NXP USA Inc. - SPC5604CK0MLH6R Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5604ck0mlh6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Block diagram

Figure 1 shows a top-level block diagram of the MPC5604B/C device series.

Figure 1. MPC5604B/C block diagram

MPC5604B/C Microcontroller Data Sheet, Rev. 11

		1					uo		Pin	num	ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁴	SIUL — — LINFlex_2 WKPU	I/O — — — — —	S	Tristate	2	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ¹¹ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	I/O O O O	М	Tristate	13	13	22	28	М3
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ¹¹ WKPU[5] ⁴	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	I/O 	S	Tristate			21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — SIN_2	SIUL eMIOS_0 DSPI_2	/0 /0 	Μ	Tristate			97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate			98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I/O I	S	Tristate		_	3	3	C1
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O I/O	М	Tristate	-	—	4	4	D3
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — — GPI[4]	SIUL — — ADC	 	I	Tristate		_	41	63	P12

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — — GPI[5]	SIUL — — ADC	 - 	I	Tristate	_	_	42	64	T12
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — — GPI[6]	SIUL — — ADC	 - 	I	Tristate	_	_	43	65	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — — GPI[7]	SIUL — — — ADC	 - 	I	Tristate	_	_	44	66	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3	GPIO[52] — — — GPI[8]	SIUL — — — ADC	 	I	Tristate	_	_	45	67	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — GPI[9]	SIUL — — ADC	 	I	Tristate	_	_	46	68	T13
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — GPI[10]	SIUL — — ADC	 - 	I	Tristate		_	47	69	T14
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — GPI[11]	SIUL — — ADC	 	I	Tristate	_	_	48	70	R14
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — GPI[12]	SIUL — — ADC	 - 	I	Tristate	_	_	49	71	T15

		1					uo		Pin	num	ber	
Port pin	PCR	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	I/O I/O I/O I	J	Tristate	_	_	_	57	T10
PF[3]	PCR[83]	AF0 AF1 AF2 AF3	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	_	_	_	58	R10
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate	—	_		59	N11
PF[5]	PCR[85]	AF0 AF1 AF2 AF3	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate		_		60	P11
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — — ANS[14]	SIUL eMIOS_0 — ADC	/O /O 	J	Tristate				61	T11
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — — ANS[15]	SIUL — — — ADC	I/O — — — I	J	Tristate		_	_	62	R11
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	I/O O O O	М	Tristate		—		34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 	GPIO[89] CS5_0 CAN2RX ¹⁵ CAN3RX ¹⁴	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — — — — — —	S	Tristate				33	N2

		1					uo		Pin number			
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O 	М	Tristate		_	_	38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] — — — WKPU[15] ⁴	SIUL — — — WKPU	I/O 	S	Tristate		_		39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate				35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3	GPIO[93] E1UC[26] — WKPU[16] ⁴	SIUL eMIOS_1 — WKPU	I/O I/O I	S	Tristate	_	_		41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ¹¹ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate		43		102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — —	GPIO[95] — — CAN1RX CAN4RX ¹¹ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O 	S	Tristate		42		101	E15
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ¹¹ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O —	М	Tristate		41		98	E14
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] — E1UC[24] — CAN5RX ¹¹ EIRQ[14]	SIUL — eMIOS_1 — FlexCAN_5 SIUL	I/O I/O I	S	Tristate		40	_	97	E13

- ⁷ Value of PCR.IBE bit must be 0
- ⁸ Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and MPC5607B.
- ⁹ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
- If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.
- ¹⁰ The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kΩ should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and GND instead.
- ¹¹ Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices
- ¹² Not available on MPC5602B devices
- ¹³ Not available in 100 LQFP package
- ¹⁴ Available only on MPC5604B 208 MAPBGA devices
- ¹⁵ Not available on MPC5603B 144-pin devices

3.7 Nexus 2+ pins

In the 208 MAPBGA package, eight additional debug pins are available (see Table 7).

