μ	Tristate	5	5	12	16	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁵ WKPU[2] ⁴	SIUL eMIOS_0 — WKPU WKPU	/O /O 	S	Tristate	4	4	7	11	F3

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX ¹¹ — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 SIUL	I/O I/O O I	Μ	Tristate	50	50	78	117	A11
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — —	GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX ¹¹ EIRQ[6]	SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL	/0 /0 - 	S	Tristate	49	49	77	116	B11
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 —	GPIO[36] — — — SIN_1 CAN3RX ¹¹	SIUL — — DSPI_1 FlexCAN_3	I/O — — — —	Μ	Tristate	62	62	92	131	B7
PC[5]	PCR[37]	AF0 AF1 AF2 AF3	GPIO[37] SOUT_1 CAN3TX ¹¹ — EIRQ[7]	SIUL DSPI1 FlexCAN_3 SIUL	I/O O O I	Μ	Tristate	61	61	91	130	A7
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX — —	SIUL LINFlex_1 —	I/O O 	S	Tristate	16	16	25	36	R2
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ⁴	SIUL — — LINFlex_1 WKPU	I/O 	S	Tristate	17	17	26	37	P3
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX — —	SIUL LINFlex_2 —	I/O O —	S	Tristate	63	63	99	143	A1

Table 6. Functional port pin descriptions (continued)

							uo		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX ¹¹ —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O	М	Tristate			8	12	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — … SIN_1	SIUL eMIOS_0 DSPI_1	1/0 1/0 -	Μ	Tristate			89	128	D7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	М	Tristate		_	90	129	C7
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	/0 /0 /0 	Μ	Tristate	_	_	93	132	D6
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate	_		94	133	C6
PE[6]	PCR[70]	AF0 AF1 AF2 AF3	GPIO[70] E0UC[22] CS3_0 MA[1]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O O	М	Tristate			95	139	B5
PE[7]	PCR[71]	AF0 AF1 AF2 AF3	GPIO[71] E0UC[23] CS2_0 MA[0]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O O	М	Tristate	—	—	96	140	C4
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] CAN2TX ¹² E0UC[22] CAN3TX ¹¹	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	I/O O I/O O	Μ	Tristate	_		9	13	G2
PE[9]	PCR[73]	AF0 AF1 AF2 AF3 — — —	GPIO[73] — E0UC[23] — WKPU[7] ⁴ CAN2RX ¹² CAN3RX ¹¹	SIUL — eMIOS_0 — WKPU FlexCAN_2 FlexCAN_3	1/0 1/0 1 1 1	S	Tristate			10	14	G1

Table 6. Functional port pin descriptions (continued)

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 —	I/O I/O 	Μ	Tristate				134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate				135	B6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC	I/O I/O — O	М	Tristate				136	D5
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate				137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate	l	_		138	A5
PH[9] ⁹	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	60	60	88	127	B8
PH[10] ⁹	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	53	53	81	120	B9

Table 6. F	unctional	port pin	descriptions	(continued)
				(

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ 208 MAPBGA available only as development package for Nexus2+

⁴ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.

⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁶ "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details.

- ⁷ Value of PCR.IBE bit must be 0
- ⁸ Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and MPC5607B.
- ⁹ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
- If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.
- ¹⁰ The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kΩ should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and GND instead.
- ¹¹ Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices
- ¹² Not available on MPC5602B devices
- ¹³ Not available in 100 LQFP package
- ¹⁴ Available only on MPC5604B 208 MAPBGA devices
- ¹⁵ Not available on MPC5603B 144-pin devices

3.7 Nexus 2+ pins

In the 208 MAPBGA package, eight additional debug pins are available (see Table 7).

		I/O		Function	Pin number					
Debug pin	Function	direction	Pad type	LQFP LQFF		144 LQFP	208 MAP BGA ¹			
МСКО	Message clock out	0	F	—		_	T4			
MDO0	Message data out 0	0	М	—		_	H15			
MDO1	Message data out 1	0	М	—		_	H16			
MDO2	Message data out 2	0	М	—		_	H14			
MDO3	Message data out 3	0	М	—	_	_	H13			
EVTI	Event in	I	М	Pull-up	_	_	K1			
EVTO	Event out	0	М	—		_	L4			
MSEO	Message start/end out	0	М	_		_	G16			

