




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | e200z0h                                                                 |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 64MHz                                                                   |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SCI, SPI                              |
| Peripherals                | DMA, POR, PWM, WDT                                                      |
| Number of I/O              | 123                                                                     |
| Program Memory Size        | 512KB (512K x 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 64K x 8                                                                 |
| RAM Size                   | 32K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                               |
| Data Converters            | A/D 36x10b                                                              |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 144-LQFP                                                                |
| Supplier Device Package    | 144-LQFP (20x20)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604bk0vlq6r |
|                            |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 Introduction

# 1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

# 1.2 Description

The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture<sup>®</sup> embedded category.

The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

### Table 2. MPC5604B/C device comparison<sup>1</sup>

|                                       |                     |                  |                  |                     |                  | Device              |                  |                  |                     |                  |                       |
|---------------------------------------|---------------------|------------------|------------------|---------------------|------------------|---------------------|------------------|------------------|---------------------|------------------|-----------------------|
| Feature                               | SPC560B<br>40L1     | SPC560B<br>40L3  | SPC560B<br>40L5  | SPC560C<br>40L1     | SPC560C<br>40L3  | SPC560B<br>50L1     | SPC560B<br>50L3  | SPC560B<br>50L5  | SPC560C<br>50L1     | SPC560C<br>50L3  | SPC560B<br>50B2       |
| CPU                                   |                     |                  |                  |                     |                  | e200z0h             |                  |                  |                     |                  |                       |
| Execution speed <sup>2</sup>          |                     |                  |                  |                     | Stat             | tic – up to 64      | MHz              |                  |                     |                  |                       |
| Code Flash                            |                     |                  | 256 KB           |                     |                  |                     |                  | 512              | 2 KB                |                  |                       |
| Data Flash                            |                     |                  |                  |                     | 64               | KB (4 × 16          | KB)              |                  |                     |                  |                       |
| RAM                                   |                     | 24 KB            |                  | 32                  | KB               |                     | 32 KB            |                  |                     | 48 KB            |                       |
| MPU                                   |                     |                  |                  | I                   |                  | 8-entry             |                  |                  |                     |                  |                       |
| ADC (10-bit)                          | 12 ch               | 28 ch            | 36 ch            | 8 ch                | 28 ch            | 12 ch               | 28 ch            | 36 ch            | 8 ch                | 28 ch            | 36 ch                 |
| СТИ                                   |                     | I                | I                | I                   |                  | Yes                 |                  |                  |                     |                  |                       |
| Total timer I/O <sup>3</sup><br>eMIOS | 12 ch,<br>16-bit    | 28 ch,<br>16-bit | 56 ch,<br>16-bit | 12 ch,<br>16-bit    | 28 ch,<br>16-bit | 12 ch,<br>16-bit    | 28 ch,<br>16-bit | 56 ch,<br>16-bit | 12 ch,<br>16-bit    | 28 ch,<br>16-bit | 56 ch,<br>16-bit      |
| • PWM + MC +<br>IC/OC <sup>4</sup>    | 2 ch                | 5 ch             | 10 ch            | 2 ch                | 5 ch             | 2 ch                | 5 ch             | 10 ch            | 2 ch                | 5 ch             | 10 ch                 |
| • PWM + IC/OC <sup>4</sup>            | 10 ch               | 20 ch            | 40 ch            | 10 ch               | 20 ch            | 10 ch               | 20 ch            | 40 ch            | 10 ch               | 20 ch            | 40 ch                 |
| • IC/OC <sup>4</sup>                  | _                   | 3 ch             | 6 ch             | _                   | 3 ch             | —                   | 3 ch             | 6 ch             | _                   | 3 ch             | 6 ch                  |
| SCI (LINFlex)                         |                     | 3 <sup>5</sup>   |                  |                     |                  |                     |                  | 4                |                     |                  |                       |
| SPI (DSPI)                            | 2                   | :                | 3                | 2                   | 3                | 2                   | :                | 3                | 2                   |                  | 3                     |
| CAN (FlexCAN)                         |                     | 2 <sup>6</sup>   |                  | 5                   | 6                |                     | 3 <sup>7</sup>   |                  | 5                   |                  | 6                     |
| l <sup>2</sup> C                      |                     |                  |                  |                     |                  |                     |                  |                  |                     |                  |                       |
| 32 kHz oscillator                     | Yes                 |                  |                  |                     |                  |                     |                  |                  |                     |                  |                       |
| GPIO <sup>8</sup>                     | 45                  | 79               | 123              | 45                  | 79               | 45                  | 79               | 123              | 45                  | 79               | 123                   |
| Debug                                 |                     | <u>l</u>         | 1                | 1                   | JT               | AG                  | 1                | 1                | 1                   | 1                | Nexus2+               |
| Package                               | LQFP64 <sup>9</sup> | LQFP100          | LQFP144          | LQFP64 <sup>9</sup> | LQFP100          | LQFP64 <sup>9</sup> | LQFP100          | LQFP144          | LQFP64 <sup>9</sup> | LQFP100          | LBGA208 <sup>10</sup> |

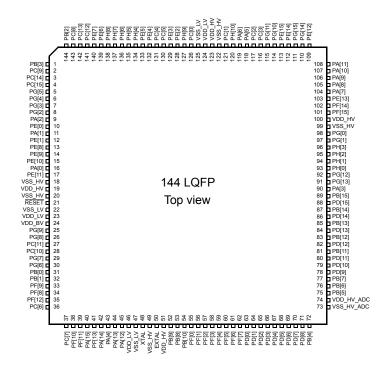
<sup>1</sup> Feature set dependent on selected peripheral multiplexing—table shows example implementation
 <sup>2</sup> Based on 125 °C ambient operating temperature
 <sup>3</sup> See the eMIOS section of the device reference manual for information on the channel configuration and functions.

<sup>4</sup> IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter

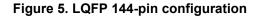
<sup>5</sup> SCI0, SCI1 and SCI2 are available. SCI3 is not available.

