E·XFL

NXP USA Inc. - SPC5604BK0CLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bk0cll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ω

Table 1. MPC5604B/C device comparison¹

Introduction

								De	evice							I					
Feature				MPC56 02CxLH												MPC5604 BxMG					
CPU								e20	00z0h												
Execution speed ²		Static – up to 64 MHz																			
Code Flash			256 KB					384 KB					51	2 KB							
Data Flash								64 KB (4 × 16 KE	3)											
RAM	24 KB 32 KB						28 KB 40 KB 32 KB					48 KB									
MPU								8-	entry												
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch					
CTU				1				```	Yes							1					
Total timer I/O ³ eMIOS	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit					
• PWM+MC + IC/OC ⁴	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch					
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch					
 IC/OC⁴ 	_	3 ch	6 ch		3 ch	_	3 ch	6 ch	_	3 ch	_	3 ch	6 ch	_	3 ch	6 ch					
SCI (LINFlex)		3 ⁵								4											
SPI (DSPI)	2	:	3	2	3	2	:	3	2	3	2	3	3	2		3					
CAN (FlexCAN)		2 ⁶		5	6		37		5	6	37			5		6					
I ² C					L	L			1					L							
32 kHz oscillator								``	Yes												
GPIO ⁸	45	79	123	45	79	45	79	123	45	79	45	79	123	45	79	123					
Debug			1	1	1	1	1	JTAG	I					1		Nexus2+					
Package	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	208 MAPBGA ^S					

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Freescale Semiconductor

Table 2. MPC5604B/C device comparison¹

						Device													
Feature	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2								
CPU						e200z0h													
Execution speed ²					Stat	tic – up to 64	MHz												
Code Flash			256 KB					512	2 KB										
Data Flash					64	KB (4 × 16	KB)												
RAM		24 KB		32	KB		32 KB			48 KB									
MPU				I		8-entry													
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch								
СТИ		I	I	I		Yes													
Total timer I/O ³ eMIOS	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit								
• PWM + MC + IC/OC ⁴	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch								
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch								
• IC/OC ⁴	_	3 ch	6 ch	_	3 ch	—	3 ch	6 ch	_	3 ch	6 ch								
SCI (LINFlex)		3 ⁵						4											
SPI (DSPI)	2	:	3	2	3	2	:	3	2		3								
CAN (FlexCAN)		2 ⁶		5	6		3 ⁷		5		6								
l ² C						1													
32 kHz oscillator						Yes													
GPIO ⁸	45	79	123	45	79	45	79	123	45	79	123								
Debug		<u>l</u>	1	1	JT	AG	1	1	1	1	Nexus2+								
Package	LQFP64 ⁹	LQFP100	LQFP144	LQFP64 ⁹	LQFP100	LQFP64 ⁹	LQFP100	LQFP144	LQFP64 ⁹	LQFP100	LBGA208 ¹⁰								

¹ Feature set dependent on selected peripheral multiplexing—table shows example implementation
 ² Based on 125 °C ambient operating temperature
 ³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.

⁴ IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter

⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.

Freescale Semiconductor

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Introduction

Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 3. MPC5604B/C series block summary

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

			Pin nu	umber	
Port pin	Function	64 LQFP ¹	100 LQFP	144 LQFP	208 MAPBGA ²
VDD_HV	Digital supply voltage	7, 28, 56	15, 37, 70, 84	19, 51, 100, 123	C2, D9, E16, G13, H3, N9, R5
VSS_HV	Digital ground	6, 8, 26, 55	14, 16, 35, 69, 83	18, 20, 49, 99, 122	G7, G8, G9, G10, H1, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{SS_LV} pin. ³	11, 23, 57	19, 32, 85	23, 46, 124	D8, K4, P7
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V _{DD_LV} pin. ³	10, 24, 58	18, 33, 86	22, 47, 125	C8, J2, N7
VDD_BV	Internal regulator supply voltage	12	20	24	K3
VSS_HV_ADC	Reference ground and analog ground for the ADC	33	51	73	R15
VDD_HV_ADC	Reference voltage and analog supply for the ADC	34	52	74	P14

Table 4. Voltage supply pin descriptions

¹ Pin numbers apply to both the MPC560xB and MPC560xC packages.

² 208 MAPBGA available only as development package for Nexus2+

³ A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1 2}$

$$F = Fast^{1/2}$$

I = Input only with analog feature¹

J = Input/Output ('S' pad) with analog feature

X = Oscillator

^{1.} See the I/O pad electrical characteristics in the device datasheet for details.

