NXP USA Inc. - SPC5604BF2MLH6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bf2mlh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ¹ Feature set dependent on selected peripheral multiplexing—table shows example implementation
- ² Based on 125 °C ambient operating temperature
- ³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.
- ⁴ IC Input Capture; OC Output Compare; PWM Pulse Width Modulation; MC Modulus counter
- ⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.
- ⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
- ⁷ CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
- ⁸ I/O count based on multiplexing with peripherals
- ⁹ 208 MAPBGA available only as development package for Nexus2+

4

- ⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
- ⁷ CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
- ⁸ I/O count based on multiplexing with peripherals
- ⁹ All LQFP64information is indicative and must be confirmed during silicon validation.
- ¹⁰ LBGA208 available only as development package for Nexus2+

Block	Function
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
Nexus development interface (NDI)	Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Real-time counter (RTC)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode)
System integration unit (SIU)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System status configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	The wakeup unit supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.

3.1 Package pinouts

The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions, please refer to the device reference manual.

							uo	Pin number				
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] — —	SIUL eMIOS_0 —	I/O I/O 	М	Tristate			_	115	B12
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] — —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate			_	92	K14
PG[13]	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] — —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	—	—		91	K16
PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] — —	SIUL eMIOS_1 	I/O I/O 	S	Tristate	—	_		110	B14
PG[15]	PCR[111]	AF0 AF1 AF2 AF3	GPI0[111] E1UC[1] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate			_	111	B13
PH[0]	PCR[112]	AF0 AF1 AF2 AF3 —	GPI0[112] E1UC[2] — SIN1	SIUL eMIOS_1 DSPI_1	/O /O 	Μ	Tristate	_	_		93	F13
PH[1]	PCR[113]	AF0 AF1 AF2 AF3	GPI0[113] E1UC[3] SOUT1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O O	М	Tristate			_	94	F14
PH[2]	PCR[114]	AF0 AF1 AF2 AF3	GPI0[114] E1UC[4] SCK_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate	—	_		95	F16
PH[3]	PCR[115]	AF0 AF1 AF2 AF3	GPIO[115] E1UC[5] CS0_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate				96	F15

Table 6. Functional port pin descriptions (continued)

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows how NVUSRO[PAD3V5V] controls the device configuration.

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

Table 9. PAD3V5V field description

MPC5604B/C Microcontroller Data Sheet, Rev. 11

3.13 Recommended operating conditions

Symbol		Baramatar	Conditions	Va	l lmit	
Symbol		Parameter	Conditions	Min	Max 0 3.6 V _{SS} +0.1 3.6 V _{DD} +0.1 V _{SS} +0.1 3.6 V _{DD} +0.1 V _{DD} +0.1 5 50 0.25 85 110 105 130 125 150	Sint
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	—	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})		V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ³	SR	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
		ParameterConditionsValueRDigital ground on VSS_HV pins-00RVoltage on VDD_HV pins with respect to ground (VSS)-3.03.6RVoltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS)-VSS-0.1VSS+0.1RVoltage on VDD_BV pin (regulator supply) with respect to ground (VSS)-3.03.6RVoltage on VSS_HV_ADC (ADC reference) pin with respect to ground (VSS)-VSS-0.1VDD+0.1RVoltage on VDD_HV_ADC pin (ADC reference) pin with respect to ground (VSS)-3.0^53.6RVoltage on any GPIO pin with respect to ground (VSS)-VSS-0.1VDD+0.1RVoltage on any GPIO pin with respect to ground (VSS)-VSS-0.1-RVoltage on any GPIO pin with respect to ground (VSS)5RAbsolute sum of all injected input currents during overload condition55RAbsolute sum of all injected input currents during overload condition0.25RAmbient temperature under bias RJunction temperature under bias0.10RJunction temperature under bias R0.105RJunction temperature under bias R0.25RAmbient temperature under bias R0.25RJunction temperature under bias R0RJunction temperature under b				
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁴	SR	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁵	3.6	V
		with respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	—	V
		(V _{SS})	Relative to V_{DD}		V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—		0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias		-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
T _{A M-Grade Part}	SR	Ambient temperature under bias		-40	125	
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	

Table 13. Recommended operating conditions (3.3 V)

 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

³ 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 4 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

 $^2~$ CL includes device and package capacitances (C_{PKG} < 5 pF).