Freescale Semiconductor

MPC5604B/C Microcontroller Data Sheet, Rev. 11


Introduction

### Block diagram


Table 3 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

| Block                                                         | Function                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog-to-digital converter (ADC)                             | Multi-channel, 10-bit analog-to-digital converter                                                                                                                                                                                                                                                                 |
| Boot assist module (BAM)                                      | A block of read-only memory containing VLE code which is executed according to the boot mode of the device                                                                                                                                                                                                        |
| Clock monitor unit (CMU)                                      | Monitors clock source (internal and external) integrity                                                                                                                                                                                                                                                           |
| Cross triggering unit (CTU)                                   | Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT                                                                                                                                                                                                                      |
| Deserial serial peripheral interface (DSPI)                   | Provides a synchronous serial interface for communication with external devices                                                                                                                                                                                                                                   |
| Error Correction Status Module<br>(ECSM)                      | Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes |
| Enhanced Direct Memory Access<br>(eDMA)                       | Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.                                                                                                                                                                                           |
| Enhanced modular input output system (eMIOS)                  | Provides the functionality to generate or measure events                                                                                                                                                                                                                                                          |
| Flash memory                                                  | Provides non-volatile storage for program code, constants and variables                                                                                                                                                                                                                                           |
| FlexCAN (controller area network)                             | Supports the standard CAN communications protocol                                                                                                                                                                                                                                                                 |
| Frequency-modulated phase-locked loop (FMPLL)                 | Generates high-speed system clocks and supports programmable frequency modulation                                                                                                                                                                                                                                 |
| Internal multiplexer (IMUX) SIU subblock                      | Allows flexible mapping of peripheral interface on the different pins of the device                                                                                                                                                                                                                               |
| Inter-integrated circuit (I <sup>2</sup> C <sup>™</sup> ) bus | A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices                                                                                                                                                                                                  |
| Interrupt controller (INTC)                                   | Provides priority-based preemptive scheduling of interrupt requests                                                                                                                                                                                                                                               |
| JTAG controller                                               | Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode                                                                                                                                                                                  |
| LINFlex controller                                            | Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load                                                                                                                                                                                                |
| Clock generation module<br>(MC_CGM)                           | Provides logic and control required for the generation of system and peripheral clocks                                                                                                                                                                                                                            |
| Mode entry module (MC_ME)                                     | Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications          |
| Power control unit (MC_PCU)                                   | Reduces the overall power consumption by disconnecting parts of the device<br>from the power supply via a power switching device; device components are<br>grouped into sections called "power domains" which are controlled by the PCU                                                                           |
| Reset generation module<br>(MC_RGM)                           | Centralizes reset sources and manages the device reset sequence of the device                                                                                                                                                                                                                                     |

Table 3. MPC5604B/C series block summary



Note: Availability of port pin alternate functions depends on product selection.



|                     |         | -                               |                                                           |                                      |                            |          | u u                    |                  | Pin number       |          |          |                         |
|---------------------|---------|---------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------|----------|------------------------|------------------|------------------|----------|----------|-------------------------|
| Port pin            | PCR     | Alternate function <sup>1</sup> | Function                                                  | Peripheral                           | I/O direction <sup>2</sup> | Pad type | RESET configuration    | MPC560×B 64 LQFP | MPC560xC 64 LQFP | 100 LQFP | 144 LQFP | 208 MAPBGA <sup>3</sup> |
| PB[10]              | PCR[26] | AF0<br>AF1<br>AF2<br>AF3<br>—   | GPIO[26]<br>—<br>—<br>—<br>ANS[2]<br>WKPU[8] <sup>4</sup> | SIUL<br>—<br>—<br>ADC<br>WKPU        | /O<br><br><br> <br> <br>   | J        | Tristate               | 31               | 31               | 40       | 54       | P9                      |
| PB[11] <sup>8</sup> | PCR[27] | AF0<br>AF1<br>AF2<br>AF3<br>—   | GPIO[27]<br>E0UC[3]<br>—<br>CS0_0<br>ANS[3]               | SIUL<br>eMIOS_0<br><br>DSPI_0<br>ADC | /O<br> /O<br> /O<br>       | J        | Tristate               | 38               | 36               | 59       | 81       | N13                     |
| PB[12]              | PCR[28] | AF0<br>AF1<br>AF2<br>AF3<br>—   | GPIO[28]<br>E0UC[4]<br>—<br>CS1_0<br>ANX[0]               | SIUL<br>eMIOS_0<br><br>DSPI_0<br>ADC | /O<br> /O<br><br>0<br>     | J        | Tristate               | 39               | _                | 61       | 83       | M16                     |
| PB[13]              | PCR[29] | AF0<br>AF1<br>AF2<br>AF3<br>—   | GPIO[29]<br>E0UC[5]<br>—<br>CS2_0<br>ANX[1]               | SIUL<br>eMIOS_0<br><br>DSPI_0<br>ADC | /O<br> /O<br><br>0<br>     | J        | Tristate               | 40               | —                | 63       | 85       | M13                     |
| PB[14]              | PCR[30] | AF0<br>AF1<br>AF2<br>AF3<br>—   | GPIO[30]<br>E0UC[6]<br>—<br>CS3_0<br>ANX[2]               | SIUL<br>eMIOS_0<br><br>DSPI_0<br>ADC | /O<br> /O<br><br>0<br>     | J        | Tristate               | 41               | 37               | 65       | 87       | L16                     |
| PB[15]              | PCR[31] | AF0<br>AF1<br>AF2<br>AF3<br>—   | GPIO[31]<br>E0UC[7]<br>—<br>CS4_0<br>ANX[3]               | SIUL<br>eMIOS_0<br><br>DSPI_0<br>ADC | /O<br> /O<br><br>0<br>     | J        | Tristate               | 42               | 38               | 67       | 89       | L13                     |
| PC[0] <sup>9</sup>  | PCR[32] | AF0<br>AF1<br>AF2<br>AF3        | GPIO[32]<br>—<br>TDI<br>—                                 | SIUL<br>—<br>JTAGC<br>—              | I/O<br>—<br>I<br>—         | М        | Input, weak<br>pull-up | 59               | 59               | 87       | 126      | A8                      |
| PC[1] <sup>9</sup>  | PCR[33] | AF0<br>AF1<br>AF2<br>AF3        | GPIO[33]<br><br>TDO <sup>10</sup><br>                     | SIUL<br>—<br>JTAGC<br>—              | I/O<br>—<br>0<br>—         | М        | Tristate               | 54               | 54               | 82       | 121      | C9                      |

### Table 6. Functional port pin descriptions (continued)

 $^2~$  CL includes device and package capacitances (C\_{PKG} < 5 pF).