		1/0		Function	Pin number					
Debug pin	Function	direction	Pad type	after reset	100 LQFP	144 LQFP	208 MAP BGA ¹			
МСКО	Message clock out	0	F	—	_		T4			
MDO0	Message data out 0	0	М	—	_		H15			
MDO1	Message data out 1	0	М	_	_	_	H16			
MDO2	Message data out 2	0	М	—	_		H14			
MDO3	Message data out 3	0	М	—	_		H13			
EVTI	Event in	I	М	Pull-up		_	K1			
EVTO	Event out	0	М	—	_	_	L4			
MSEO	Message start/end out	0	М	_	_	_	G16			

Table 7. Nexus 2+ pin descriptions

208 MAPBGA available only as development package for Nexus2+

3.8 Electrical characteristics

3.9 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

MPC5604B/C Microcontroller Data Sheet, Rev. 11

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 10. OSCILLATOR_MARGIN field description

Value ¹	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.11.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 11. WATCHDOG_EN field description

Value ¹	Description
0	Disable after reset
1	Enable after reset

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

3.13 Recommended operating conditions

Symbol		Baramatar	Conditions	Va	lue	Unit
Symbol		Parameter	Conditions	Min	Мах	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	—	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})		V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ³	SR	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
		respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁴	SR	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁵	3.6	V
		with respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground	—	V _{SS} -0.1	—	V
		(V _{SS})	Relative to V_{DD}		V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—		0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias		-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
T _{A M-Grade Part}	SR	Ambient temperature under bias		-40	125	
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	

Table 13. Recommended operating conditions (3.3 V)

 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

³ 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 4 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

 $^2~$ CL includes device and package capacitances (C_{PKG} < 5 pF).

3.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 22.

Package	Supply segment									
i ackage	1	2	3	4	5	6				
208 MAPBGA ¹	Equivale	ent to 144 LQFP	tribution	МСКО	MDOn/MSEO					
144 LQFP	pin20–pin49	pin51–pin99	pin100-pin122	pin 123-pin19	—	—				
100 LQFP	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	—	_				
64 LQFP	pin8–pin26	pin28–pin55	pin56–pin7		_	—				

Table 22. I/O supply segment

¹ 208 MAPBGA available only as development package for Nexus2+

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{AVGSEG} maximum value.

Symbo		c	Paramotor	Conditions ¹			Value		Unit
Gymbo	•	Ŭ	i arameter			Min	Тур	Мах	onic
I _{SWTSLW} ,2	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,			2.3	mA
			current for SLOW	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	_	3.2	
				C _L = 100 pF, 2 MHz		_	_	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,			1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	—	—	2.3	
				C _L = 100 pF, 2 MHz		_		4.7	

Table 23. I/O consumption

Symbo		C	Paramotor	Conditions ¹			Value		Unit
Symbo	1	C	Falameter	Condi	Conditions'		Тур	Мах	Unit
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$		-	6.6	mA
			configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	_	_	13.4	
				C _L = 100 pF, 13 MHz		_	_	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			5	
				C _L = 25 pF, 40 MHz	PAD3V5V=1	_	_	8.5	
				C _L = 100 pF, 13 MHz				11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,			22	mA
			configuration	C _L = 25 pF, 64 MHz	PAD3V5V=0	_	_	33	
				C _L = 100 pF, 40 MHz		_	_	56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,			14	
				C _L = 25 pF, 64 MHz	PAD3V5V=1	_	_	20	
				C _L = 100 pF, 40 MHz		_	_	35	
IAVGSEG	SR	D	Sum of all the static I/O	V _{DD} = 5.0 V ± 10%, PA	AD3V5V = 0	_	_	70	mA
			segment	V _{DD} = 3.3 V ± 10%, PA	AD3V5V = 1	_	_	65	

