E·XFL

NXP USA Inc. - SPC5604BF2MLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bf2mll6

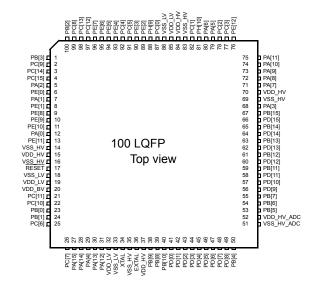
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

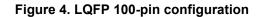
Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device


Table 3. MPC5604B/C series block summary

Block	Function
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
Nexus development interface (NDI)	Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Real-time counter (RTC)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode)
System integration unit (SIU)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System status configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	The wakeup unit supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.


3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions, please refer to the device reference manual.

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX ¹¹ — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 SIUL	I/O I/O O I	Μ	Tristate	50	50	78	117	A11
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — —	GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX ¹¹ EIRQ[6]	SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL	/0 /0 - 	S	Tristate	49	49	77	116	B11
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 —	GPIO[36] — — — SIN_1 CAN3RX ¹¹	SIUL — — DSPI_1 FlexCAN_3	I/O — — — —	Μ	Tristate	62	62	92	131	B7
PC[5]	PCR[37]	AF0 AF1 AF2 AF3	GPIO[37] SOUT_1 CAN3TX ¹¹ — EIRQ[7]	SIUL DSPI1 FlexCAN_3 SIUL	I/O O O I	Μ	Tristate	61	61	91	130	A7
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX — —	SIUL LINFlex_1 —	I/O O 	S	Tristate	16	16	25	36	R2
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ⁴	SIUL — — LINFlex_1 WKPU	I/O 	S	Tristate	17	17	26	37	P3
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX — —	SIUL LINFlex_2 —	I/O O —	S	Tristate	63	63	99	143	A1

Table 6. Functional port pin descriptions (continued)

		-					Ľ		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[9]	PCR[57]	AF0 AF1 AF2 AF3 —	GPIO[57] — — — GPI[13]	SIUL — — — ADC	 - 	Ι	Tristate	_	_	56	78	N15
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 —	GPIO[58] — — — GPI[14]	SIUL — — — ADC	 	Ι	Tristate		_	57	79	N14
PD[11]	PCR[59]	AF0 AF1 AF2 AF3 —	GPIO[59] — — — GPI[15]	SIUL — — — ADC	 - 	Ι	Tristate	_	_	58	80	N16
PD[12] ⁸	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] — ANS[4]	SIUL DSPI_0 eMIOS_0 — ADC	I/O O I/O I	J	Tristate	_	_	60	82	M15
PD[13]	PCR[61]	AF0 AF1 AF2 AF3 —	GPIO[61] CS0_1 E0UC[25] ANS[5]	SIUL DSPI_1 eMIOS_0 — ADC	I/O I/O I/O I	J	Tristate			62	84	M14
PD[14]	PCR[62]	AF0 AF1 AF2 AF3 —	GPIO[62] CS1_1 E0UC[26] — ANS[6]	SIUL DSPI_1 eMIOS_0 — ADC	I/O O /O I/O -	J	Tristate			64	86	L15
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ANS[7]	SIUL DSPI_1 eMIOS_0 ADC	I/O O I/O I	J	Tristate	—	—	66	88	L14
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 —	GPIO[64] E0UC[16] — CAN5RX ¹¹ WKPU[6] ⁴	SIUL eMIOS_0 FlexCAN_5 WKPU	/0 /0 - 	S	Tristate	_	_	6	10	F1

Table 6. Functional port pin descriptions (continued)