Table 7. Nexus 2+ pin descriptions

208 MAPBGA available only as development package for Nexus2+

3.8 Electrical characteristics

3.9 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

Package pinouts and signal descriptions

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to		4.5	5.5	V
		ground (V _{SS})	Voltage drop ²	3.0	5.5	
V _{SS_LV} ³	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
$V_{DD_BV}^4$	SR	Voltage on VDD_BV pin (regulator supply)	_	4.5	5.5	V
		with respect to ground (V_{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁵	SR	Voltage on VDD_HV_ADC pin (ADC		4.5	5.5	V
		reference) with respect to ground (V_{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to		V _{SS} -0.1	—	V
		ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	_	—	0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	f _{CPU} ≤ 64 MHz	-40	85	°C
T _{J C-Grade} Part	SR	Junction temperature under bias		-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias	1	-40	105	1
T _{J V-Grade} Part	SR	Junction temperature under bias	1	-40	130	
T _{A M-Grade Part}	SR	Ambient temperature under bias		-40	125	
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	

Table 14. Recommended operating conditions (5.0 V)

 $^1\,$ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

³ 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair. ⁴ 100 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 $^5\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁶ Guaranteed by device validation

NOTE

RAM data retention is guaranteed with $V_{DD\ LV}$ not below 1.08 V.

3.15.2 I/O input DC characteristics

Table 16 provides input DC electrical characteristics as described in Figure 7.

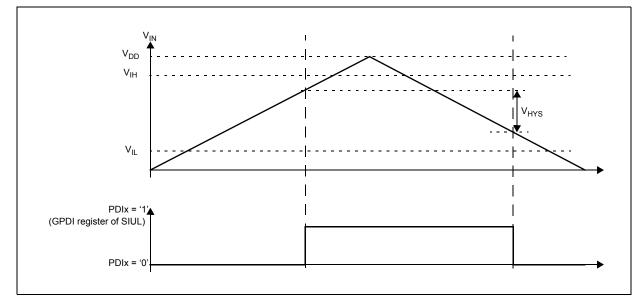


Figure 7. I/O input DC electrical characteristics definition

Symb	ol	с	Parameter	Condit	ions ¹		Value		Unit
		Ŭ	i didineter	Contait	10113	Min	Тур	Max	onic
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} +0.4	V	
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_	-0.4	_	0.35V _{DD}		
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	_	_		
I _{LKG}	СС	D	Digital input leakage	No injection	T _A = -40 °C	—	2	200	nA
		D		on adjacent pin	T _A = 25 °C	—	2	200	
		D			T _A = 85 °C	—	5	300	
		D			T _A = 105 °C	—	12	500	
		Ρ			T _A = 125 °C	—	70	1000	
W_{FI}^2	SR	Ρ	Wakeup input filtered pulse	_	-	—	_	40	ns
$W_{\rm NFI}^2$	SR	Ρ	Wakeup input not filtered pulse	—	-	1000	_	—	ns

Table 16. I/O inpu	It DC electrical	characteristics
--------------------	------------------	-----------------

 $^1~$ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

Sym	bol	<u>د</u>	Parameter		Conditions ¹	\ \		Unit	
J	1001	C	Falameter		Conditions	Min	Тур	Max	Unit
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}			V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}		_	
		С			I _{OH} = –1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	-	—	
		С			I _{OH} = -1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8		_	
		С			I _{OH} = –100 μΑ, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	-	—	
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		0.2V _{DD}	V
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_		0.1V _{DD}	
		С			I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	-	0.1V _{DD}	
		С			I_{OL} = 1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	—		0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—		0.1V _{DD}	

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 ² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Svn	Symbol	C	Parameter		Conditions ¹				Unit
- Oyn		ľ	i arameter		Conditions	Min	Тур	Max	
V _{OH}	СС		Output high level FAST configuration	Push Pull	$I_{OH} = -14$ mA, $V_{DD} = 5.0$ V ± 10%, PAD3V5V = 0 (recommended)	0.8V _{DD}	_	_	V
		С			I _{OH} = -7mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}		_	
		С			I _{OH} = -11mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8		_	