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).

3.5 System pins

The system pins are listed in Table 5.

				ation	I	Pin nu	umbe	r
System pin	Function	I/O direction	Pad type	RESET configuration	64 LQFP ¹	100 LQFP	144 LQFP	208 MAPBGA ²
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	М	Input, weak pull-up only after PHASE2	9	17	21	J1
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. ³	I/O	х	Tristate	27	36	50	N8
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ³	Ι	Х	Tristate	25	34	48	P8

Table \$	5. Sy	stem	pin	descr	iptions
----------	-------	------	-----	-------	---------

¹ Pin numbers apply to both the MPC560xB and MPC560xC packages.

² 208 MAPBGA available only as development package for Nexus2+

³ See the relevant section of the datasheet

3.6 Functional ports

The functional port pins are listed in Table 6.

		+					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁴	SIUL eMIOS_0 CGL — WKPU	/O /O 	Μ	Tristate	5	5	12	16	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁵ WKPU[2] ⁴	SIUL eMIOS_0 — WKPU WKPU	/O /O 	S	Tristate	4	4	7	11	F3

		-					uo		Pir	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — GPI[5]	SIUL — — ADC	 - 	Ι	Tristate	_	_	42	64	T12
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] - - GPI[6]	SIUL — — ADC	 - 	-	Tristate	_	_	43	65	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPI0[51] — — GPI[7]	SIUL — — ADC	 	Ι	Tristate			44	66	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPI0[52] — — — GPI[8]	SIUL — — ADC	 - - 	I	Tristate	_	_	45	67	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — GPI[9]	SIUL — — ADC	 - 	Ι	Tristate	_	_	46	68	T13
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] GPI[10]	SIUL — — — ADC	 - - 	I	Tristate	_	_	47	69	T14
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — — GPI[11]	SIUL — — — ADC	 - - 	I	Tristate	_	_	48	70	R14
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — — GPI[12]	SIUL — — ADC	 - 	Ι	Tristate			49	71	T15

Table 6. Functional port pin descriptions (continued)

		-					Ľ		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O 	М	Tristate	_			38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3	GPIO[91] — — — WKPU[15] ⁴	SIUL — — — WKPU	I/O - 	S	Tristate	_	_	_	39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate	—			35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3	GPIO[93] E1UC[26] — WKPU[16] ⁴	SIUL eMIOS_1 WKPU	I/O I/O 	S	Tristate	_	_	_	41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ¹¹ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate	_	43		102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — —	GPIO[95] — — CAN1RX CAN4RX ¹¹ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O — — — — — —	S	Tristate	_	42		101	E15
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ¹¹ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O	М	Tristate	—	41		98	E14
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] 	SIUL — eMIOS_1 — FlexCAN_5 SIUL	I/O 	S	Tristate	_	40		97	E13

Table 6. Functional port pin descriptions (continued)

		1					u.		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] — —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate				115	B12
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] — —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate				92	K14
PG[13]	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate				91	K16
PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] — —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate				110	B14
PG[15]	PCR[111]	AF0 AF1 AF2 AF3	GPIO[111] E1UC[1] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate				111	B13
PH[0]	PCR[112]	AF0 AF1 AF2 AF3	GPI0[112] E1UC[2] — SIN1	SIUL eMIOS_1 DSPI_1	/O /O 	Μ	Tristate		_		93	F13
PH[1]	PCR[113]	AF0 AF1 AF2 AF3	GPI0[113] E1UC[3] SOUT1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O O	М	Tristate				94	F14
PH[2]	PCR[114]	AF0 AF1 AF2 AF3	GPI0[114] E1UC[4] SCK_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate	_	_		95	F16
PH[3]	PCR[115]	AF0 AF1 AF2 AF3	GPIO[115] E1UC[5] CS0_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	Μ	Tristate				96	F15

Table 6. Functional port pin descriptions (continued)

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

3.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows how NVUSRO[PAD3V5V] controls the device configuration.

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

Table 9. PAD3V5V field description

MPC5604B/C Microcontroller Data Sheet, Rev. 11

 $^2~$ CL includes device and package capacitances (C_{PKG} < 5 pF).

3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 22.