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate	—	—		8	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — WKPU[17] ⁴	SIUL eMIOS_1 WKPU	I/O I/O — I	S	Tristate	_	_	_	7	E3
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate		_		6	E1
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] ⁴	SIUL eMIOS_1 WKPU	/O /O 	S	Tristate	_	_	_	5	E2
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	—	—		30	M2
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	_		29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 DSPI_2 SIUL	/O /O /O 	S	Tristate	_		_	26	L2
PG[9]	PCR[105]	AF0 AF1 AF2 AF3	GPIO[105] E1UC[18] SCK_2	SIUL eMIOS_1 DSPI_2	I/O I/O I/O	S	Tristate	—	—		25	L1
PG[10]	PCR[106]	AF0 AF1 AF2 AF3	GPIO[106] E0UC[24] — —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate				114	D13

Table 6. Functional port pin descriptions (continued)

3.12 Absolute maximum ratings

Table 12. Absolute maximum ratings

Symbo	.1	Parameter	Conditions	Val	lue	Unit
Symbo	1	Falameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	_	0	0	V
V _{DD}	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	_	-0.3	6.0	V
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV}	SR	Voltage on VDD_BV pin (regulator	_	-0.3	6.0	V
		supply) with respect to ground (V_{SS})	Relative to V _{DD}	-0.3	V _{DD} +0.3	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC}	SR	Voltage on VDD_HV_ADC pin (ADC	—	-0.3	6.0	V
		reference) with respect to ground (V_{SS})	Relative to V _{DD}	V _{DD} -0.3	V _{DD} +0.3	
V _{IN}	SR	Voltage on any GPIO pin with respect to	_	-0.3	6.0	V
		ground (V _{SS})	Relative to V _{DD}		V _{DD} +0.3	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
I _{AVGSEG}	SR	Sum of all the static I/O current within a	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		70	mA
		supply segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		64	
I _{CORELV}	SR	Low voltage static current sink through VDD_BV	_		150	mA
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

					144/100) LQFP			64 L	QFP	
Sup	ply seg	ment	Pad	Weigl	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
2	2	2	PB[13]	10%	—	12%		18%		21%	_
			PD[14]	10%	_	12%	_				
		2	PB[14]	10%	—	12%	_	18%		21%	
			PD[15]	10%	—	11%	—	—	_	—	—
		2	PB[15]	9%	—	11%	—	18%		21%	—
			PA[3]	9%	—	11%	_	18%		21%	—
			PG[13]	9%	13%	10%	11%	—	_	—	—
			PG[12]	9%	12%	10%	11%	_	_	—	—
			PH[0]	5%	8%	6%	7%	—		—	—
			PH[1]	5%	7%	6%	6%	—	_	—	—
			PH[2]	5%	6%	5%	6%	_	_	—	—
			PH[3]	4%	6%	5%	5%	—		—	—
			PG[1]	4%	—	4%	—	—	_	—	—
			PG[0]	3%	4%	4%	4%	—		—	—
3			PF[15]	3%	—	4%	—	—		—	—
			PF[14]	4%	5%	5%	5%	—	_	—	—
			PE[13]	4%	—	5%	—	—		—	—
	3	2	PA[7]	5%	—	6%	_	16%		19%	—
			PA[8]	5%	—	6%	—	16%	_	19%	—
			PA[9]	5%	—	6%	—	15%		18%	—
			PA[10]	6%	_	7%	—	15%	_	18%	—
			PA[11]	6%	—	8%	—	14%	_	17%	—
			PE[12]	7%	_	8%	—	—	_	_	—
			PG[14]	7%	_	8%	—	_	_	—	—
	_		PG[15]	7%	10%	8%	9%		_	—	_
	_		PE[14]	7%	—	8%	—	—		—	—
	_		PE[15]	7%	9%	8%	8%	—			—
	_		PG[10]	6%		8%		_	_	—	—
	_		PG[11]	6%	9%	7%	8%	—		—	—
	3	2	PC[3]	6%		7%		7%	_	9%	
			PC[2]	6%	8%	7%	7%	6%	9%	8%	8%

Table 24. I/O weight¹ (continued)

