E·XFL

NXP USA Inc. - SPC5604BK0VLL6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bk0vll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

1.2 Description

The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture[®] embedded category.

The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Block diagram

Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 3. MPC5604B/C series block summary

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

		Pin number							
Port pin	Function	64 LQFP ¹	100 LQFP	144 LQFP	208 MAPBGA ²				
VDD_HV	Digital supply voltage	7, 28, 56	15, 37, 70, 84	19, 51, 100, 123	C2, D9, E16, G13, H3, N9, R5				
VSS_HV	Digital ground	6, 8, 26, 55	14, 16, 35, 69, 83	18, 20, 49, 99, 122	G7, G8, G9, G10, H1, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10				
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{SS_LV} pin. ³	11, 23, 57	19, 32, 85	23, 46, 124	D8, K4, P7				
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V _{DD_LV} pin. ³	10, 24, 58	18, 33, 86	22, 47, 125	C8, J2, N7				
VDD_BV	Internal regulator supply voltage	12	20	24	K3				
VSS_HV_ADC	Reference ground and analog ground for the ADC	33	51	73	R15				
VDD_HV_ADC	Reference voltage and analog supply for the ADC	34	52	74	P14				

Table 4. Voltage supply pin descriptions

¹ Pin numbers apply to both the MPC560xB and MPC560xC packages.

² 208 MAPBGA available only as development package for Nexus2+

³ A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1 2}$

$$F = Fast^{1/2}$$

I = Input only with analog feature¹

J = Input/Output ('S' pad) with analog feature

X = Oscillator

^{1.} See the I/O pad electrical characteristics in the device datasheet for details.

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).

		-					ų		Pin	n num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[10]	PCR[10]	AF0 AF1 AF2 AF3	GPIO[10] E0UC[10] SDA —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O	S	Tristate	47	47	74	107	B16
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O	S	Tristate	48	48	75	108	B15
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — SIN_0	SIUL — — — DSPI0	I/O — — — —	S	Tristate	22	22	31	45	T7
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 —	SIUL DSPI_0 — —	I/O O 	М	Tristate	21	21	30	44	R7
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 — EIRQ[4]	SIUL DSPI_0 DSPI_0 — SIUL	/0 /0 /0 	Μ	Tristate	19	19	28	42	P6
PA[15]	PCR[15]	AF0 AF1 AF2 AF3	GPIO[15] CS0_0 SCK_0 — WKPU[10] ⁴	SIUL DSPI_0 DSPI_0 — WKPU	/0 /0 /0 	Μ	Tristate	18	18	27	40	R6
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX — —	SIUL FlexCAN_0 	I/O O —	М	Tristate	14	14	23	31	N3
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 —	GPIO[17] — — — WKPU[4] ⁴ CAN0RX	SIUL — — WKPU FlexCAN_0	I/O — — — — —	S	Tristate	15	15	24	32	N1
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX SDA —	SIUL LINFlex_0 I2C_0 —	I/O O I/O —	М	Tristate	64	64	100	144	B2

MPC5604B/C Microcontroller Data Sheet, Rev. 11

							uo		Pir	n num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O I/O I	J	Tristate				57	T10
PF[3]	PCR[83]	AF0 AF1 AF2 AF3 —	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	—	_	58	R10
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O O I	J	Tristate	_	_	_	59	N11
PF[5]	PCR[85]	AF0 AF1 AF2 AF3 —	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O O I	J	Tristate	_	_	_	60	P11
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — ANS[14]	SIUL eMIOS_0 — ADC	/O /O 	J	Tristate	_	_	_	61	T11
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — — ANS[15]	SIUL — — — ADC	I/O — — — I	J	Tristate	_	—	_	62	R11
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O	М	Tristate		_		34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] — CS5_0 — CAN2RX ¹⁵ CAN3RX ¹⁴	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — 0 — I I	S	Tristate				33	N2

Table 6. Functional port pin descriptions (continued)

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 —	I/O I/O 	Μ	Tristate				134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] — —	SIUL eMIOS_1 	I/O I/O —	S	Tristate				135	B6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC	I/O I/O — O	М	Tristate				136	D5
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	Μ	Tristate				137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate	l	_		138	A5
PH[9] ⁹	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O 	S	Input, weak pull-up	60	60	88	127	B8
PH[10] ⁹	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	53	53	81	120	B9

Table 6. F	unctional	port pin	descriptions	(continued)
				(

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ 208 MAPBGA available only as development package for Nexus2+

⁴ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.

⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁶ "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details.

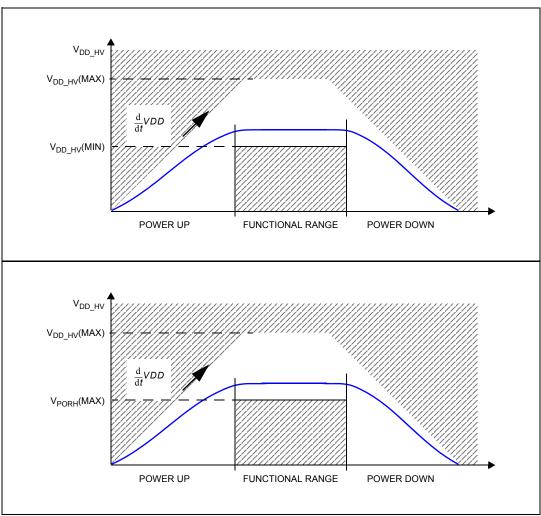
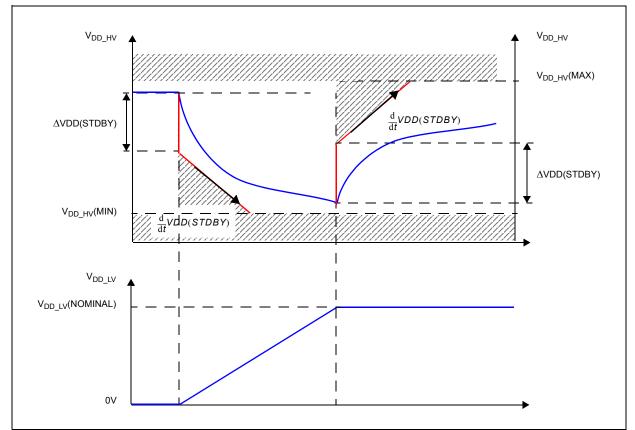



Figure 11. $V_{DD HV}$ and $V_{DD BV}$ maximum slope

When STANDBY mode is used, further constraints are applied to the both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit. This is described on Figure 12.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application external regulator.

Table 26.	Voltage regul	lator electrica	l characteristics

Symbol		с	Parameter	Conditions ¹			Unit		
Symbol		C	Faiametei	Conditions	Min	Тур	Max		
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	_	500	nF	
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_		0.2	Ω	
C _{DEC1}	SR		Decoupling capacitance ² ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ³	470 ⁴		nF	
				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400				
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF	
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR	—	Maximum slope on V _{DD}			_	250	mV/µs	
$ \Delta_{VDD(STDBY)} $	SR		Maximum instant variation on V _{DD} during standby exit				30	mV	

Symbol		с	Parameter	Conditions ¹		Value		Unit
Cymbol		C	Falanielei	Conditions	Min	Тур	Max	Onic
$\frac{\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right }{\left \frac{\mathrm{d}}{\mathrm{d}t}VDD(STDBY)\right }$	SR		Maximum slope on V _{DD} during standby exit		—		15	mV/µs
V _{MREG}	СС	Т	Main regulator output voltage	Before exiting from reset	_	1.32		V
		Ρ		After trimming	1.16	1.28	—	
I _{MREG}	SR	_	Main regulator current provided to V_{DD_LV} domain	_	-		150	mA
I _{MREGINT}	СС	D	Main regulator module current	I _{MREG} = 200 mA	_		2	mA
			consumption	I _{MREG} = 0 mA	_		1	
V _{LPREG}	СС	Ρ	Low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to V_{DD_LV} domain	_	—		15	mA
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	—		600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C	_	5		-
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V
IULPREG	SR	—	Ultra low power regulator current provided to V_{DD_LV} domain	_	_		5	mA
IULPREGINT	СС	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	—		100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	-	2	_	
I _{DD_BV}	СС	D	In-rush average current on V_{DD_BV} during power-up 5		-		300 ⁶	mA

Table 26. Voltage regulator electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

- 2 This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.
- $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V
- ⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- ⁵ In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is dependant on the sum of the C_{REGn} capacitances.
- ⁶ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

The $|\Delta_{VDD(STDBY)}|$ and dVDD(STDBY)/dt system requirement can be used to define the component used for the V_{DD} supply generation. The following two examples describe how to calculate capacitance size:

Example 1. No regulator (worst case)