Package	Supply segment								
T ackage	1	2	3	4	5	6			
208 MAPBGA ¹	Equivale	ent to 144 LQFP	segment pad dis	tribution	МСКО	MDOn/MSEO			
144 LQFP	pin20–pin49	pin51–pin99	pin100-pin122	pin 123-pin19	_	—			
100 LQFP	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	_	—			
64 LQFP	pin8–pin26	pin28–pin55	pin56–pin7	_	_	—			

Table 22. I/O supply segment

¹ 208 MAPBGA available only as development package for Nexus2+

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{AVGSEG} maximum value.

Symbo	ı	С	Parameter	Condi	tions ¹		Value		Unit
Symbo	1	U	Farameter	Cond		Min	Тур	Мах	Onic
I _{SWTSLW} ,2	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		—	110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		2.3	mA
			current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	—	3.2	
			-	C _L = 100 pF, 2 MHz		_	_	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,		—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	_		2.3	
				C _L = 100 pF, 2 MHz		_		4.7	

Table 23. I/O consumption

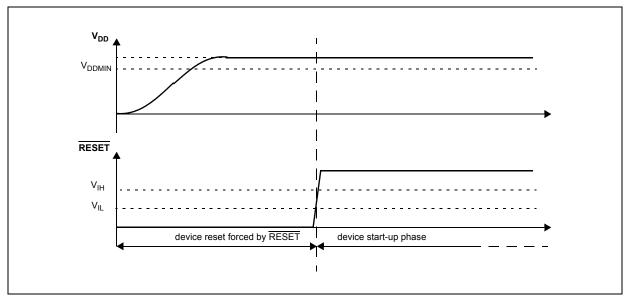


Figure 8. Start-up reset requirements

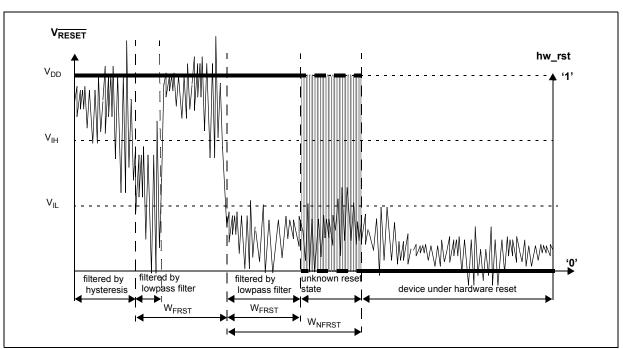


Figure 9. Noise filtering on reset signal

Table 25. Reset electrical characteristics

Symb	ol	C Parameter Conditions ¹		Conditions ¹			Unit		
Cynio	01	Ŭ	i didinotor	Conditione	Min	Typ Max			
V _{IH}	SR		Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}		V _{DD} +0.4	V	

Symbol		с	Parameter	Conditions ¹			Value		Unit
Symbol		C	Falameter	Conditions		Min	Тур	Мах	Unit
I _{DDMAX} 2	СС	D	RUN mode maximum average current	_		_	115	140 ³	mA
I _{DDRUN} 4	СС	Т	RUN mode typical	f _{CPU} = 8 MHz		_	7	_	mA
		Т	average current ⁵	f _{CPU} = 16 MHz		—	18	_	-
		Т		f _{CPU} = 32 MHz			29		
		Ρ		f _{CPU} = 48 MHz		_	40	100	
		Ρ		f _{CPU} = 64 MHz		_	51	125	
I _{DDHALT}	СС	С	HALT mode current ⁶	Slow internal RC oscillator	T _A = 25 °C	_	8	15	mA
		Ρ		(128 kHz) running	T _A = 125 °C	_	14	25	
IDDSTOP	СС	Ρ	STOP mode current ⁷	Slow internal RC oscillator	T _A = 25 °C	_	180	700 ⁸	μA
		D			T _A = 55 °C	_	500	_	
		D			T _A = 85 °C	_	1	6 ⁸	mA
		D			T _A = 105 °C	_	2	9 ⁸	
		Ρ			T _A = 125 °C	-	4.5	12 ⁸	
I _{DDSTDBY2}	СС	Ρ		Slow internal RC oscillator	T _A = 25 °C	_	30	100	μA
		D	current ⁹	(128 kHz) running	T _A = 55 °C		75		
		D			T _A = 85 °C	-	180	700	
		D			T _A = 105 °C	_	315	1000	
		Ρ			T _A = 125 °C		560	1700	
I _{DDSTDBY1}	СС	Т		Slow internal RC oscillator	T _A = 25 °C	-	20	60	μA
		D	current ¹⁰	(128 kHz) running	T _A = 55 °C	-	45		
		D			T _A = 85 °C	_	100	350	
		D			T _A = 105 °C	_	165	500	
		D			T _A = 125 °C		280	900	

Table 28. Power consumption on VDD_BV and VDD_HV
--

 $\frac{1}{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

³ Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.