### 3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a  $V_{DD}/V_{SS}$  supply pair as described in Table 22.

| Package                 | Supply segment |             |               |               |   |   |  |  |  |  |
|-------------------------|----------------|-------------|---------------|---------------|---|---|--|--|--|--|
|                         | 1              | 2           | 3             | 4             | 5 | 6 |  |  |  |  |
| 208 MAPBGA <sup>1</sup> | Equivale       | МСКО        | MDOn/MSEO     |               |   |   |  |  |  |  |
| 144 LQFP                | pin20–pin49    | pin51–pin99 | pin100-pin122 | pin 123-pin19 | _ | — |  |  |  |  |
| 100 LQFP                | pin16–pin35    | pin37–pin69 | pin70–pin83   | pin 84–pin15  | _ | — |  |  |  |  |
| 64 LQFP                 | pin8–pin26     | pin28–pin55 | pin56–pin7    | _             | _ | — |  |  |  |  |

Table 22. I/O supply segment

<sup>1</sup> 208 MAPBGA available only as development package for Nexus2+

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the  $I_{AVGSEG}$  maximum value.

| Symbo                            | ı  | С | Parameter                                       | Condi                          | tions <sup>1</sup>                            |     | Value |     | Unit |
|----------------------------------|----|---|-------------------------------------------------|--------------------------------|-----------------------------------------------|-----|-------|-----|------|
| Symbo                            | 1  | U | Farameter                                       | Cond                           |                                               | Min | Тур   | Мах | Onit |
| I <sub>SWTSLW</sub> ,2           | СС | D | Dynamic I/O current for<br>SLOW configuration   | C <sub>L</sub> = 25 pF         | V <sub>DD</sub> = 5.0 V ± 10%,<br>PAD3V5V = 0 |     |       | 20  | mA   |
|                                  |    |   |                                                 |                                | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 | _   | _     | 16  |      |
| I <sub>SWTMED</sub> <sup>2</sup> | СС | D | Dynamic I/O current for<br>MEDIUM configuration | C <sub>L</sub> = 25 pF         | V <sub>DD</sub> = 5.0 V ± 10%,<br>PAD3V5V = 0 | _   | _     | 29  | mA   |
|                                  |    |   |                                                 |                                | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     | —     | 17  |      |
| I <sub>SWTFST</sub> <sup>2</sup> | СС | D | Dynamic I/O current for<br>FAST configuration   | C <sub>L</sub> = 25 pF         | V <sub>DD</sub> = 5.0 V ± 10%,<br>PAD3V5V = 0 |     | —     | 110 | mA   |
|                                  |    |   |                                                 |                                | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     | —     | 50  |      |
| I <sub>RMSSLW</sub>              | СС | D | Root mean square I/O                            | C <sub>L</sub> = 25 pF, 2 MHz  | $V_{DD} = 5.0 V \pm 10\%$ ,                   | _   |       | 2.3 | mA   |
|                                  |    |   | current for SLOW<br>configuration               | C <sub>L</sub> = 25 pF, 4 MHz  | PAD3V5V = 0                                   | _   | —     | 3.2 |      |
|                                  |    |   | -                                               | C <sub>L</sub> = 100 pF, 2 MHz |                                               | _   | _     | 6.6 |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 25 pF, 2 MHz  | $V_{DD} = 3.3 V \pm 10\%$ ,                   |     | —     | 1.6 |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 25 pF, 4 MHz  | PAD3V5V = 1                                   | _   |       | 2.3 |      |
|                                  |    |   |                                                 | C <sub>L</sub> = 100 pF, 2 MHz |                                               | _   |       | 4.7 |      |

### Table 23. I/O consumption

| •              |             |                         |        |                      | 144/100 | ) LQFP  |         |         | 64 L    | QFP     |         |
|----------------|-------------|-------------------------|--------|----------------------|---------|---------|---------|---------|---------|---------|---------|
| Supply segment |             | Pad                     | Weigh  | nt 5 V               | Weigh   | t 3.3 V | Weig    | ht 5 V  | Weigh   | t 3.3 V |         |
| 144<br>LQFP    | 100<br>LQFP | 64<br>LQFP <sup>2</sup> |        | SRC <sup>3</sup> = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 |
| 4              | _           |                         | PG[2]  | 8%                   | 12%     | 10%     | 10%     | —       | _       | —       | —       |
|                | 4           | 3                       | PA[2]  | 8%                   | —       | 9%      |         | 8%      |         | 9%      | —       |
|                |             | _                       | PE[0]  | 8%                   | _       | 9%      | _       |         | _       | —       | —       |
|                |             | 3                       | PA[1]  | 7%                   | —       | 9%      | _       | 7%      | _       | 9%      | —       |
|                |             | _                       | PE[1]  | 7%                   | 10%     | 8%      | 9%      | _       | _       | —       | —       |
|                |             |                         | PE[8]  | 7%                   | 9%      | 8%      | 8%      | _       | _       | —       | —       |
|                |             |                         | PE[9]  | 6%                   | —       | 7%      |         |         |         | —       | —       |
|                |             | _                       | PE[10] | 6%                   |         | 7%      |         | _       |         | _       | —       |
|                |             | 3                       | PA[0]  | 5%                   | 8%      | 6%      | 7%      | 5%      | 8%      | 6%      | 7%      |
|                |             | _                       | PE[11] | 5%                   | _       | 6%      | _       | _       | _       | _       | _       |
| 1              | _           | _                       | PG[9]  | 9%                   | —       | 10%     | _       | _       | _       | —       | —       |
|                |             | _                       | PG[8]  | 9%                   |         | 11%     |         | _       |         | _       |         |
|                | 1           | —                       | PC[11] | 9%                   | _       | 11%     | _       | _       | _       | _       | _       |
|                |             | 1                       | PC[10] | 9%                   | 13%     | 11%     | 12%     | 9%      | 13%     | 11%     | 12%     |
|                |             |                         | PG[7]  | 10%                  | 14%     | 11%     | 12%     | _       |         | —       | —       |
|                | _           | _                       | PG[6]  | 10%                  | 14%     | 12%     | 12%     |         |         | —       | —       |
|                | 1           | 1                       | PB[0]  | 10%                  | 14%     | 12%     | 12%     | 10%     | 14%     | 12%     | 12%     |
|                |             |                         | PB[1]  | 10%                  |         | 12%     |         | 10%     |         | 12%     | —       |
|                | _           | —                       | PF[9]  | 10%                  | _       | 12%     | _       | _       | _       | _       | _       |
|                |             | _                       | PF[8]  | 10%                  | 15%     | 12%     | 13%     | _       | _       | —       | —       |
|                |             | _                       | PF[12] | 10%                  | 15%     | 12%     | 13%     | —       | _       | —       | —       |
|                | 1           | 1                       | PC[6]  | 10%                  | —       | 12%     |         | 10%     |         | 12%     | —       |
|                |             |                         | PC[7]  | 10%                  | —       | 12%     | _       | 10%     | _       | 12%     | —       |
|                | —           | —                       | PF[10] | 10%                  | 14%     | 12%     | 12%     |         |         | —       | —       |
|                | —           | _                       | PF[11] | 10%                  |         | 11%     |         |         |         |         |         |
|                | 1           | 1                       | PA[15] | 9%                   | 12%     | 10%     | 11%     | 9%      | 12%     | 10%     | 11%     |
|                | —           | —                       | PF[13] | 8%                   |         | 10%     |         |         |         | _       |         |
|                | 1           | 1                       | PA[14] | 8%                   | 11%     | 9%      | 10%     | 8%      | 11%     | 9%      | 10%     |
|                |             |                         | PA[4]  | 8%                   | _       | 9%      | _       | 8%      | _       | 9%      | _       |
|                |             |                         | PA[13] | 7%                   | 10%     | 9%      | 9%      | 7%      | 10%     | 9%      | 9%      |
|                |             |                         | PA[12] | 7%                   |         | 8%      |         | 7%      |         | 8%      |         |