 Table 23. I/O consumption (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 24 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Supply segment			144/100 LQFP				64 LQFP				
oup	Supply segment		Pad	Weight 5 V		Weight 3.3 V		Weight 5 V		Weight 3.3 V	
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
4	4	3	PB[3]	10%	_	12%	—	10%		12%	
			PC[9]	10%	_	12%	—	10%		12%	
		_	PC[14]	9%		11%	—				_
		—	PC[15]	9%	13%	11%	12%	_	—	_	
	_	—	PG[5]	9%	_	11%	—	_	—	_	
		_	PG[4]	9%	12%	10%	11%				
	_	—	PG[3]	9%	_	10%	_	_	_	_	_

Table 24. I/O weight¹

Supply segment				144/100	LQFP		64 LQFP				
Sup	piy seg	ment	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weig	ht 5 V	Weigh	t 3.3 V
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
2	2	2	PB[9]	1%	—	1%	—	1%	—	1%	—
			PB[8]	1%		1%	—	1%	—	1%	_
			PB[10]	6%		7%	—	6%	—	7%	_
	—	—	PF[0]	6%	—	7%	—	—	—	—	—
		—	PF[1]	7%	_	8%	—	—	—	—	_
		—	PF[2]	7%	_	8%	—	—	—	—	—
		—	PF[3]	7%	—	9%	—	—	—	—	—
		—	PF[4]	8%	_	9%	—	—	—	—	_
		—	PF[5]	8%	_	10%	—	—	—	—	_
		—	PF[6]	8%	—	10%	—	—	—	—	—
		_	PF[7]	9%		10%	—	_	—	—	
	2	_	PD[0]	1%		1%	—	_	—	—	
			PD[1]	1%	—	1%	—	—	—	—	—
			PD[2]	1%		1%	—	_	—	—	
		_	PD[3]	1%	_	1%	—	—	—	—	_
			PD[4]	1%	—	1%	—	—	—	—	—
		_	PD[5]	1%	_	1%	—	—	—	—	_
			PD[6]	1%		1%	—	_	—	—	
			PD[7]	1%	—	1%	—	—	—	—	—
		_	PD[8]	1%	_	1%	—	—	—	—	_
		2	PB[4]	1%	_	1%	—	1%	—	1%	—
			PB[5]	1%	—	1%	—	1%	—	2%	—
			PB[6]	1%	_	1%	—	1%	—	2%	—
			PB[7]	1%	_	1%	—	1%	—	2%	—
			PD[9]	1%	—	1%	—	—	—	—	—
		—	PD[10]	1%	—	1%	—	—	—	—	—
		—	PD[11]	1%	—	1%	_	_	_	—	—
		2	PB[11]	11%	—	13%		17%		21%	—
			PD[12]	11%	—	13%	—	—	—	—	—
		2	PB[12]	11%	—	13%		18%	_	21%	
		—	PD[13]	10%	—	12%	—	—	—	—	—

Table 24. I/O weight¹ (continued)

MPC5604B/C Microcontroller Data Sheet, Rev. 11

Symbol		C Parameter		Conditions ¹		Unit		
				Conditions	Min	Тур	Мах	
C _{REGn}	SR		Internal voltage regulator external capacitance	_	200	—	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	—	0.2	Ω
C _{DEC1}	SR		Decoupling capacitance ² ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ³	470 ⁴	—	nF
				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400		—	
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	—	nF
$\frac{\mathrm{d}}{\mathrm{d}t}VDD$	SR		Maximum slope on V _{DD}			_	250	mV/µs
	SR		Maximum instant variation on V _{DD} during standby exit		_	_	30	mV

Symbol		C	Parameter	Conditions ¹		Unit		
Cynis			i di dineter	Conditions	Min	Тур	Max	
I _{FLPW}	CC	D	Sum of the current consumption on VDD_HV and VDD_BV	During code flash memory low-power mode	—	—	900	μA
				During data flash memory low-power mode	—	—	900	
I _{FPWD}	СС	D	Sum of the current consumption on VDD_HV and VDD_BV	During code flash memory power-down mode	—	—	150	μA
				During data flash memory power-down mode	—	—	150	