- ⁴ I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.
- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.

Symbo	Symbol C		Parameter	Conditions		Value		Unit
Gymbo			r arameter	Conditions	Min	Тур	Max	Ome
P/E	CC	С	Number of program/erase cycles	16 KB blocks	100,000	—	_	cycles
			per block over the operating temperature range (T ₁)	32 KB blocks	10,000	100,000	—	
				128 KB blocks	1,000	100,000	_	
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	—	_	years
				Blocks with 1,001–10,000 P/E cycles	10	—	_	
				Blocks with 10,001–100,000 P/E cycles	5	—	—	

Table 30. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 31. Flash read access timing

Symb	Symbol C		ol C Parameter		Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 $\frac{1}{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.19.2 Flash power supply DC characteristics

Table 32 shows the power supply DC characteristics on external supply.

Table 32. Flash memory power supply DC electrical characteristics

Symb	Symbol C Parameter		Paramotor	Conditions ¹			Unit	
Cynib			i didineter			Тур		Мах
I _{FREAD} ²	СС	D	Sum of the current consumption on VDD_HV and VDD_BV on read access	Code flash memory module read f _{CPU} = 64 MHz ³	_	15	33	mA
				Data flash memory module read f _{CPU} = 64 MHz ³	_	15	33	
I _{FMOD} ²	СС	D	Sum of the current consumption on VDD_HV and VDD_BV on matrix modification (program/erase)	Program/Erase ongoing while reading code flash memory registers f _{CPU} = 64 MHz ³	—	15	33	mA
				Program/Erase ongoing while reading data flash memory registers f _{CPU} = 64 MHz ³		15	33	

3.26 ADC electrical characteristics

3.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

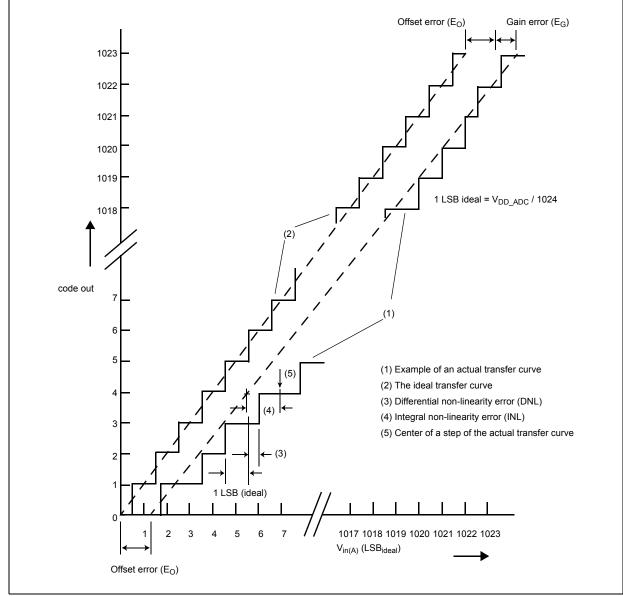


Figure 19. ADC characteristic and error definitions

3.26.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as

MPC5604B/C Microcontroller Data Sheet, Rev. 11

possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{p2} substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{p2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (f_c \times (C_S+C_{p2}))$), where f_c represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{p2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the Equation 4:

Eqn. 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on a resistive path.

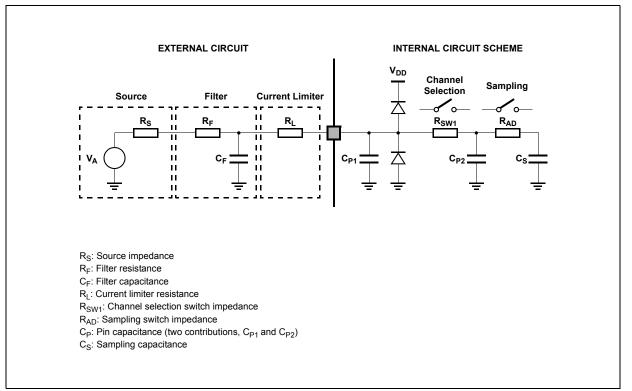
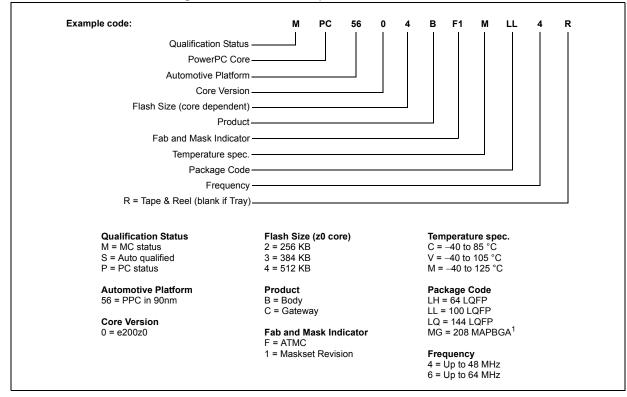