Package pinouts and signal descriptions

Symbo	-	С	Parameter	Condi	tional		Value		Unit
Symbo	1	C	Parameter	Condi	uons	Min	Тур	Мах	Unit
IRMSMED	CC	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		6.6	mA
			urrent for MEDIUM onfiguration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	—	—	13.4	
			J	C _L = 100 pF, 13 MHz			—	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			5	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	-	—	8.5	
				C _L = 100 pF, 13 MHz				11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$			22	mA
			current for FAST configuration	C _L = 25 pF, 64 MHz	PAD3V5V = 0		_	33	
			0	C _L = 100 pF, 40 MHz				56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,			14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1		_	20	
				C _L = 100 pF, 40 MHz				35	
I _{AVGSEG}	SR	D	Sum of all the static I/O	V _{DD} = 5.0 V ± 10%, PA	AD3V5V = 0	—	—	70	mA
			current within a supply segment	V _{DD} = 3.3 V ± 10%, PA	AD3V5V = 1		—	65	

 Table 23. I/O consumption (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 24 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Sum	Supply segment			144/100 LQFP				64 LQFP				
Sup	pry seg	ment	Pad	Weight 5 V		Weight 3.3 V		Weight 5 V		Weight 3.3 V		
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
4	4	3	PB[3]	10%		12%	—	10%		12%		
			PC[9]	10%		12%		10%		12%		
		_	PC[14]	9%	_	11%	—	_	_	—	_	
		_	PC[15]	9%	13%	11%	12%	_	_	—	_	
		—	PG[5]	9%	_	11%	—	_	_	—		
		—	PG[4]	9%	12%	10%	11%	_	_	_	_	
	_	—	PG[3]	9%	_	10%	—	_	_	—	_	

Table 24. I/O weight¹

Symbo	I	С	Ratings	Conditions	Class	Max value	Unit
V _{ESD(HBM)}	СС		Electrostatic discharge voltage (Human Body Model)	T _A = 25 °C conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	СС		Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	СС		Electrostatic discharge voltage	$T_A = 25 \degree C$	C3A	500	
	(Charged Device Model) conforming to AEC-Q100-		conforming to AEC-Q100-011		750 (corners)		

 Table 35. ESD absolute maximum ratings^{1 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 36. Latch-up results

Symbol		С	Parameter	Conditions	Class	
LU	CC	Т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A	

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Package pinouts and signal descriptions

- $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ } T_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified.}$ $T_{his} \text{ does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is }$ ON.

3.26 ADC electrical characteristics

3.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

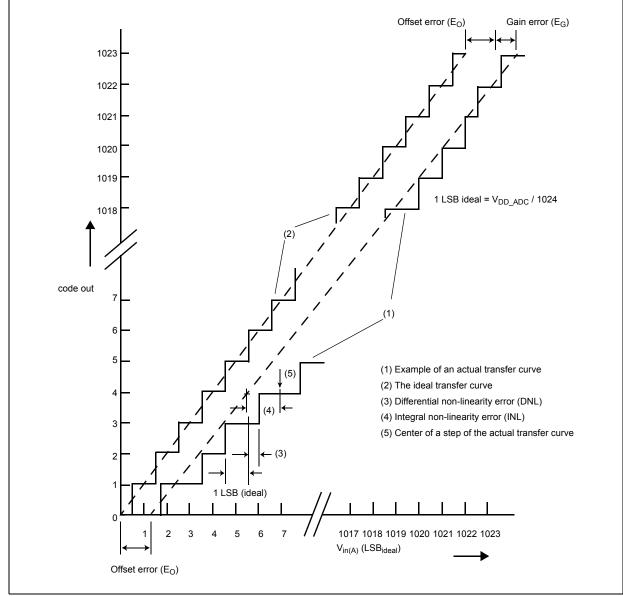


Figure 19. ADC characteristic and error definitions

3.26.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

3.26.3 ADC electrical characteristics

Table 44. ADC input leakage current

Sym	Symbol		Parameter	ameter Conditions	Conditions			Unit	
Cymbol C		Ŭ	Farameter					Мах	Onit
I _{LKG}	СС	D	Input leakage current	T _A = −40 °C	No current injection on adjacent pin		1	70	nA
		D		T _A = 25 °C		-	1	70	
		D		T _A = 85 °C			3	100	
		D		T _A = 105 °C			8	200	
		Ρ		T _A = 125 °C		—	45	400	