# Table 24. I/O weight<sup>1</sup> (continued)

| <b>C</b>    |             |                         |        |                      | 144/100 | ) LQFP  |         |         | 64 L    | QFP     |         |
|-------------|-------------|-------------------------|--------|----------------------|---------|---------|---------|---------|---------|---------|---------|
| Sup         | ply seg     | ment                    | Pad    | Weigh                | nt 5 V  | Weigh   | t 3.3 V | Weig    | ht 5 V  | Weigh   | t 3.3 V |
| 144<br>LQFP | 100<br>LQFP | 64<br>LQFP <sup>2</sup> |        | SRC <sup>3</sup> = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 |
| 2           | 2           | 2                       | PB[9]  | 1%                   | —       | 1%      | —       | 1%      | —       | 1%      |         |
|             |             |                         | PB[8]  | 1%                   | —       | 1%      | —       | 1%      | —       | 1%      | —       |
|             |             |                         | PB[10] | 6%                   | —       | 7%      | —       | 6%      | —       | 7%      | —       |
|             |             |                         | PF[0]  | 6%                   | —       | 7%      | —       | —       | —       | —       | —       |
|             |             |                         | PF[1]  | 7%                   | —       | 8%      | —       | —       | —       | —       |         |
|             |             |                         | PF[2]  | 7%                   | _       | 8%      | —       | —       | —       | —       |         |
|             |             |                         | PF[3]  | 7%                   |         | 9%      | _       | —       | _       |         |         |
|             |             |                         | PF[4]  | 8%                   | —       | 9%      | —       | —       | —       | —       |         |
|             |             |                         | PF[5]  | 8%                   | —       | 10%     | —       | —       | —       | —       |         |
|             |             |                         | PF[6]  | 8%                   | _       | 10%     | —       | —       | _       | _       |         |
|             |             |                         | PF[7]  | 9%                   | _       | 10%     | _       | _       | _       | —       | _       |
|             | 2           | _                       | PD[0]  | 1%                   |         | 1%      | _       | _       | _       | _       |         |
|             |             |                         | PD[1]  | 1%                   |         | 1%      | _       | _       | _       | _       |         |
|             |             |                         | PD[2]  | 1%                   | _       | 1%      | _       | _       | _       |         |         |
|             |             |                         | PD[3]  | 1%                   |         | 1%      | _       | _       | _       | _       |         |
|             |             |                         | PD[4]  | 1%                   |         | 1%      | _       | _       | _       | _       |         |
|             |             |                         | PD[5]  | 1%                   |         | 1%      | _       | _       | _       |         | _       |
|             |             |                         | PD[6]  | 1%                   |         | 1%      |         |         |         |         | _       |
|             |             |                         | PD[7]  | 1%                   |         | 1%      |         |         |         |         | _       |
|             |             |                         | PD[8]  | 1%                   |         | 1%      |         |         |         |         | _       |
|             |             | 2                       | PB[4]  | 1%                   |         | 1%      |         | 1%      |         | 1%      | _       |
|             |             |                         | PB[5]  | 1%                   |         | 1%      |         | 1%      |         | 2%      | _       |
|             |             |                         | PB[6]  | 1%                   |         | 1%      |         | 1%      |         | 2%      | _       |
|             |             |                         | PB[7]  | 1%                   |         | 1%      |         | 1%      |         | 2%      | _       |
|             |             |                         | PD[9]  | 1%                   |         | 1%      |         |         |         |         |         |
|             |             |                         | PD[10] | 1%                   |         | 1%      |         |         |         |         | _       |
|             |             |                         | PD[11] | 1%                   |         | 1%      |         |         |         |         |         |
|             |             | 2                       | PB[11] | 11%                  |         | 13%     |         | 17%     |         | 21%     |         |
|             |             |                         | PD[12] | 11%                  |         | 13%     |         |         |         |         |         |
|             |             | 2                       | PB[12] | 11%                  |         | 13%     |         | 18%     |         | 21%     |         |
|             |             | _                       | PD[13] |                      |         | 12%     |         | _       |         |         |         |
|             |             |                         | [ _[,] |                      |         | ,.      |         |         |         |         |         |

### Table 24. I/O weight<sup>1</sup> (continued)

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
  - Corrupted program counter
  - Unexpected reset
  - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

### 3.20.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

| Symbol             |    | C | Parameter             | Conditions      |                              |       | Value |      | Unit     |
|--------------------|----|---|-----------------------|-----------------|------------------------------|-------|-------|------|----------|
| Cynis              |    |   |                       | Conditions      |                              |       |       |      | onne     |
|                    | SR |   | Scan range            | _               |                              | 0.150 | _     | 1000 | MHz      |
| f <sub>CPU</sub>   | SR |   | Operating frequency   | _               |                              | —     | 64    |      | MHz      |
| V <sub>DD_LV</sub> | SR |   | LV operating voltages | _               |                              | —     | 1.28  | —    | V        |
| S <sub>EMI</sub>   | СС | Т |                       | LQFP144 package | No PLL frequency modulation  | —     |       | 18   | dBµ<br>V |
|                    |    |   |                       |                 | ±2% PLL frequency modulation | _     | _     | 14   | dBµ<br>V |