Figure 20. Input equivalent circuit (precise channels)

³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) * f_{periph}$.

5 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

6 Document revision history

Table 50 summarizes revisions to this document.

Table 50. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.

Document revision history

Revision	Date	Description of Changes
4	06-Aug-2009	Updated Figure 6 Table 12 • V _{DD_ADC} : changed min value for "relative to V _{DD} " condition • V _{IN} : changed min value for "relative to V _{DD} " condition • I _{CORELV} : added new row Table 14 • Ta-C-Grade Part, TJ-C-Grade Part, TA-V-Grade Part, TJ-V-Grade Part, TA-M-Grade Part, TJ-M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • C _{DEC1} : changed min value • I _{MREG} : changed max value • I _{DD_BV} : added max value • I _{DD_BV} : added max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde max value • V _{LVDHV3L} : adde m

Table 50. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
6	15-Mar-2010	In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding SCI and CAN. In the "Absolute maximum ratings" table, removed the min value of V _{IN} relative to V _{DD} . In the "Recommended operating conditions (3.3 V)" table: * T _A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part; added new rows. * TV _{DD} : made single row. In the "LQFP thermal characteristics" table, added more rows. Removed '208 MAPBGA thermal characteristics" table. In the "I/O consumption" table: * Removed I _{DVNSEG} row. * Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: * Updated the values. * Removed I _{VREGREF} and I _{VREDLVD12} . * Added a note about I _{DD_BC} . In the "Low voltage monitor electrical characteristics" table: * Updated V _{PORH} values. * Updated V _{PORH} values. * Updated V _{DORH} value. Entirely updated the "Flash power supply DC electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table: Nemoved g _{INXOSC} row. * Inserted values of I _{SXOSCEIAS} . Entirely updated the "Fast internal RC oscillator (16 MHz) electrical characteristics" table: In the "ADC conversion characteristics" table: updated the "DSPI characteristics" table. In the "ADC conversion characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the "DSPI characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the note shout the condition from "Flash read access timing" table Removed the note shout the condition from "Flash read access timing" table Remov

Table 50. Revision history (continued)

Revision	Date	Description of Changes
10	15 Oct 2012	 Table 1 (MPC5604B/C device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability. Table 3 (MPC5604B/C series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 6 (Functional port pin descriptions): replaced footnote "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions, MPC5604B 208 MAPBGA devices", replaced VDD with VDD_HV Figure 10 (Voltage regulator capacitance connection), updated pin name apperence Renamed Figure 11 (V_{DD_HV} and V_{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") Renamed Figure 12 (V_{DD_HV} and V_{DD_BV} supply constraints during STANDBY mode exit) (was "VDD and VDD_BV supply constraints during STANDBY mode exit) Table 13 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 14 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Section 3.17.1, "Voltage regulator electrical characteristics: replaced "slew rate of V_{DD}/V_{DD_BV}" with "slew rate of both V_{DD_HV} and V_{DD_BV}" replaced "When STANDBY mode is used, further constraints apply to the V_{DD}/V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints apply to the V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit." Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I_{DDMAX} and I_{DDRUN} stating that both currents are drawn only from the V_{DD_BV} pin. Table 24 (Con-chip peripherals current consumption), in the paremeter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V_{DD_BV} and V_{DD_HV} respecti
11	14 Nov 2012	In the cover feature list: added "and ECC" at the end of "Up to 512 KB on-chip code flash supported with the flash controller" added "with ECC" at the end of "Up to 48 KB on-chip SRAM" Table 13 (Recommended operating conditions (3.3 V)), removed minimum value of T_{VDD} and relative footnote. Table 14 (Recommended operating conditions (5.0 V)), removed minimum value of T_{VDD} and relative footnote.