Package pinouts and signal descriptions

•					144/100) LQFP			64 L	QFP		
Sup	ply seg	ment	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weight 3.3 V		
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
3	3	2	PA[5]	5%	7%	6%	6%	6%	8%	7%	7%	
			PA[6]	5%	—	6%	_	5%	_	6%		
			PH[10]	4%	6%	5%	5%	5%	7%	6%	6%	
			PC[1]	5%	—	5%		5%	—	5%		
4	4	3	PC[0]	6%	9%	7%	8%	6%	9%	7%	8%	
			PH[9]	7	7	8	8	7	7	8	8	
			PE[2]	7%	10%	9%	9%		—	—		
			PE[3]	8%	11%	9%	9%	_	_			
		3	PC[5]	8%	11%	9%	10%	8%	11%	9%	10%	
			PC[4]	8%	12%	10%	10%	8%	12%	10%	10%	
			PE[4]	8%	12%	10%	11%	_	_			
			PE[5]	9%	12%	10%	11%	_	—	—	_	
		—	PH[4]	9%	13%	11%	11%	_	_	_	_	
		_	PH[5]	9%	—	11%	_	_	—	—	_	
		_	PH[6]	9%	13%	11%	12%	_	—	—	—	
		—	PH[7]	9%	13%	11%	12%	_	_	_	_	
		_	PH[8]	10%	14%	11%	12%	_	_			
	4	_	PE[6]	10%	14%	12%	12%	_	_			
		—	PE[7]	10%	14%	12%	12%			—	_	
		_	PC[12]	10%	14%	12%	13%	_	_	—	_	
		—	PC[13]	10%	—	12%	_		—	—	_	
		3	PC[8]	10%		12%		10%		12%	_	
			PB[2]	10%	15%	12%	13%	10%	15%	12%	13%	

Table 24. I/O weight¹ (continued)

 $\overline{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to125 °C, unless otherwise specified

² Segments shown apply to MPC560xB devices only

³ SRC: "Slew Rate Control" bit in SIU_PCR

3.16 **RESET** electrical characteristics

The device implements a dedicated bidirectional RESET pin.

Example 1. No regulator (worst case)

The $|\Delta_{VDD(STDBY)}|$ parameter can be seen as the V_{DD} voltage drop through the ESR resistance of the regulator stability capacitor when the I_{DD_BV} current required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the maximum equivalent resistance ESR_{STDBY}(MAX) of the total capacitance on the V_{DD} supply:

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/\text{I}_{\text{DD} \text{ BV}} = (30 \text{ mV})/(300 \text{ mA}) = 0.1\Omega^{-1}$

The dVDD(STDBY)/dt parameter can be seen as the V_{DD} voltage drop at the capacitance pin (excluding ESR drop) while providing the I_{DD_BV} supply required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the minimum equivalent capacitance $C_{STDBY}(MIN)$ of the total capacitance on the V_{DD} supply:

 $C_{STDBY}(MIN) = I_{DD BV}/dVDD(STDBY)/dt = (300 mA)/(15 mV/\mu s) = 20 \mu F$

This configuration is a worst case, with the assumption no regulator is available.

Example 2. Simplified regulator

The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent $ESR_{STDBY}(MAX)$ and $C_{STDBY}(MIN)$ as follows:

 $ESR_{STDBY}(MAX) = |\Delta_{VDD(STDBY)}|/(I_{DD BV} - 200 mA) = (30 mV)/(100 mA) = 0.3 \Omega$

 $C_{\text{STDBY}}(\text{MIN}) = (I_{\text{DD} BV} - 200 \text{ mA})/d\text{VDD}(\text{STDBY})/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{\text{STDBY}}(\text{MIN})$ and $\text{ESR}_{\text{STDBY}}(\text{MAX})$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

^{1.} Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.