The $|\Delta_{VDD(STDBY)}|$ parameter can be seen as the V_{DD} voltage drop through the ESR resistance of the regulator stability capacitor when the I_{DD_BV} current required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the maximum equivalent resistance ESR_{STDBY}(MAX) of the total capacitance on the V_{DD} supply:

 $\text{ESR}_{\text{STDBY}}(\text{MAX}) = |\Delta_{\text{VDD}(\text{STDBY})}|/\text{I}_{\text{DD} \text{ BV}} = (30 \text{ mV})/(300 \text{ mA}) = 0.1\Omega^{-1}$

The dVDD(STDBY)/dt parameter can be seen as the V_{DD} voltage drop at the capacitance pin (excluding ESR drop) while providing the I_{DD_BV} supply required to load V_{DD_LV} domain during the standby exit. It is thus possible to define the minimum equivalent capacitance $C_{STDBY}(MIN)$ of the total capacitance on the V_{DD} supply:

 $C_{STDBY}(MIN) = I_{DD BV}/dVDD(STDBY)/dt = (300 mA)/(15 mV/\mu s) = 20 \mu F$

This configuration is a worst case, with the assumption no regulator is available.

Example 2. Simplified regulator

The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent $ESR_{STDBY}(MAX)$ and $C_{STDBY}(MIN)$ as follows:

 $ESR_{STDBY}(MAX) = |\Delta_{VDD(STDBY)}|/(I_{DD BV} - 200 mA) = (30 mV)/(100 mA) = 0.3 \Omega$

 $C_{\text{STDBY}}(\text{MIN}) = (I_{\text{DD} BV} - 200 \text{ mA})/d\text{VDD}(\text{STDBY})/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu\text{s}) = 6.7 \mu\text{F}$

In case optimization is required, $C_{\text{STDBY}}(\text{MIN})$ and $\text{ESR}_{\text{STDBY}}(\text{MAX})$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

3.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

^{1.} Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.

Symbo	Symbol		Parameter	Conditions		Value		Unit
Gymbo	,,	С	r arameter			Max	Ome	
P/E	CC	С	Number of program/erase cycles	16 KB blocks	100,000	—	_	cycles
			per block over the operating temperature range (T ₁)	32 KB blocks	10,000	100,000	—	
				128 KB blocks	1,000	100,000	_	
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	—	_	years
				Blocks with 1,001–10,000 P/E cycles	10	—	_	
				Blocks with 10,001–100,000 P/E cycles	5	—	—	

Table 30. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 31. Flash read access timing

Symbol		С	Parameter	Conditions ¹	Мах	Unit
f _{READ}	СС	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 $1 V_{DD}$ = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.19.2 Flash power supply DC characteristics

Table 32 shows the power supply DC characteristics on external supply.

Table 32. Flash memory power supply DC electrical characteristics

Symb	Symbol		Parameter Conditions ¹		Value			Unit	
Symbol		С	i didineter	Conditions	Min	Тур	Max	onic	
I _{FREAD} ²	CC	D	Sum of the current consumption on VDD_HV and VDD_BV on read access	Code flash memory module read $f_{CPU} = 64 \text{ MHz}^3$	_	15	33	mA	
				Data flash memory module read f _{CPU} = 64 MHz ³		15	33		
I _{FMOD} ²	СС		Sum of the current consumption on VDD_HV and VDD_BV on matrix modification (program/erase)	Program/Erase ongoing while reading code flash memory registers f _{CPU} = 64 MHz ³	_	15	33	mA	
				Program/Erase ongoing while reading data flash memory registers f _{CPU} = 64 MHz ³		15	33		

Cumha		с	Dovoroator	Conditions ¹		Value		Unit
Symbo	1	C Parameter		Conditions	Min Typ Max		Max	
f _{FXOSC}	SR		Fast external crystal oscillator frequency	_	4.0	—	16.0	MHz
9 _{mFXOSC}	СС	С	Fast external crystal oscillator transconductance	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 0	2.2	_	8.2	mA/V
	СС	Ρ	*	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0	2.0	_	7.4	
	СС	С	*	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 1	2.7	_	9.7	
	СС	С	*	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1	2.5	_	9.2	
V _{FXOSC}	СС	Т	Oscillation amplitude at EXTAL	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	1.3	—	—	V
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	1.3	—	—	
V _{FXOSCOP}	СС	С	Oscillation operating point	—	—	0.95	—	V
I _{FXOSC} ^{,2}	СС	Т	Fast external crystal oscillator consumption	_	—	2	3	mA
t _{FXOSCSU}	СС	Т	Fast external crystal oscillator start-up time	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	—	_	6	ms
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	—		1.8	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD}	—	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	_	0.35V _{DD}	V

Table 38. Fast extern	nal crystal oscillator	(4 to 16 MHz) electrical characteristics
	iai orgotar ocomator	(+	

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified

² Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

3.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

- $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ } T_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified.}$ $T_{his} \text{ does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is }$ ON.