Table 34. EMI radiated emission measurement<sup>1,2</sup>

<sup>1</sup> EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

<sup>2</sup> For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

### 3.20.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

### 3.20.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts\*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

# 3.26.3 ADC electrical characteristics

### Table 44. ADC input leakage current

| Sym              | bol                | C | Parameter             |                         | Conditions                           |   | Value |     | Unit |
|------------------|--------------------|---|-----------------------|-------------------------|--------------------------------------|---|-------|-----|------|
| John             | Symbol C Parameter |   |                       |                         |                                      |   | Тур   | Мах | Onit |
| I <sub>LKG</sub> | СС                 | D | Input leakage current | T <sub>A</sub> = −40 °C | No current injection on adjacent pin |   | 1     | 70  | nA   |
|                  |                    | D |                       | T <sub>A</sub> = 25 °C  |                                      | - | 1     | 70  |      |
|                  |                    | D |                       | T <sub>A</sub> = 85 °C  |                                      |   | 3     | 100 |      |
|                  |                    | D |                       | T <sub>A</sub> = 105 °C |                                      |   | 8     | 200 |      |
|                  |                    | Ρ |                       | T <sub>A</sub> = 125 °C |                                      | — | 45    | 400 |      |

### Table 45. ADC conversion characteristics

| C: unch a                        |    | с | Devenuetor                                                                                                   | Conditions <sup>1</sup>                 |                          | Value |                          | 11   |
|----------------------------------|----|---|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|-------|--------------------------|------|
| Symbol<br>V <sub>SS_ADC</sub> SR |    | U | Parameter                                                                                                    | Conditions                              | Min                      | Тур   | Мах                      | Unit |
| V <sub>SS_ADC</sub>              | SR |   | Voltage on<br>VSS_HV_ADC (ADC<br>reference) pin with<br>respect to ground<br>(V <sub>SS</sub> ) <sup>2</sup> | _                                       | -0.1                     | _     | 0.1                      | V    |
| V <sub>DD_ADC</sub>              | SR | _ | Voltage on<br>VDD_HV_ADC pin<br>(ADC reference) with<br>respect to ground<br>(V <sub>SS</sub> )              | _                                       | V <sub>DD</sub> -0.1     | _     | V <sub>DD</sub> +0.1     | V    |
| V <sub>AINx</sub>                | SR | _ | Analog input voltage <sup>3</sup>                                                                            | _                                       | V <sub>SS_ADC</sub> -0.1 |       | V <sub>DD_ADC</sub> +0.1 | V    |
| f <sub>ADC</sub>                 | SR | _ | ADC analog frequency                                                                                         | —                                       | 6                        | _     | 32 + 4%                  | MHz  |
| $\Delta_{ADC}_{SYS}$             | SR | _ | ADC digital clock duty<br>cycle (ipg_clk)                                                                    | ADCLKSEL = 1 <sup>4</sup>               | 45                       | —     | 55                       | %    |
| I <sub>ADCPWD</sub>              | SR | — | ADC0 consumption in power down mode                                                                          | _                                       | _                        | —     | 50                       | μA   |
| IADCRUN                          | SR | — | ADC0 consumption in running mode                                                                             | _                                       | _                        | —     | 4                        | mA   |
| t <sub>ADC_PU</sub>              | SR | _ | ADC power up delay                                                                                           | _                                       | _                        | _     | 1.5                      | μs   |
| t <sub>s</sub>                   | СС | Т | Sampling time <sup>5</sup>                                                                                   | f <sub>ADC</sub> = 32 MHz, INPSAMP = 17 | 0.5                      | —     |                          | μs   |
|                                  |    |   |                                                                                                              | f <sub>ADC</sub> = 6 MHz, INPSAMP = 255 | _                        | —     | 42                       |      |
| t <sub>c</sub>                   | СС | Ρ | Conversion time <sup>6</sup>                                                                                 | f <sub>ADC</sub> = 32 MHz, INPCMP = 2   | 0.625                    | —     |                          | μs   |
| C <sub>S</sub>                   | СС | D | ADC input sampling capacitance                                                                               | _                                       | —                        | —     | 3                        | pF   |
| C <sub>P1</sub>                  | СС | D | ADC input pin<br>capacitance 1                                                                               | _                                       | _                        | —     | 3                        | pF   |
| C <sub>P2</sub>                  | СС | D | ADC input pin<br>capacitance 2                                                                               | _                                       | —                        | —     | 1                        | pF   |

| Symbol           |                                | ~ | Demonster                                    | Q a se d                                            | tions <sup>1</sup>               |     |     |     |      |
|------------------|--------------------------------|---|----------------------------------------------|-----------------------------------------------------|----------------------------------|-----|-----|-----|------|
|                  |                                | С | Parameter                                    | Condi                                               | tions'                           | Min | Тур | Мах | Unit |
| C <sub>P3</sub>  | СС                             | D | ADC input pin<br>capacitance 3               | —                                                   |                                  |     | -   | 1   | pF   |
| R <sub>SW1</sub> | СС                             | D | Internal resistance of<br>analog source      |                                                     |                                  | —   | -   | 3   | kΩ   |
| $R_{SW2}$        | СС                             | D | Internal resistance of<br>analog source      | -                                                   | _                                | —   | -   | 2   | kΩ   |
| R <sub>AD</sub>  | СС                             | D | Internal resistance of<br>analog source      | -                                                   | _                                |     | -   | 2   | kΩ   |
| I <sub>INJ</sub> | injection<br>ADC inpudifferent |   | injection on one                             | V <sub>DD</sub> =<br>3.3 V ± 10%                    | -5                               | -   | 5   | mA  |      |
|                  |                                |   |                                              | different from the converted                        | V <sub>DD</sub> =<br>5.0 V ± 10% | -5  | -   | 5   |      |
| INL              | СС                             | Т | Absolute value for<br>integral non-linearity | No overload                                         | l                                |     | 0.5 | 1.5 | LSB  |
| DNL              | СС                             | Т | Absolute differential non-linearity          | No overload                                         |                                  | —   | 0.5 | 1.0 | LSB  |
| E <sub>O</sub>   | СС                             | Т | Absolute offset error                        | _                                                   |                                  | —   | 0.5 |     | LSB  |
| E <sub>G</sub>   | СС                             | Т | Absolute gain error                          | _                                                   |                                  | —   | 0.6 | —   | LSB  |
| TUEp             | СС                             | Ρ | Total unadjusted error <sup>7</sup>          | Without current injection<br>With current injection |                                  | -2  | 0.6 | 2   | LSB  |
|                  |                                | Т | for precise channels,<br>input only pins     |                                                     |                                  | -3  |     | 3   |      |
| TUEx             |                                |   | injection                                    | -3                                                  | 1                                | 3   | LSB |     |      |
| T                |                                | Т | for extended channel                         | With current injection                              |                                  | -4  |     | 4   |      |

| Table 45. ADC conversion | n characteristics | (continued) |
|--------------------------|-------------------|-------------|
|--------------------------|-------------------|-------------|

 $^1~V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%, T\_A = –40 to 125 °C, unless otherwise specified.