3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 22.

Package	Supply segment									
	1	2	3	4	5	6				
208 MAPBGA ¹	Equivale	ent to 144 LQFP	segment pad dis	tribution	МСКО	MDOn/MSEO				
144 LQFP	pin20–pin49	pin51–pin99	pin100-pin122	pin 123-pin19	—	—				
100 LQFP	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	—	_				
64 LQFP	pin8–pin26	pin28–pin55	pin56–pin7		_	—				

Table 22. I/O supply segment

¹ 208 MAPBGA available only as development package for Nexus2+

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{AVGSEG} maximum value.

Symbol		c	Paramotor	Condi	tions ¹			Unit	
Gymbo	•	Ŭ	i arameter	Conditions			Тур	Мах	onic
I _{SWTSLW} ,2	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			50	
I _{RMSSLW}	СС	D	D Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,			2.3	mA
			current for SLOW	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	_	3.2	
				C _L = 100 pF, 2 MHz		_	_	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,			1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	—	—	2.3	
				C _L = 100 pF, 2 MHz		_		4.7	

Table 23. I/O consumption

Example 1. No regulator (worst case)

The $|\Delta_{VDD(STDBY)}|$ parameter can be seen as the V_{DD} voltage drop through the ESR resistance of the regulator stability capacitor when the I_{DD_BV} current required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the maximum equivalent resistance ESR_{STDBY}(MAX) of the total capacitance on the V_{DD} supply:

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/\text{I}_{\text{DD} \text{ BV}} = (30 \text{ mV})/(300 \text{ mA}) = 0.1\Omega^{-1}$

The dVDD(STDBY)/dt parameter can be seen as the V_{DD} voltage drop at the capacitance pin (excluding ESR drop) while providing the I_{DD_BV} supply required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the minimum equivalent capacitance $C_{STDBY}(MIN)$ of the total capacitance on the V_{DD} supply:

 $C_{STDBY}(MIN) = I_{DD BV}/dVDD(STDBY)/dt = (300 mA)/(15 mV/\mu s) = 20 \mu F$

This configuration is a worst case, with the assumption no regulator is available.

Example 2. Simplified regulator

The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent $ESR_{STDBY}(MAX)$ and $C_{STDBY}(MIN)$ as follows:

 $ESR_{STDBY}(MAX) = |\Delta_{VDD(STDBY)}|/(I_{DD BV} - 200 mA) = (30 mV)/(100 mA) = 0.3 \Omega$

 $C_{\text{STDBY}}(\text{MIN}) = (I_{\text{DD} BV} - 200 \text{ mA})/d\text{VDD}(\text{STDBY})/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{\text{STDBY}}(\text{MIN})$ and $\text{ESR}_{\text{STDBY}}(\text{MAX})$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

^{1.} Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.

Symbol		C	Parameter	Conditions ¹		Unit		
Cynis	01	Ŭ	i di dificici	Min Typ Ma		Max	om	
I _{FLPW}	CC	D	Sum of the current consumption on VDD_HV and VDD_BV	During code flash memory low-power mode	—	—	900	μA
				During data flash memory low-power mode	—	—	900	
I _{FPWD}	СС	D	Sum of the current consumption on VDD_HV and VDD_BV	During code flash memory power-down mode	—	—	150	μA
				During data flash memory power-down mode	—	—	150	

 Table 32. Flash memory power supply DC electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² This value is only relative to the actual duration of the read cycle

