E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bk0mll6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MPC5604B/C device comparison¹

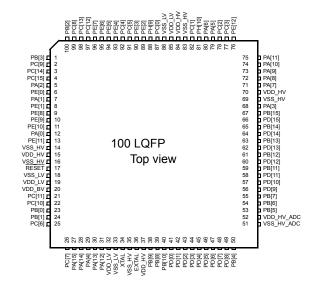
						Device					
Feature	SPC560B 40L1	SPC560B 40L3	SPC560B 40L5	SPC560C 40L1	SPC560C 40L3	SPC560B 50L1	SPC560B 50L3	SPC560B 50L5	SPC560C 50L1	SPC560C 50L3	SPC560B 50B2
CPU						e200z0h					
Execution speed ²					Stat	tic – up to 64	MHz				
Code Flash	256 KB 512 KB										
Data Flash		64 KB (4 × 16 KB)									
RAM	24 KB			32	KB		32 KB			48 KB	
MPU	8-entry 12 ch 28 ch 36 ch 8 ch 28 ch 12 ch 28 ch 36 ch 8 ch 28 ch										
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch
СТИ		I	I	I		Yes					
Total timer I/O ³ eMIOS	12 ch, 28 ch, 16-bit 16-bit		56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit
• PWM + MC + IC/OC ⁴	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch
• IC/OC ⁴	_	3 ch	6 ch	_	3 ch	—	3 ch	6 ch	_	3 ch	6 ch
SCI (LINFlex)		3 ⁵						4			
SPI (DSPI)	2	:	3	2	3	2	:	3	2		3
CAN (FlexCAN)		2 ⁶		5	6		3 ⁷		5		6
l ² C						1					
32 kHz oscillator						Yes					
GPIO ⁸	45	79	123	45	79	45	79	123	45	79	123
Debug		<u>l</u>	<u>I</u>	<u>I</u>	JT	AG	1	1	1	1	Nexus2+
Package	LQFP64 ⁹	LQFP100	LQFP144	LQFP64 ⁹	LQFP100	LQFP64 ⁹	LQFP100	LQFP144	LQFP64 ⁹	LQFP100	LBGA208 ¹⁰

¹ Feature set dependent on selected peripheral multiplexing—table shows example implementation
 ² Based on 125 °C ambient operating temperature
 ³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.

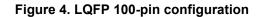
⁴ IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter

⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.

Freescale Semiconductor


MPC5604B/C Microcontroller Data Sheet, Rev. 11

Introduction


Block	Function
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
Nexus development interface (NDI)	Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Real-time counter (RTC)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode)
System integration unit (SIU)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System status configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	The wakeup unit supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.

3.1 Package pinouts

The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions, please refer to the device reference manual.

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	dJ01 PPL 2 28 27 141 142 3 4 63	208 MAPBGA ³
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁴	SIUL — — LINFlex_2 WKPU	I/O — — — — —	S	Tristate	2	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ¹¹ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	I/O O O	М	Tristate	13	13	22	28	M3
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ¹¹ WKPU[5] ⁴	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	I/O — — — — — — — —	S	Tristate			21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] SIN_2	SIUL eMIOS_0 — DSPI_2	/0 /0 	Μ	Tristate			97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate	_	_	98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	/0 /0 /0 	S	Tristate	_	_	3	3	C1
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O I/O	М	Tristate	—	—	4	4	D3
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] GPI[4]	SIUL — — ADC	 - 	I	Tristate	—	—	41	63	P12

Table 6. Functional port pin descriptions (continued)

		-					Ľ		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O 	М	Tristate	_			38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3	GPIO[91] — — — WKPU[15] ⁴	SIUL — — — WKPU	I/O - 	S	Tristate	_	_	_	39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] — —	SIUL eMIOS_1 	I/O I/O 	М	Tristate	—	_		35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3	GPIO[93] E1UC[26] — WKPU[16] ⁴	SIUL eMIOS_1 WKPU	I/O I/O 	S	Tristate	_	_	_	41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ¹¹ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate	_	43		102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — —	GPIO[95] — — CAN1RX CAN4RX ¹¹ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O — — — — — — —	S	Tristate	_	42		101	E15
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ¹¹ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O	М	Tristate	—	41		98	E14
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] 	SIUL — eMIOS_1 — FlexCAN_5 SIUL	I/O 	S	Tristate	_	40		97	E13