 Table 32. Flash memory power supply DC electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² This value is only relative to the actual duration of the read cycle

 $^3~f_{CPU}$ 64 MHz can be achieved only at up to 105 $^\circ\text{C}$

3.19.3 Start-up/Switch-off timings

Symbol		C	Paramotor	Conditions ¹		Value		Unit
		Ŭ	i arameter	Conditions	Min	Тур	Мах	
T _{FLARSTEXIT}	СС	Т	Delay for Flash module to exit reset mode	Code Flash	_		125	μs
		Т		Data Flash	_	_	125	1
T _{FLALPEXIT}	СС	Т	Delay for Flash module to exit low-power	Code Flash	_	_	0.5	Ī
		Т	mode	Data Flash	_		0.5	1
T _{FLAPDEXIT}	СС	Т	Delay for Flash module to exit power-down	Code Flash	_	_	30	1
		Т	mode	Data Flash	_	_	30	Ī
T _{FLALPENTRY}	СС	Т	Delay for Flash module to enter low-power	Code Flash	_		0.5	1
		Т	mode	Data Flash	_	_	0.5	Ī
T _{FLAPDENTRY}	СС	Т	Delay for Flash module to enter power-down	Code Flash	_	_	1.5	Ī
		Т	mode	Data Flash	_	—	1.5	1

Table 33. Start-up time/Switch-off time

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

3.20 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.20.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Figure 14. Crystal oscillator and resonator connection scheme

Table 37. Crystal description

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8	NX5032GA	300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

¹ The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_{S} + C_{P1} + C_{P2}) = V_{A} \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Eqn. 8
$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_I sizing is obtained:

$$8.5 \bullet \tau_2 = 8.5 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10
$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

Eqn. 5

Eqn. 7

Egn. 9

Figure 23. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

$$\frac{V_{A2}}{V_{A}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}$$

Eqn. 11

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

On-chip peripherals 3.27

Current consumption 3.27.1

Symbol		С	Parameter		Conditions	Typical value ²	Unit
I _{DD_BV(CAN)}	CC	Т	CAN (FlexCAN) supply current on VDD_BV	Bitrate: 500 Kbyte/s Bitrate: 125 Kbyte/s	 Total (static + dynamic) consumption: FlexCAN in loop-back mode XTAL @ 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 85 8 * f _{periph} + 27	μA
I _{DD_BV(eMIOS)}	СС	Т	eMIOS supply current on VDD_BV	Static consulteMIOS chGlobal pre	Static consumption: • eMIOS channel OFF • Global prescaler enabled		μA
				 Dynamic cor It does no frequency 	nsumption: t change varying the (0.003 mA)	3	
I _{DD_BV(SCI)}	СС	Т	SCI (LINFlex) supply current on VDD_BV	Total (static + dynamic) consumption: • LIN mode • Baudrate: 20 Kbyte/s		5 * f _{periph} + 31	μA
I _{DD_BV(SPI)}	СС	Т	SPI (DSPI) supply current	Ballast static	Ballast static consumption (only clocked)		μA
				Ballast dyna (continuous • Baudrate: • Transmiss • Frame: 16	Ballast dynamic consumption (continuous communication): • Baudrate: 2 Mbit/s • Transmission every 8 μs • Frame: 16 bits		
I _{DD_BV(ADC)}	СС	Т	ADC supply current on VDD_BV	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	41 * f _{periph}	μA
					Ballast dynamic consumption (continuous conversion) ³	5 * f _{periph}	
IDD_HV_ADC(ADC)	СС	Т	ADC supply current on VDD_HV_ADC	V _{DD} = 5.5 V	Analog static consumption (no conversion)	2 * f _{periph}	μA
					Analog dynamic consumption (continuous conversion)	75 * f _{periph} + 32	
IDD_HV(FLASH)	CC	Т	Code Flash + Data Flash supply current on VDD_HV	V _{DD} = 5.5 V —		8.21	mA
I _{DD_HV(PLL)}	CC	Т	PLL supply current on VDD_HV	V _{DD} = 5.5 V		30 * f _{periph}	μA

Table 46. On-chip peripherals current consumption¹

¹ Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 64 MHz ² f_{periph} is an absolute value.

Document revision history

Revision	Date	Description of Changes
Revision 2	Date 06-Mar-2009	Description of Changes Made minor editing and formatting changes to improve readability Harmonized oscillator naming throughout document Features: —Replaced 32 KB with 48 KB as max SRAM size —Updated description of INTC —Changed max number of GPIO pins from 121 to 123 Updated Section 1.2, Description Updated Table 2 Added Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these are found in the device reference manual) Updated Figure 5: —Replaced VPP with VSS_HV on pin 18 —Added MA[1] as AF3 for PC[10] (pin 28) —Added MA[0] as AF2 for PC[3] (pin 116) —Changed description for pin 120 to PH[10] / GPIO[122] / TMS —Changed description for pin 127 to PH[9] / GPIO[121] / TCK —Replaced VPP with VSS_HV on pin 14 —Added MA[1] as AF3 for PC[10] (pin 22) —Added MA[1] as AF3 for PC[10] (pin 77) —Changed description for pin 81 to PH[10] / GPIO[122] / TMS
		 Changed description for pin 8 to PH[9] / GPIO[122] / TMS Changed description for pin 88 to PH[9] / GPIO[121] / TCK Removed E1UC[19] from pin 76 Replaced [11] with WKUP[11] for PB[3] (pin 1) Replaced NMI[0] with NMI on pin 7 Updated Figure 6: Changed description for ball B8 from TCK to PH[9] Changed description for ball B9 from TMS to PH[10] Updated descriptions for balls R9 and T9 Added Section 3.10, Parameter classification and tagged parameters in tables where appropriate Added Section 3.11, NVUSRO register Updated Table 12 Section 3.13, Recommended operating conditions: Added note on RAM data retention to end of section Updated Table 13 and Table 14 Added Section 3.14.1, Package thermal characteristics Updated Figure 7

Table 50. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
2 (cont.)	06-Mar-2009	Updated Table 16, Table 17, Table 18, Table 19 and Table 20 Added Section 3.15.4, Output pin transition times Updated Table 23 Updated Table 25 Section 3.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL Figure 10: Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated Table 26 Added Figure 13 Updated Table 27 and Table 28 Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.20, Electromagnetic compatibility (EMC) characteristics Updated Section 3.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Updated Section 3.22, Slow external crystal oscillator (32 kHz) electrical characteristics Updated Table 41, Table 42 and Table 43 Added Section 3.27, On-chip peripherals Added Table 44 Updated Table 45 Updated Table 47 Added Section Appendix A, Abbreviations

Table 50. R	evision	history	(continued)
-------------	---------	---------	-------------

Document revision history

Revision	Date	Description of Changes
4	06-Aug-2009	Updated Figure 6 Table 12 • V _{DD_ADC} : changed min value for "relative to V _{DD} " condition • V _{IN} : changed min value for "relative to V _{DD} " condition • I _{CORELV} : added new row Table 14 • T _A C-Grade Part, T _J C-Grade Part, T _A V-Grade Part, T _J V-Grade Part, T _A M-Grade Part, T _J M-Grade Part: added new rows • Changed capacitance value in footnote Table 21 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 26 • C _{DEC1} : changed min value • I _{MREG} : changed max value • I _{MREG} : changed max value • I _{DD_BV} : added max value • V _{LVDHV3L} : added max value • V _{LVDHV3L} : added max value • V _{LVDHV3L} : added max value • V _{LVDHV5L} : added max value Updated Table 28 Table 30 • Retention: deleted min value footnote for "Blocks with 100,000 P/E cycles" Table 38 • I _{FXOSC} : added typ value Table 40 • V _{SXOSC} : changed typ value • T _{SXOSCSU} : added max value footnote Table 41 • At _{LTJIT} : added max value

Table 50. Revision history (continued)