Table 45. ADC conversion characteristics

C: una h a		с	Devenuetor	Conditions ¹		Value		Unit
Symbo	1	U	Parameter	Conditions	Min	Тур	Мах	Unit
V _{SS_ADC}	SR		Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}) ²	_	-0.1	_	0.1	V
V _{DD_ADC}	SR	_	Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V _{SS})	_	V _{DD} -0.1	_	V _{DD} +0.1	V
V _{AINx}	SR	_	Analog input voltage ³	_	V _{SS_ADC} -0.1		V _{DD_ADC} +0.1	V
f _{ADC}	SR	_	ADC analog frequency	—	6		32 + 4%	MHz
Δ_{ADC}_{SYS}	SR	_	ADC digital clock duty cycle (ipg_clk)	ADCLKSEL = 1 ⁴	45	—	55	%
I _{ADCPWD}	SR	—	ADC0 consumption in power down mode	_	_	—	50	μA
IADCRUN	SR	—	ADC0 consumption in running mode	_	_	—	4	mA
t _{ADC_PU}	SR	_	ADC power up delay	_	_	_	1.5	μs
t _s	СС	Т	Sampling time ⁵	f _{ADC} = 32 MHz, INPSAMP = 17	0.5	—		μs
				f _{ADC} = 6 MHz, INPSAMP = 255	_	—	42	
t _c	СС	Ρ	Conversion time ⁶	f _{ADC} = 32 MHz, INPCMP = 2	0.625	—		μs
C _S	СС	D	ADC input sampling capacitance	_	—	—	3	pF
C _{P1}	СС	D	ADC input pin capacitance 1	_	_	—	3	pF
C _{P2}	СС	D	ADC input pin capacitance 2	_	—	—	1	pF

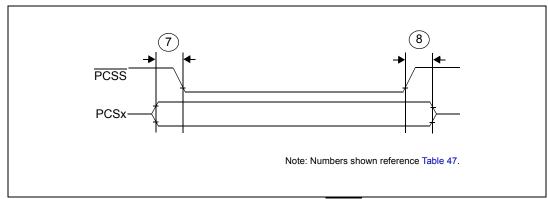


Figure 32. DSPI PCS strobe (PCSS) timing

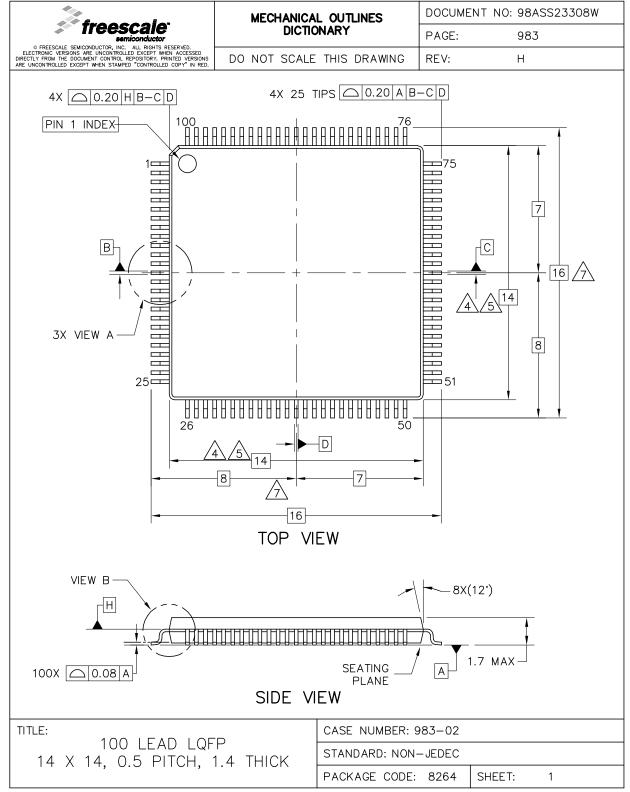
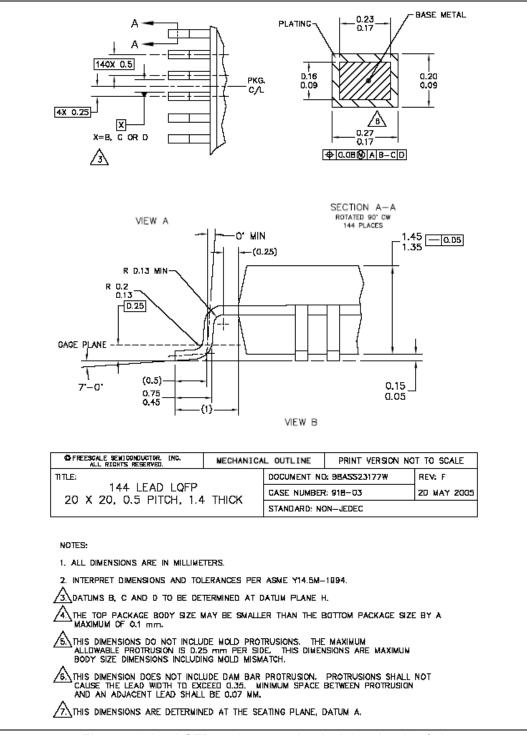
3.27.3 Nexus characteristics