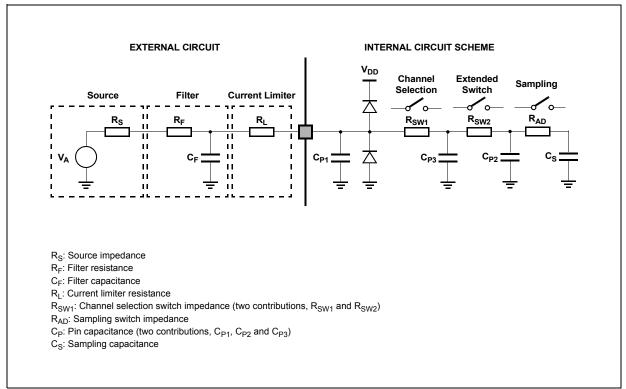


Figure 21. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

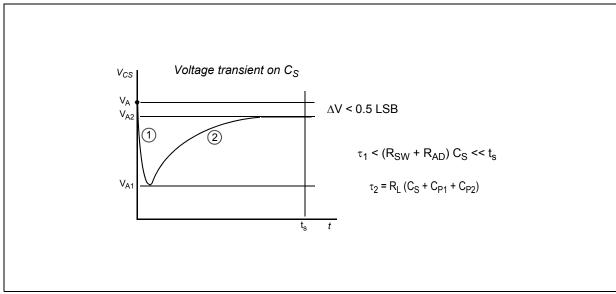


Figure 22. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Symbol		~	Demonster	Conditional			Value		
		C Parameter		Conditions ¹		Min	n Typ Max		Unit
C _{P3}	СС	D	ADC input pin capacitance 3	_			-	1	pF
R _{SW1}	СС	D	Internal resistance of analog source	_		—	-	3	kΩ
R_{SW2}	СС	D	Internal resistance of analog source			—	-	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	—			-	2	kΩ
I _{INJ}		injection on one	V _{DD} = 3.3 V ± 10%	-5	-	5	mA		
		different from the converted	V _{DD} = 5.0 V ± 10%	-5	-	5			
INL	СС	Т	Absolute value for integral non-linearity	No overload			0.5	1.5	LSB
DNL	СС	Т	Absolute differential non-linearity	No overload		—	0.5	1.0	LSB
E _O	СС	Т	Absolute offset error	-		—	0.5		LSB
E _G	СС	Т	Absolute gain error	-	_	—	0.6	—	LSB
TUEp	СС	Ρ	Total unadjusted error ⁷	7 Without current injection With current injection		-2	0.6	2	LSB
		Т	for precise channels, input only pins			-3		3	
TUEx			injection	-3	1	3	LSB		
		Т	for extended channel	With current inje	ection	-4		4	

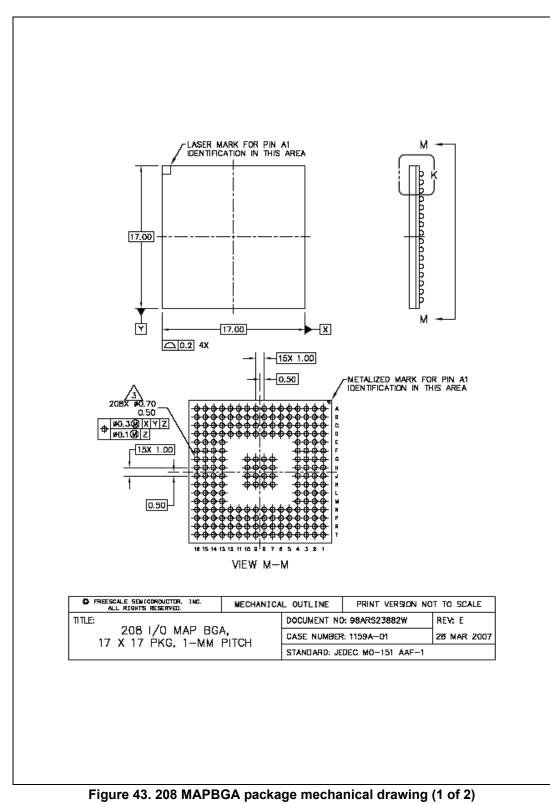
Table 45. ADC conversion	n characteristics	(continued)
--------------------------	-------------------	-------------

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.


⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.

⁶ This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) * f_{periph}$.

4.1.4 208 MAPBGA

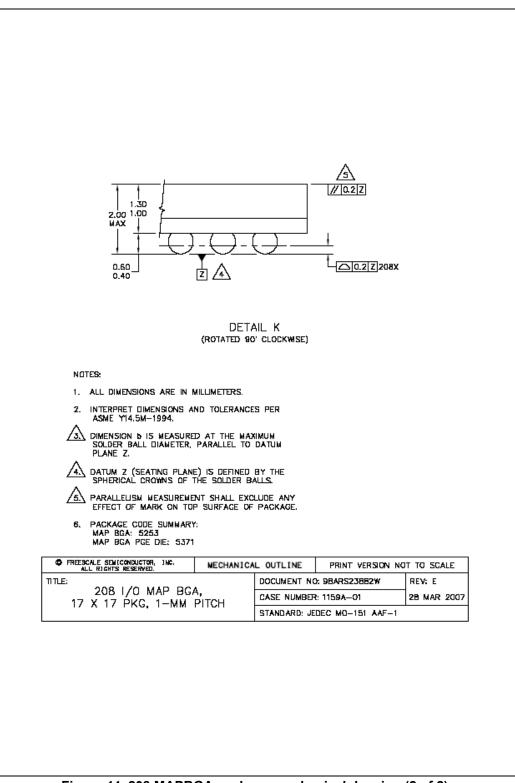


Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)

Document revision history

Revision	Date	Description of Changes
6	15-Mar-2010	In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding SCI and CAN. In the "Absolute maximum ratings" table, removed the min value of V _{IN} relative to V _{DD} . In the "Recommended operating conditions (3.3 V)" table: * T _A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part; added new rows. * TV _{DD} : made single row. In the "LQFP thermal characteristics" table, added more rows. Removed '208 MAPBGA thermal characteristics" table. In the "I/O consumption" table: * Removed I _{DVNSEG} row. * Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: * Updated the values. * Removed I _{VREGREF} and I _{VREDLVD12} . * Added a note about I _{DD_BC} . In the "Low voltage monitor electrical characteristics" table: * Updated V _{PORH} values. * Updated V _{PORH} values. * Updated V _{DORH} value. Entirely updated the "Flash power supply DC electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table. In the "Slow external crystal oscillator (32 kHz) electrical characteristics" table: Nemoved g _{INXOSC} row. * Inserted values of I _{SXOSCEIAS} . Entirely updated the "Fast internal RC oscillator (16 MHz) electrical characteristics" table: In the "ADC conversion characteristics" table: updated the "DSPI characteristics" table. In the "ADC conversion characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the "DSPI characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the note shout the condition from "Flash read access timing" table Removed the note shout the condition from "Flash read access timing" table Remov

Table 50. Revision history (continued)

Revision	Date	Description of Changes
10	15 Oct 2012	 Table 1 (MPC5604B/C device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability. Table 3 (MPC5604B/C series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 6 (Functional port pin descriptions): replaced footnote "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions, MPC5604B 208 MAPBGA devices", replaced VDD with VDD_HV Figure 10 (Voltage regulator capacitance connection), updated pin name apperence Renamed Figure 11 (V_{DD_HV} and V_{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") Renamed Figure 12 (V_{DD_HV} and V_{DD_BV} supply constraints during STANDBY mode exit) (was "VDD and VDD_BV supply constraints during STANDBY mode exit) Table 13 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 14 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Section 3.17.1, "Voltage regulator electrical characteristics: replaced "slew rate of V_{DD}/V_{DD_BV}" with "slew rate of both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints apply to the V_{DD}/N_{D_BV} in order to guarantee correct regulator function during STANDBY exit." Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I_{DDMAX} and I_{DDRUN} stating that both currents are drawn only from the V_{DD_BV} pin. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV. Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV.
11	14 Nov 2012	In the cover feature list: added "and ECC" at the end of "Up to 512 KB on-chip code flash supported with the flash controller" added "with ECC" at the end of "Up to 48 KB on-chip SRAM" Table 13 (Recommended operating conditions (3.3 V)), removed minimum value of T_{VDD} and relative footnote. Table 14 (Recommended operating conditions (5.0 V)), removed minimum value of T_{VDD} and relative footnote.