Symbo	I	С	Ratings	Class	Max value	Unit	
V _{ESD(HBM)}	СС		Electrostatic discharge voltage (Human Body Model)	T _A = 25 °C conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	СС		Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	СС		Electrostatic discharge voltage	$T_A = 25 \degree C$	C3A	500	
			(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

 Table 35. ESD absolute maximum ratings^{1 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 36. Latch-up results

Symbol		mbol C Parameter		Conditions	Class	
LU	CC	Т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A	

3.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

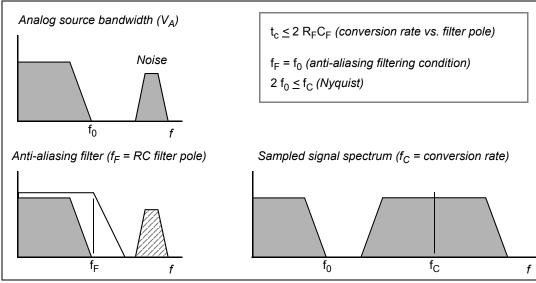


Figure 23. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

$$\frac{V_{A2}}{V_{A}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}$$

Eqn. 11

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

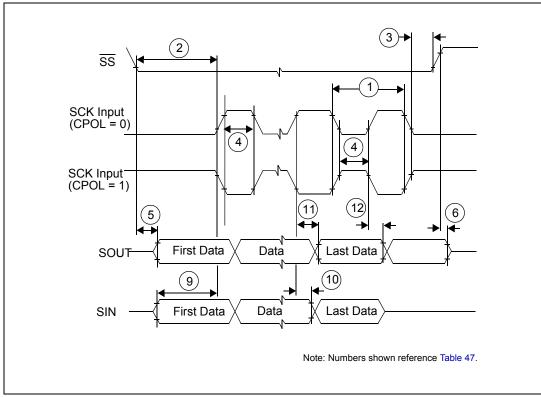
0		~	Demonster	Q a se d			Value			
Symbol		С	Parameter	Conditions ¹		Min	Тур	Мах	Unit	
C _{P3}	СС	D	ADC input pin capacitance 3	_			-	1	pF	
R _{SW1}	СС	D	Internal resistance of analog source	-	_	—	-	3	kΩ	
R_{SW2}	СС	D	Internal resistance of analog source	-	_	—	-	2	kΩ	
R _{AD}	СС	D	Internal resistance of analog source	-	_		-	2	kΩ	
I _{INJ}	SR	—	Input current Injection	Current injection on one	V _{DD} = 3.3 V ± 10%	-5	-	5	mA	
				ADC input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	-	5		
INL	СС	Т	Absolute value for integral non-linearity	No overload			0.5	1.5	LSB	
DNL	СС	Т	Absolute differential non-linearity	No overload		—	0.5	1.0	LSB	
E _O	СС	Т	Absolute offset error	-		—	0.5		LSB	
E _G	СС	Т	Absolute gain error	-	_	—	0.6	—	LSB	
TUEp	СС	Ρ	Total unadjusted error ⁷	Without current injection With current injection		-2	0.6	2	LSB	
		Т	for precise channels, input only pins			-3		3		
TUEx	СС	Т	Total unadjusted error ⁷	Without current	injection	-3	1	3	LSB	
	T for extended channel		With current injection		-4		4			

Table 45. ADC conversion	n characteristics	(continued)
--------------------------	-------------------	-------------

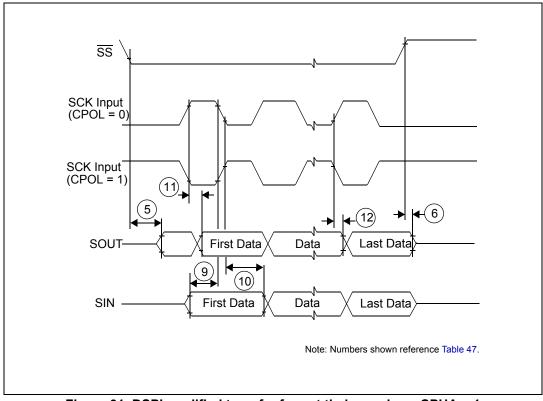
 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.


⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.


⁶ This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Package pinouts and signal descriptions

MPC5604B/C Microcontroller Data Sheet, Rev. 11

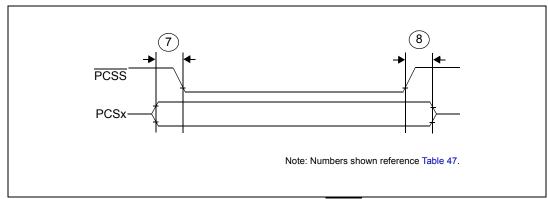
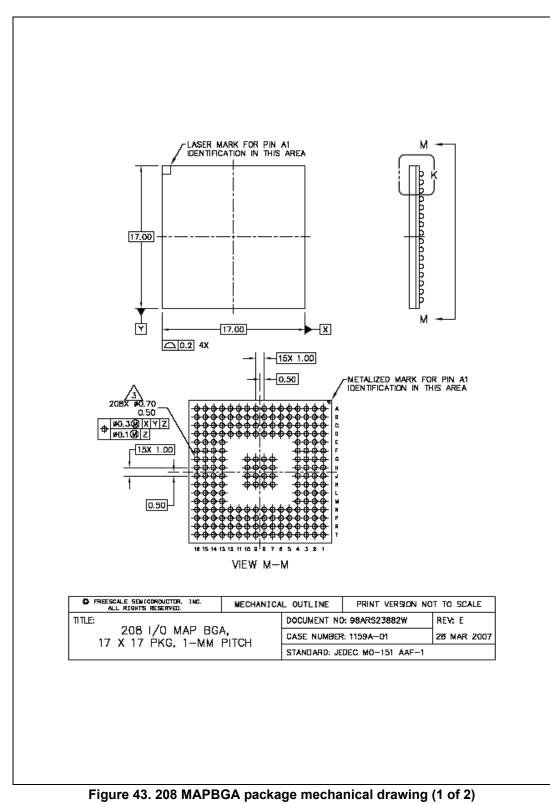


Figure 32. DSPI PCS strobe (PCSS) timing

3.27.3 Nexus characteristics

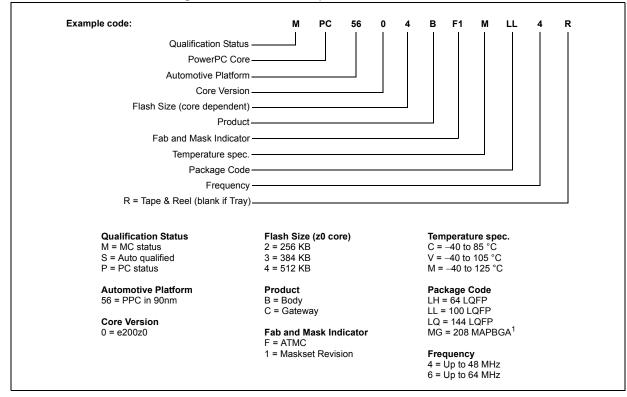
No.	Symbol		с	Parameter _		Value			
NO.					Min	Тур	Max	- Unit	
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns	
2	t _{MCYC}	CC	D	MCKO cycle time	32	—	—	ns	
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	_	—	8	ns	
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	_	—	8	ns	
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	_	—	8	ns	
10	t _{NTDIS}	CC	D	TDI data setup time	15	—	—	ns	
	t _{NTMSS}	CC	D	TMS data setup time	15	—	—	ns	
11	t _{NTDIH}	CC	D	TDI data hold time	5	—	—	ns	
	t _{NTMSH}	CC	D	TMS data hold time	5	—	—	ns	
12	t _{TDOV}	CC	D	TCK low to TDO data valid	35	—	_	ns	
13	t _{TDOI}	CC	D	TCK low to TDO data invalid	6	_	_	ns	