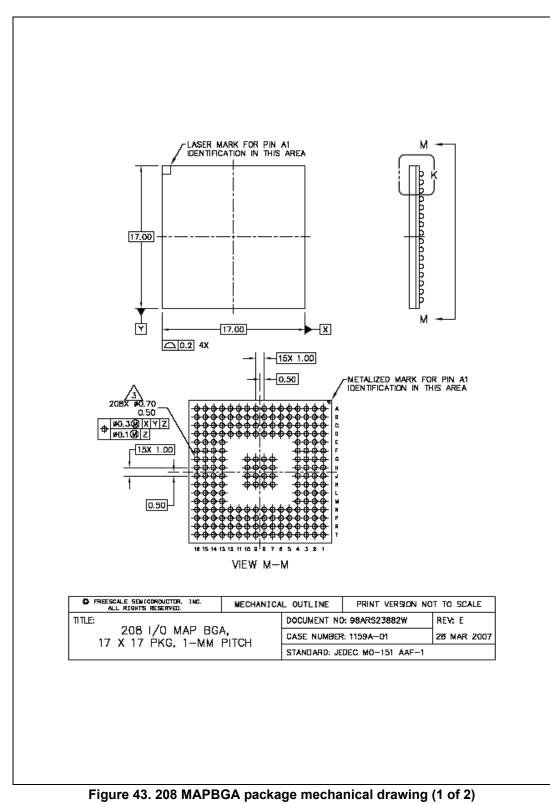
No.	Symbol		с	Parameter		Value		Unit
NO.	Symb	01		Falameter	Min	Тур	Max	Onit
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns
2	t _{MCYC}	CC	D	MCKO cycle time	32	—	—	ns
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	—	—	8	ns
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	—	—	8	ns
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	—	—	8	ns
10	t _{NTDIS}	CC [TDI data setup time	15	—	—	ns
	t _{NTMSS}	CC	D	TMS data setup time	15	—	—	ns
11	t _{NTDIH}	CC	D	TDI data hold time	5	—	—	ns
	t _{NTMSH}	CC	D	TMS data hold time	5	—	—	ns
12	t _{TDOV}	CC	D	TCK low to TDO data valid	35	—	_	ns
13	t _{TDOI}	CC	D	TCK low to TDO data invalid	6	_	_	ns

Table 48. Nexu	is characteristics
----------------	--------------------

Package characteristics

4.1.2 100 LQFP


Figure 38. 100 LQFP package mechanical drawing (1 of 3)

Package characteristics

4.1.4 208 MAPBGA

Document revision history

Revision	Date	Description of Changes
4	06-Aug-2009	Updated Figure 6 Table 12 • V _{DD_ADC} : changed min value for "relative to V _{DD} " condition • V _{IN} : changed min value for "relative to V _{DD} " condition • I _{CORELV} : added new row Table 14 • Ta-C-Grade Part, TJ-C-Grade Part, TA-V-Grade Part, TJ-V-Grade Part, TA-M-Grade Part, TJ-M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • C _{DEC1} : changed min value • I _{MREG} : changed max value • I _{DD_BV} : added max value • I _{DD_BV} : added max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde m

Table 50. Revision history (continued)

Appendix A Abbreviations

Table A-1 lists abbreviations used but not defined elsewhere in this document.

Table A-1. Abbreviations

Abbreviation	Meaning
CMOS	Complementary metal-oxide-semiconductor
СРНА	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
EVTO	Event out
МСКО	Message clock out
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
SCK	Serial communications clock
SOUT	Serial data out
TBD	To be defined
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select