 $^2$  Analog and digital V<sub>SS</sub> **must** be common (to be tied together externally).

<sup>3</sup> V<sub>AINx</sub> may exceed V<sub>SS\_ADC</sub> and V<sub>DD\_ADC</sub> limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

<sup>4</sup> Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

<sup>5</sup> During the sampling time the input capacitance  $C_S$  can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within  $t_s$ . After the end of the sampling time  $t_s$ , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock  $t_s$  depend on programming.

<sup>6</sup> This parameter does not include the sampling time t<sub>s</sub>, but only the time for determining the digital result and the time to load the result's register with the conversion result.

<sup>7</sup> Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

#### **On-chip peripherals** 3.27

#### **Current consumption** 3.27.1

| Symbol                     |    |   | Parameter                                              |                                                           | Conditions                                                                                                                                                                                                   | Typical value <sup>2</sup>                                   | Unit |
|----------------------------|----|---|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|
| IDD_BV(CAN)                | CC | Т | CAN (FlexCAN) supply<br>current on VDD_BV              | Bitrate:<br>500 Kbyte/s<br>Bitrate:<br>125 Kbyte/s        | <ul> <li>Total (static + dynamic)<br/>consumption:</li> <li>FlexCAN in loop-back<br/>mode</li> <li>XTAL @ 8 MHz used as<br/>CAN engine clock source</li> <li>Message sending period<br/>is 580 μs</li> </ul> | 8 * f <sub>periph</sub> + 85<br>8 * f <sub>periph</sub> + 27 | μA   |
| I <sub>DD_BV(eMIOS)</sub>  | СС | Т | eMIOS supply current on VDD_BV                         | Static consu<br>• eMIOS ch<br>• Global pre<br>Dynamic cor | annel OFF<br>escaler enabled                                                                                                                                                                                 | 29 * f <sub>periph</sub><br>3                                | μA   |
|                            |    |   |                                                        | <ul> <li>It does not</li> </ul>                           | t change varying the (0.003 mA)                                                                                                                                                                              | Ū.                                                           |      |
| I <sub>DD_BV(SCI)</sub>    | СС | Т | SCI (LINFlex) supply<br>current on VDD_BV              | Total (static<br>• LIN mode<br>• Baudrate:                |                                                                                                                                                                                                              | 5 * f <sub>periph</sub> + 31                                 | μA   |
| I <sub>DD_BV(SPI)</sub>    | СС | Т | SPI (DSPI) supply current                              | Ballast static                                            | consumption (only clocked)                                                                                                                                                                                   | 1                                                            | μA   |
|                            |    |   | on VDD_BV                                              | (continuous <ul> <li>Baudrate:</li> </ul>                 | sion every 8 µs                                                                                                                                                                                              | 16 * f <sub>periph</sub>                                     |      |
| I <sub>DD_BV(ADC)</sub>    | СС | Т | ADC supply current on VDD_BV                           | V <sub>DD</sub> = 5.5 V                                   | Ballast static consumption (no conversion)                                                                                                                                                                   | 41 * f <sub>periph</sub>                                     | μA   |
|                            |    |   |                                                        |                                                           | Ballast dynamic<br>consumption<br>(continuous conversion) <sup>3</sup>                                                                                                                                       | 5 * f <sub>periph</sub>                                      |      |
| IDD_HV_ADC(ADC)            | СС | Т | ADC supply current on<br>VDD_HV_ADC                    | V <sub>DD</sub> = 5.5 V                                   | Analog static consumption (no conversion)                                                                                                                                                                    | 2 * f <sub>periph</sub>                                      | μA   |
|                            |    |   |                                                        | Analog dynamic<br>consumption<br>(continuous conversion)  |                                                                                                                                                                                                              | 75 * f <sub>periph</sub> + 32                                |      |
| I <sub>DD_HV</sub> (FLASH) | СС | Т | Code Flash + Data Flash<br>supply current on<br>VDD_HV | V <sub>DD</sub> = 5.5 V                                   | _                                                                                                                                                                                                            | 8.21                                                         | mA   |
| I <sub>DD_HV</sub> (PLL)   | СС | Т | PLL supply current on VDD_HV                           | V <sub>DD</sub> = 5.5 V                                   | _                                                                                                                                                                                                            | 30 * f <sub>periph</sub>                                     | μA   |

### Table 46. On-chip peripherals current consumption<sup>1</sup>

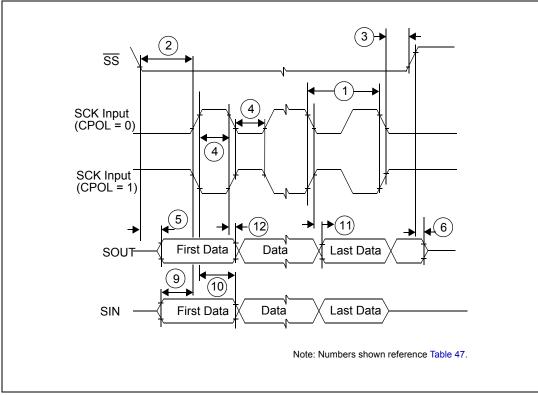
<sup>1</sup> Operating conditions:  $T_A = 25 \text{ °C}$ ,  $f_{periph} = 8 \text{ MHz}$  to 64 MHz <sup>2</sup>  $f_{periph}$  is an absolute value.