Table 6. Functional port pin descriptions (continued)

3.13 Recommended operating conditions

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	—	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ³	SR	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
		respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁴	SR	5 <u> </u>	—	3.0 ⁵	3.6	V
		with respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	_	V
		(V _{SS})	Relative to V_{DD}	_	V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition		-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—		0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias		-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
T _{A M-Grade Part}	SR	Ambient temperature under bias		-40	125	1
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	1

Table 13. Recommended operating conditions (3.3 V)

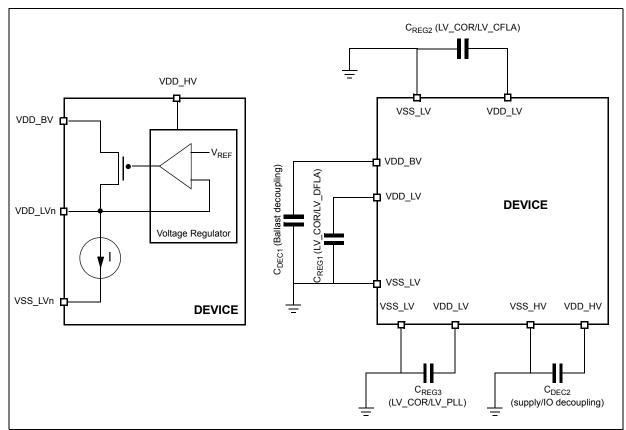
 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

³ 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 4 100 nF capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.


⁶ Guaranteed by device validation

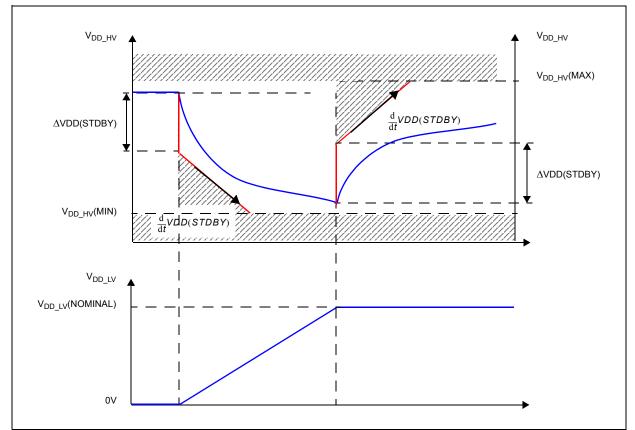
Sum	Symbol		Paramotor		Conditions ¹	\ \		Unit	
J					Conditions	Min	Тур	Max	Unit
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}			V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}		_	
		С			I _{OH} = –1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	-	—	
		С			I _{OH} = -1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8		_	
		С			I _{OH} = –100 μΑ, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	-	—	
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		0.2V _{DD}	V
		Ρ			I _{OL} = 2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_		0.1V _{DD}	
		С			I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	-	0.1V _{DD}	
		С			I_{OL} = 1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	—		0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—		0.1V _{DD}	

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified
 ² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Svn	Symbol	C	Parameter		Conditions ¹		Unit		
Symbol		ľ	i arameter		Conditions	Min	Тур	Max	
V _{OH}	СС		Output high level FAST configuration	Push Pull	$I_{OH} = -14$ mA, $V_{DD} = 5.0$ V ± 10%, PAD3V5V = 0 (recommended)	0.8V _{DD}	_	_	V
		С			I _{OH} = -7mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}		_	
		С			I _{OH} = -11mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8		_	

- HV—High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV power pin.
- BV—High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with V_{DD}.
- LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
 - LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.

- LV_PLL-Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.


Figure 10. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 3.13, Recommended operating conditions).

The internal voltage regulator requires a controlled slew rate of both V_{DD HV} and V_{DD BV} as described in Figure 11.