Table 48. Nexu	us characteristics
----------------	--------------------


Package characteristics

	MECHANICA	L OUTLINES	DOCUMENT NO: 98ASS23308W					
	DICTIONARY		PAGE:	983				
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPORTIORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	Н				
NOTES:			•					
1. ALL DIMENSIONS ARE IN MILL	IMETERS.							
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.								
3. DATUMS B, C AND D TO BE	$\sqrt{3}$ datums B, C and D to be determined at datum plane H.							
THE TOP PACKAGE BODY SIZ BY A MAXIMUM OF 0.1 MM.	E MAY BE SMALL	ER THAN THE BC	TTOM PA	CKAGE SIZE				
5. DIMENSIONS DO NOT INCLUDE PROTRUSION IS 0.25 mm PE SIZE DIMENSIONS INCLUDING	ER SIDE. THE DIMI							
6. DIMENSION DOES NOT INCLUE CAUSE THE LEAD WIDTH TO AND AN ADJACENT LEAD SH	EXCEED 0.35. MII	NIMUM SPACE BE						
7. dimensions are determined	AT THE SEATING	G PLANE, DATUM	Α.					
TITLE:		CASE NUMBER: S	983-02					
100 LEAD LQF		STANDARD: NON	-JEDEC					
14 X 14, 0.5 PITCH,	1.4 INICK	PACKAGE CODE:	8264	SHEET: 3				

Figure 40. 100 LQFP package mechanical drawing (3 of 3)


MPC5604B/C Microcontroller Data Sheet, Rev. 11

4.1.4 208 MAPBGA

5 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

6 Document revision history

Table 50 summarizes revisions to this document.

Table 50. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.

Document revision history

Revision	Date	Description of Changes
2	06-Mar-2009	Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Features: —Replaced 32 KB with 48 KB as max SRAM size —Updated description of INTC —Changed max number of GPIO pins from 121 to 123 Updated Section 1.2, Description Updated Table 2 Added Section 2, Block diagram Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these are found in the device reference manual) Updated Figure 5: —Replaced VPP with VSS_HV on pin 18 —Added MA[1] as AF3 for PC[3] (pin 116) —Changed description for pin 120 to PH[10] / GPIO[122] / TMS —Added MA[0] as AF2 for PC[3] (pin 116) —Changed description for pin 120 to PH[9] / GPIO[121] / TCK —Replaced VPP with VSS_HV on pin 14 —Added MA[1] as AF3 for PC[3] (pin 77) —Changed description for pin 81 to PH[10] / GPIO[122] / TMS —Added MA[1] as AF3 for PC[3] (pin 77) —Changed description for pin 81 to PH[9] / GPIO[121] / TCK —Replaced NMI[0] with NMI on pin 7 Updated Figure 6: —Changed description for ball 85 from TCK to PH[9] —Changed description for ball 89 from TMS to PH[10] —Updated Gescription for

Table 50. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
6	15-Mar-2010	In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding SCI and CAN. In the "Absolute maximum ratings" table, removed the min value of V _{IN} relative to V _{DD} . In the "Recommended operating conditions (3.3 V)" table: * T _A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part; added new rows. * TV _{DD} : made single row. In the "LQFP thermal characteristics" table, added more rows. Removed '208 MAPBGA thermal characteristics" table. In the "I/O consumption" table: * Removed I _{DVNSEG} row. * Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: * Updated the values. * Removed I _{VREGREF} and I _{VREDLVD12} . * Added a note about I _{DD_BC} . In the "Low voltage monitor electrical characteristics" table: * Updated V _{PORH} values. * Updated V _{PORH} values. * Updated V _{DORH} value. Entirely updated the "Flash power supply DC electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table: Nemoved g _{INXOSC} row. * Inserted values of I _{SXOSCEIAS} . Entirely updated the "Fast internal RC oscillator (16 MHz) electrical characteristics" table: In the "ADC conversion characteristics" table: updated the "DSPI characteristics" table. In the "ADC conversion characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the "Commercial product code structu

Table 50. Revision history (continued)