### Table 47. DSPI characteristics<sup>1</sup> (continued)

| No. | Symbo              | abol |   | Parameter                  |             | DSPI0/DSPI1    |     |     | DSPI2          |     |     | Unit |
|-----|--------------------|------|---|----------------------------|-------------|----------------|-----|-----|----------------|-----|-----|------|
| NO. | No. Symbol         |      | С |                            |             | Min            | Тур | Max | Min            | Тур | Мах | Sint |
| 10  | t <sub>HI</sub>    | SR   | D | Data hold time for inputs  | Master mode | 0              | —   | _   | 0              | —   | —   | ns   |
|     |                    |      |   |                            | Slave mode  | 2 <sup>6</sup> | —   | _   | 2 <sup>6</sup> | —   | _   |      |
| 11  | t <sub>SUO</sub> 7 | CC   | D | Data valid after SCK edge  | Master mode | _              | —   | 32  | _              | —   | 50  | ns   |
|     |                    |      |   |                            | Slave mode  | _              | _   | 52  | _              | —   | 160 | 1    |
| 12  | t <sub>HO</sub> 7  | CC   | D | Data hold time for outputs | Master mode | 0              | —   | _   | 0              | _   | _   | ns   |
|     |                    |      |   |                            | Slave mode  | 8              | —   | _   | 13             |     | _   | 1    |

Operating conditions:  $C_L$  = 10 to 50 pF, Slew<sub>IN</sub> = 3.5 to 15 ns.

<sup>2</sup> Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.


<sup>3</sup> Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

<sup>4</sup> The t<sub>CSC</sub> delay value is configurable through a register. When configuring t<sub>CSC</sub> (using PCSSCK and CSSCK fields in DSPI\_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t<sub>CSC</sub> to ensure positive t<sub>CSCext</sub>.

<sup>5</sup> The t<sub>ASC</sub> delay value is configurable through a register. When configuring t<sub>ASC</sub> (using PASC and ASC fields in DSPI\_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t<sub>ASC</sub> to ensure positive t<sub>ASCext</sub>.

<sup>6</sup> This delay value corresponds to SMPL\_PT = 00b which is bit field 9 and 8 of the DSPI\_MCR.

<sup>7</sup> SCK and SOUT configured as MEDIUM pad





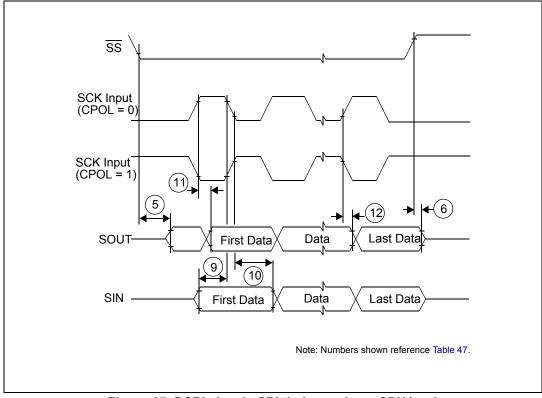



Figure 27. DSPI classic SPI timing – slave, CPHA = 1

### 4.1.1 64 LQFP

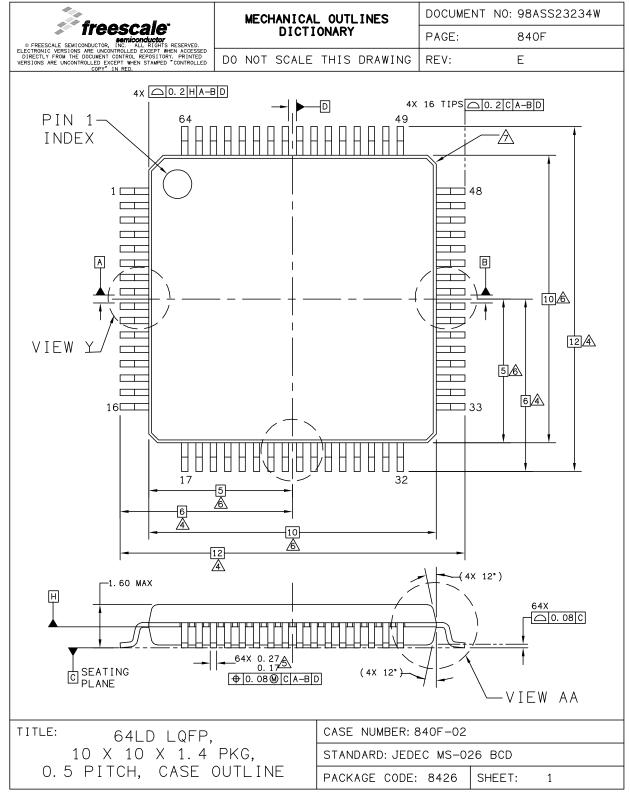



Figure 35. 64 LQFP package mechanical drawing (1 of 3)

### **Package characteristics**

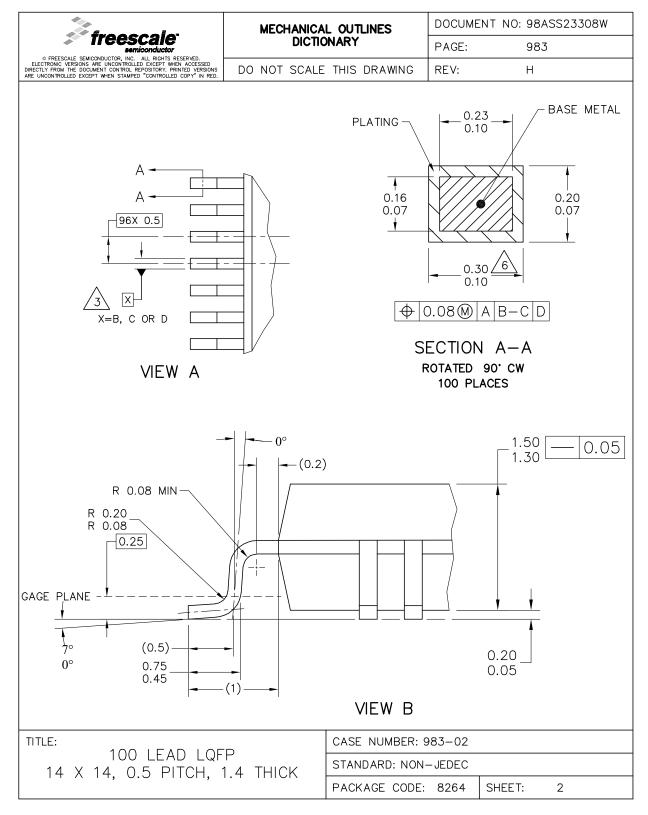



Figure 39. 100 LQFP package mechanical drawing (2 of 3)