 $^3~f_{CPU}$ 64 MHz can be achieved only at up to 105 $^\circ\text{C}$

3.19.3 Start-up/Switch-off timings

Symbol		C	Paramotor	Conditions ¹		Value		Unit
		Ŭ	i arameter	Conditions	Min	Тур	Мах	• Int
T _{FLARSTEXIT}	СС	Т	Delay for Flash module to exit reset mode	Code Flash	_		125	μs
		Т		Data Flash	_	_	125	1
T _{FLALPEXIT}	СС	Т	Delay for Flash module to exit low-power	Code Flash	_	_	0.5	Ī
		Т	mode	Data Flash	_		0.5	1
T _{FLAPDEXIT}	СС	Т	Delay for Flash module to exit power-down	Code Flash	_	_	30	1
		Т	mode	Data Flash	_	_	30	Ī
T _{FLALPENTRY}	СС	Т	Delay for Flash module to enter low-power	Code Flash	_		0.5	1
		Т	mode	Data Flash	_	_	0.5	Ī
T _{FLAPDENTRY}	СС	Т	Delay for Flash module to enter power-down	Code Flash	_	_	1.5	Ī
		Т	mode	Data Flash	_	—	1.5	1

Table 33. Start-up time/Switch-off time

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.20 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.20.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Symbo	I	С	Ratings	Conditions Class Max value		Unit	
V _{ESD(HBM)}	СС	Т	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	СС	Т	Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	СС	Т	Electrostatic discharge voltage	$T_A = 25 \degree C$	C3A	500	
			(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

 Table 35. ESD absolute maximum ratings^{1 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 36. Latch-up results

Symbol		С	Parameter	Conditions	Class
LU	CC	Т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

3.26 ADC electrical characteristics

3.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 19. ADC characteristic and error definitions

3.26.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

MPC5604B/C Microcontroller Data Sheet, Rev. 11

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the Equation 4:

Eqn. 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

Figure 20. Input equivalent circuit (precise channels)

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_{S} + C_{P1} + C_{P2}) = V_{A} \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Eqn. 8
$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_I sizing is obtained:

$$8.5 \bullet \tau_2 = 8.5 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10
$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

Eqn. 5

Eqn. 7

Egn. 9

On-chip peripherals 3.27

Current consumption 3.27.1

Symbol		С	Parameter		Conditions	Typical value ²	Unit
I _{DD_BV(CAN)}	CC	Т	CAN (FlexCAN) supply current on VDD_BV	Bitrate: 500 Kbyte/s Bitrate: 125 Kbyte/s	 Total (static + dynamic) consumption: FlexCAN in loop-back mode XTAL @ 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 85 8 * f _{periph} + 27	μA
I _{DD_BV(eMIOS)}	СС	Т	eMIOS supply current on VDD_BV	Static consulteMIOS chGlobal pre	mption: annel OFF escaler enabled	29 * f _{periph}	μA
				 Dynamic cor It does no frequency 	nsumption: t change varying the (0.003 mA)	3	
I _{DD_BV(SCI)}	сс	Т	SCI (LINFlex) supply current on VDD_BV	Total (static · • LIN mode • Baudrate:	+ dynamic) consumption: 20 Kbyte/s	5 * f _{periph} + 31	μA
I _{DD_BV(SPI)}	СС	Т	SPI (DSPI) supply current	Ballast static	consumption (only clocked)	1	μA
				Ballast dyna (continuous • Baudrate: • Transmiss • Frame: 16	mic consumption communication): 2 Mbit/s sion every 8 μs δ bits	16 * f _{periph}	
I _{DD_BV(ADC)}	СС	Т	ADC supply current on VDD_BV	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	41 * f _{periph}	μA
					Ballast dynamic consumption (continuous conversion) ³	5 * f _{periph}	
I _{DD_HV_ADC(ADC)}	сс	Т	ADC supply current on VDD_HV_ADC	V _{DD} = 5.5 V Analog static consumption (no conversion)		2 * f _{periph}	μA
					Analog dynamic consumption (continuous conversion)	75 * f _{periph} + 32	
IDD_HV(FLASH)	CC	Т	Code Flash + Data Flash supply current on VDD_HV	V _{DD} = 5.5 V	_	8.21	mA
I _{DD_HV(PLL)}	СС	Т	PLL supply current on VDD_HV	V _{DD} = 5.5 V		30 * f _{periph}	μA

Table 46. On-chip peripherals current consumption¹

¹ Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 64 MHz ² f_{periph} is an absolute value.

³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) * f_{periph}$.

3.27.2 DSPI characteristics

No	lo. Symbol		C	Parameter -		DSPI0/DSPI1			DSPI2			Unit
NO.			C			Min	Тур	Max	Min	Тур	Мах	Unit
1	t _{scк}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125		—	333	_	_	ns
			D		Slave mode (MTFE = 0)	125		_	333	—	_	
			D		Master mode (MTFE = 1)	83		_	125	_	_	
			D		Slave mode (MTFE = 1)	83		_	125	_		
—	f _{DSPI}	SR	D	DSPI digital controller frequ	iency	—	—	f _{CPU}	_	—	f _{CPU}	MHz
_	∆t _{CSC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→0	Master mode	_	_	130 ²	_	_	15 ³	ns
—	∆t _{ASC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1→1	Master mode	_	_	130 ³	_	_	130 ³	ns
2	t _{CSCext} ⁴	SR	D	CS to SCK delay	Slave mode	32	_	_	32	—	_	ns
3	t _{ASCext} 5	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	_	1/f _{DSPI} + 5	—	_	ns
4	t _{SDC}	CC	D	SCK duty cycle	Master mode	—	t _{SCK} /2	_	_	t _{SCK} /2	_	ns
		SR	D		Slave mode	t _{SCK} /2	—	_	t _{SCK} /2	—	_	
5	t _A	SR	D	Slave access time	Slave mode	—	—	1/f _{DSPI} + 70	_	—	1/f _{DSPI} + 130	ns
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7	—	_	7	—	_	ns
7	t _{PCSC}	SR	D	PCSx to PCSS time		0	—	_	0	—	_	ns
8	t _{PASC}	SR	D	PCSS to PCSx time		0	—	—	0	—	—	ns
9	t _{SUI}	SR	D	Data setup time for inputs	Master mode	43	—	—	145	—	—	ns
					Slave mode	5	—	—	5	—	—	1

Table 47. DSPI characteristics¹

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Package pinouts and signal descriptions

80

Figure 34. Timing diagram – JTAG boundary scan

4 Package characteristics

4.1 Package mechanical data

4.1.1 64 LQFP

Figure 35. 64 LQFP package mechanical drawing (1 of 3)

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Package characteristics

Document revision history

Revision	Date	Description of Changes
5	02-Nov-2009	 In the "MPC5604B/C series block summary" table, added a new row. In the "Absolute maximum ratings" table, changed max value of V_{DD_BV}, V_{DD_ADC}, and V_{IN}. In the "Recommended operating conditions (3.3 V)" table, deleted min value of TV_{DD}. In the "Reset electrical characteristics" table, changed footnotes 3 and 5. In the "Voltage regulator electrical characteristics" table: C_{REGn}: changed max value. C_{DEC1}: split into 2 rows. Updated voltage values in footnote 4 In the "Low voltage monitor electrical characteristics" table: Updated column Conditions. V_{LVDLVCORL}, V_{LVDLVBKPL}: changed min/max value. In the "Program and erase specifications" table, added initial max value of T_{dwprogram}. In the "Flash module life" table, changed min value for blocks with 100K P/E cycles In the "Flash power supply DC electrical characteristics" table: JFREAD, IFMOD: added typ value. Added footnote 1. Added footnote 1