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Table 26.	Voltage regul	ator electrica	l characteristics	

Symbol		с	Parameter	Conditions ¹		Value		Unit
Symbol		C	Faiametei	Conditions	Min	Тур	Max	Onic
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	_	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_		0.2	Ω
C _{DEC1}	SR		Decoupling capacitance ² ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ³	470 ⁴		nF
				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400			
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR	—	Maximum slope on V _{DD}			_	250	mV/µs
$ \Delta_{VDD(STDBY)} $	SR		Maximum instant variation on V _{DD} during standby exit				30	mV

Symbol		C Parameter		Conditions ¹		Value		Unit
		C	Falameter	Conditions	Min	Тур	Max	Onic
$\frac{\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right }{\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right }$	SR		Maximum slope on V _{DD} during standby exit		—		15	mV/µs
V _{MREG}	СС	Т	Main regulator output voltage	Before exiting from reset	_	1.32		V
		Ρ	-	After trimming	1.16	1.28	—	
I _{MREG}	SR		Main regulator current provided to V_{DD_LV} domain	_	_		150	mA
I _{MREGINT}	СС	D		I _{MREG} = 200 mA	_		2	mA
			consumption	I _{MREG} = 0 mA	_		1	
V _{LPREG}	СС	Ρ	Low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to V_{DD_LV} domain	_	—		15	mA
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	—		600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C	_	5		-
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V
IULPREG	SR	—	Ultra low power regulator current provided to V_{DD_LV} domain	_	_		5	mA
IULPREGINT	СС	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	—	—	100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	-	2	_	
I _{DD_BV}	СС	D	In-rush average current on V_{DD_BV} during power-up 5	_	-	—	300 ⁶	mA

Table 26. Voltage regulator electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

- 2 This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.
- $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V
- ⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- ⁵ In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is dependant on the sum of the C_{REGn} capacitances.
- ⁶ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

The $|\Delta_{VDD(STDBY)}|$ and dVDD(STDBY)/dt system requirement can be used to define the component used for the V_{DD} supply generation. The following two examples describe how to calculate capacitance size:

Symbol		c	C Parameter Conditions ¹						Unit
Symbol		C	Falameter	Conditions '			Тур	Мах	Unit
I _{DDMAX} ²	СС	D	RUN mode maximum average current	_		_	115	140 ³	mA
I _{DDRUN} 4	СС	Т	RUN mode typical	f _{CPU} = 8 MHz		_	7	_	mA
		Т	average current ⁵	f _{CPU} = 16 MHz		—	18	_	-
		Т		f _{CPU} = 32 MHz			29		
		Ρ		f _{CPU} = 48 MHz		_	40	100	
		Ρ		f _{CPU} = 64 MHz		_	51	125	
I _{DDHALT}	СС	С	HALT mode current ⁶	Slow internal RC oscillator	T _A = 25 °C	_	8	15	mA
		Ρ		(128 kHz) running	T _A = 125 °C	_	14	25	
IDDSTOP	СС	Ρ	STOP mode current ⁷	Slow internal RC oscillator	T _A = 25 °C	_	180	700 ⁸	μA
		D		(128 kHz) running	T _A = 55 °C	_	500	_	
		D			T _A = 85 °C	_	1	6 ⁸	mA
		D			T _A = 105 °C	_	2	9 ⁸	
		Ρ			T _A = 125 °C	-	4.5	12 ⁸	
I _{DDSTDBY2}	СС	Ρ		Slow internal RC oscillator	T _A = 25 °C	_	30	100	μA
		D	current ⁹	(128 kHz) running	T _A = 55 °C	-	75		
		D			T _A = 85 °C	-	180	700	
		D			T _A = 105 °C	_	315	1000	
		Ρ			T _A = 125 °C	-	560	1700	
I _{DDSTDBY1}	СС	Т		Slow internal RC oscillator	T _A = 25 °C	-	20	60	μA
		D	current ¹⁰	(128 kHz) running	T _A = 55 °C	-	45		
		D			T _A = 85 °C	_	100	350	
		D			T _A = 105 °C	_	165	500	
		D			T _A = 125 °C		280	900	

Table 28. Power consumption on VDD_BV and VDD_HV
--

 $\frac{1}{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

³ Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.

- ⁴ I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.
- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.

Symbo	Symbol		Parameter Conditions ¹			Unit		
Symbo	וכ	С	Parameter Conditions		Min	Тур	Max	Unit
f _{PLLIN}	SR		FMPLL reference clock ²	—	4		64	MHz
Δ_{PLLIN}	SR	_	FMPLL reference clock duty cycle ²	_	40	_	60	%
f _{PLLOUT}	CC	D	FMPLL output clock frequency	—	16	—	64	MHz
f _{VCO} 3	СС		VCO frequency without frequency modulation	_	256	_	512	MHz
		С	VCO frequency with frequency modulation	_	245	_	533	
f _{CPU}	SR		System clock frequency	—	—		64	MHz
f _{FREE}	СС	Ρ	Free-running frequency	_	20	_	150	MHz
t _{LOCK}	CC	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)	_	40	100	μs
Δt_{STJIT}	CC		FMPLL short term jitter ⁴	f _{sys} maximum	-4		4	%
Δt_{LTJIT}	СС	_	FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} @ 64 MHz, 4000 cycles	_	_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	_		4	mA

Table 41. FMPLL electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered ±4%

⁴ Short term jitter is measured on the clock rising edge at cycle n and n+4.

3.24 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.

Symbo		С	Parameter	Conditions ¹		Unit		
Gymbo			i didineter	Conditions	Min	Тур	Мах	Onne
f _{FIRC}	СС		Fast internal RC oscillator high	T _A = 25 °C, trimmed	_	16		MHz
	SR	_	frequency	_	12		20	
I _{FIRCRUN} ^{2,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_		200	μA
I _{FIRCPWD}	CC		Fast internal RC oscillator high frequency current in power down mode	T _A = 125 °C			10	μA

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics

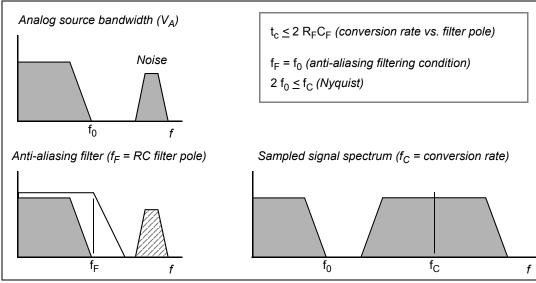


Figure 23. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

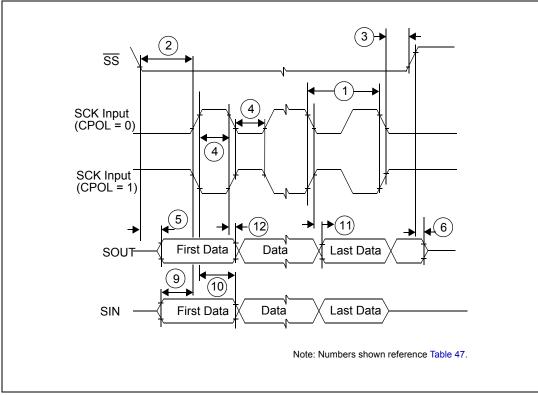
$$\frac{V_{A2}}{V_{A}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}$$

Eqn. 11

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$


On-chip peripherals 3.27

Current consumption 3.27.1

Symbol		С	Parameter		Conditions	Typical value ²	Unit
IDD_BV(CAN)	CC	Т	CAN (FlexCAN) supply current on VDD_BV	Bitrate: 500 Kbyte/s Bitrate: 125 Kbyte/s Consumption: • FlexCAN in loop-back mode • XTAL @ 8 MHz used as CAN engine clock source • Message sending period is 580 µs		8 * f _{periph} + 85 8 * f _{periph} + 27	μA
I _{DD_BV(eMIOS)}	СС	Т	eMIOS supply current on VDD_BV	Static consu • eMIOS ch • Global pre Dynamic cor	annel OFF escaler enabled	29 * f _{periph} 3	μA
				 It does not 	t change varying the (0.003 mA)	Ū.	
I _{DD_BV(SCI)}	СС	Т	SCI (LINFlex) supply current on VDD_BV	Total (static • LIN mode • Baudrate:		5 * f _{periph} + 31	μA
I _{DD_BV(SPI)}	СС	Т	SPI (DSPI) supply current	Ballast static	consumption (only clocked)	1	μA
			on VDD_BV	(continuous Baudrate: 	sion every 8 µs	16 * f _{periph}	
I _{DD_BV(ADC)}	СС	Т	ADC supply current on VDD_BV	V _{DD} = 5.5 V	V _{DD} = 5.5 V Ballast static consumption (no conversion)		μA
				Ballast dynamic consumption (continuous conversion) ³		5 * f _{periph}	
IDD_HV_ADC(ADC)	СС	Т	ADC supply current on VDD_HV_ADC	V _{DD} = 5.5 V Analog static consumption (no conversion)		2 * f _{periph}	μA
				Analog dynamic consumption (continuous conversion)		75 * f _{periph} + 32	
I _{DD_HV} (FLASH)	СС	Т	Code Flash + Data Flash supply current on VDD_HV	V _{DD} = 5.5 V	_	8.21	mA
I _{DD_HV} (PLL)	СС	Т	PLL supply current on VDD_HV	V _{DD} = 5.5 V	_	30 * f _{periph}	μA

Table 46. On-chip peripherals current consumption¹

¹ Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 64 MHz ² f_{periph} is an absolute value.

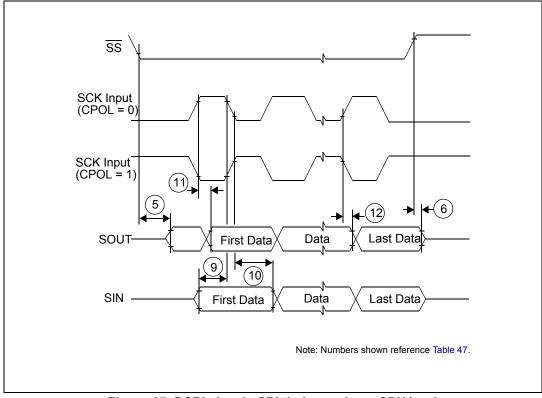
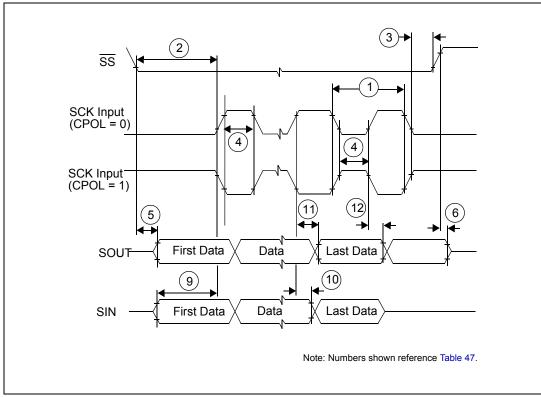
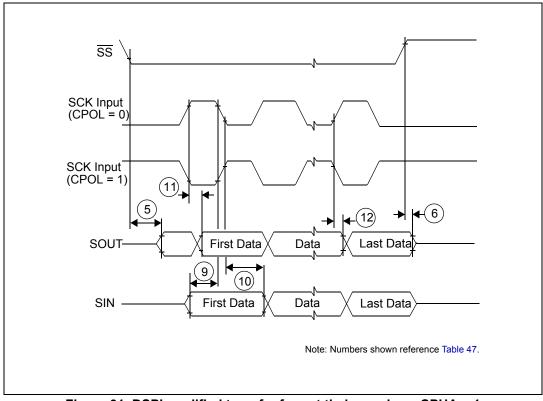




Figure 27. DSPI classic SPI timing – slave, CPHA = 1

MPC5604B/C Microcontroller Data Sheet, Rev. 11

MPC5604B/C Microcontroller Data Sheet, Rev. 11

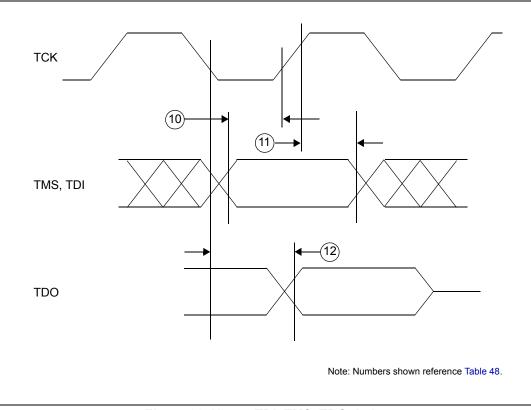


Figure 33. Nexus TDI, TMS, TDO timing

3.27.4 JTAG characteristics

Table 49. JTAG characteristics

No.	Symb		с	Parameter		Value		Unit
NO.	Synn		C	Falameter	Min	Тур	Мах	onit
1	t _{JCYC}	CC	D	TCK cycle time	64	_	_	ns
2	t _{TDIS}	СС	D	TDI setup time	15	_	—	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	—	ns
4	t _{TMSS}	СС	D	TMS setup time	15	_	—	ns
5	t _{TMSH}	CC	D	TMS hold time	5	_	—	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid	—	_	33	ns
7	t _{TDOI}	CC	D	TCK low to TDO invalid	6	—	—	ns

4.1.3 144 LQFP

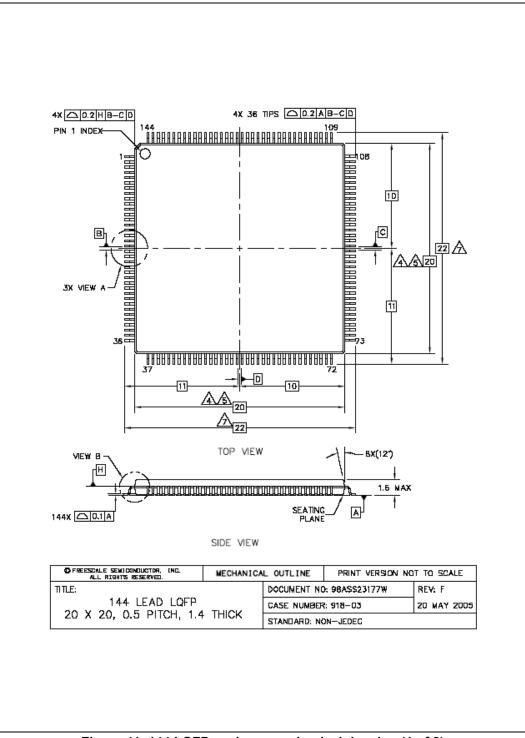


Figure 41. 144 LQFP package mechanical drawing (1 of 2)

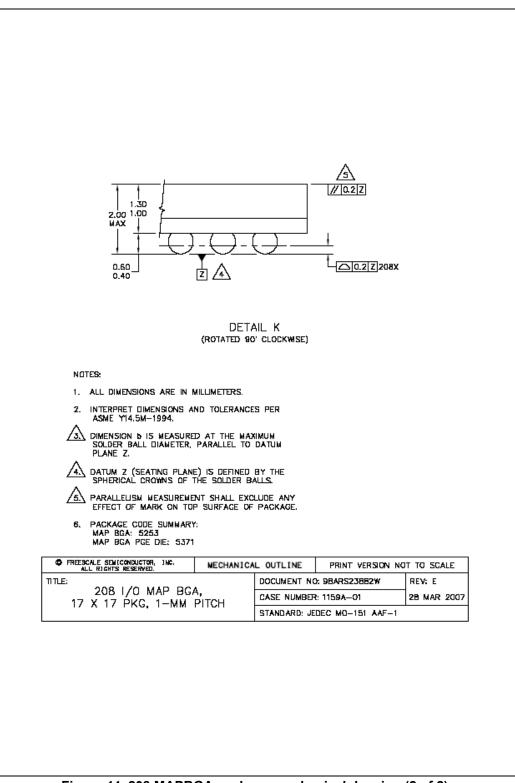
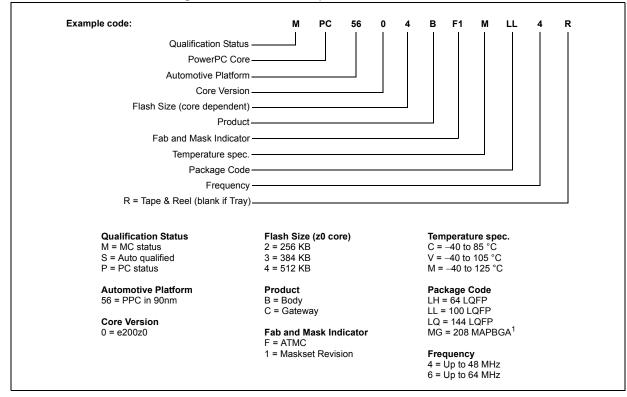



Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)

5 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

6 Document revision history

Table 50 summarizes revisions to this document.

Table 50. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.