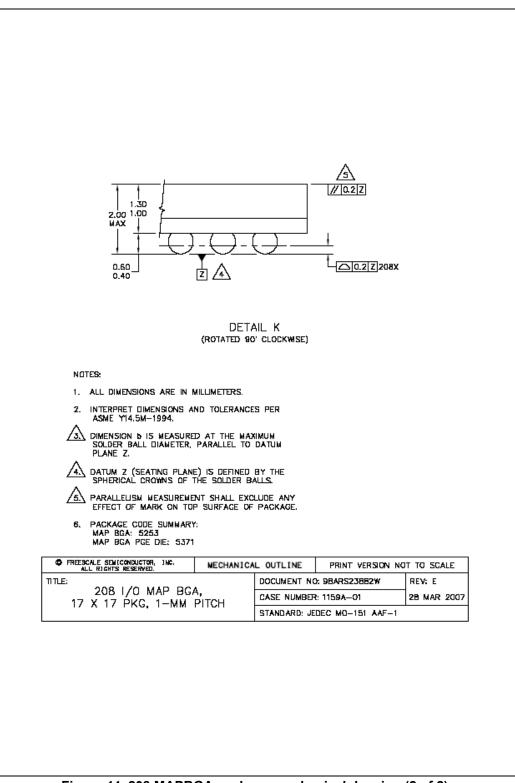



Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)

### **Document revision history**

| Revision | Date        | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | 06-Mar-2009 | Made minor editing and formatting changes to improve readability           Harmonized oscillator naming throughout document           Features:           —Replaced 32 KB with 48 KB as max SRAM size           —Updated description of INTC           —Changed max number of GPIO pins from 121 to 123           Updated Section 1.2, Description           Updated Table 2           Added Section 2, Block diagram           Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these are found in the device reference manual)           Updated Figure 5:           —Replaced VPP with VSS_HV on pin 18           —Added MA[1] as AF3 for PC[3] (pin 116)           —Changed description for pin 120 to PH[10] / GPIO[122] / TMS           —Added MA[0] as AF2 for PC[3] (pin 116)           —Changed description for pin 120 to PH[9] / GPIO[121] / TCK           —Replaced VPP with VSS_HV on pin 14           —Added MA[1] as AF3 for PC[3] (pin 77)           —Changed description for pin 81 to PH[10] / GPIO[122] / TMS           —Added MA[1] as AF3 for PC[3] (pin 77)           —Changed description for pin 81 to PH[9] / GPIO[121] / TCK           —Replaced NMI[0] with NMI on pin 7           Updated Figure 6:           —Changed description for ball 85 from TCK to PH[9]           —Changed description for ball 89 from TMS to PH[10]           —Updated Gescription for |

### Table 50. Revision history (continued)

### **Document revision history**

| Revision  | Date        | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 (cont.) | 06-Mar-2009 | Updated Table 16, Table 17, Table 18, Table 19 and Table 20<br>Added Section 3.15.4, Output pin transition times<br>Updated Table 23<br>Updated Table 25<br>Section 3.17.1, Voltage regulator electrical characteristics: Amended description of<br>LV_PLL<br>Figure 10: Exchanged position of symbols C <sub>DEC1</sub> and C <sub>DEC2</sub><br>Updated Table 26<br>Added Figure 13<br>Updated Table 27 and Table 28<br>Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics<br>Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics<br>Updated Section 3.21, Fast external crystal oscillator (4 to 16 MHz) electrical<br>characteristics<br>Updated Table 41, Table 42 and Table 43<br>Added Section 3.27, On-chip peripherals<br>Added Table 44<br>Updated Table 45<br>Updated Table 47<br>Added Section Appendix A, Abbreviations |

| Revision | Date        | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10       | 15 Oct 2012 | <ul> <li>Table 1 (MPC5604B/C device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability.</li> <li>Table 3 (MPC5604B/C series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture)</li> <li>Table 6 (Functional port pin descriptions): replaced footnote "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions, MPC5604B 208 MAPBGA devices", replaced VDD with VDD_HV</li> <li>Figure 10 (Voltage regulator capacitance connection), updated pin name apperence</li> <li>Renamed Figure 11 (V<sub>DD_HV</sub> and V<sub>DD_BV</sub> maximum slope) (was "VDD and VDD_BV maximum slope")</li> <li>Renamed Figure 12 (V<sub>DD_HV</sub> and V<sub>DD_BV</sub> supply constraints during STANDBY mode exit) (was "VDD and VDD_BV supply constraints during STANDBY mode exit)</li> <li>Table 13 (Recommended operating conditions (3.3 V)), added minimum value of T<sub>VDD</sub> and footnote about it.</li> <li>Table 14 (Recommended operating conditions (5.0 V)), added minimum value of T<sub>VDD</sub> and footnote about it.</li> <li>Section 3.17.1, "Voltage regulator electrical characteristics: replaced "slew rate of V<sub>DD</sub>/V<sub>DD_BV</sub>" with "slew rate of both V<sub>DD_HV</sub> and V<sub>DD_BV</sub> in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints apply to the V<sub>DD</sub>/N<sub>D_BV</sub> in order to guarantee correct regulator function during STANDBY exit."</li> <li>Table 28 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I<sub>DDMAX</sub> and I<sub>DDRUN</sub> stating that both currents are drawn only from the V<sub>DD_BV</sub> pin.</li> <li>Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V<sub>DD_BV</sub> and V<sub>DD_HV</sub> respectively with VDD_BV and VDD_HV.</li> <li>Table 46 (On-chip peripherals current consumption), in the paremeter column replaced V<sub>DD_BV</sub> and V<sub>DD_HV</sub> respectively with VDD_BV and VDD_HV.</li> </ul> |
| 11       | 14 Nov 2012 | In the cover feature list:<br>added "and ECC" at the end of "Up to 512 KB on-chip code flash supported with the<br>flash controller"<br>added "with ECC" at the end of "Up to 48 KB on-chip SRAM"<br>Table 13 (Recommended operating conditions (3.3 V)), removed minimum value of $T_{VDD}$<br>and relative footnote.<br>Table 14 (Recommended operating conditions (5.0 V)), removed minimum value of $T_{VDD}$<br>and relative footnote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |