

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f100ggana-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					(3/4)					
Function Name	Pin Type	I/O	After Reset Release	Alternate Function	Function					
P70	7-1-1	I/O	Input port	KR0/SCK21/SCL21	Port 7.					
P71	7-1-2			KR1/SI21/SDA21	8-bit I/O port.					
P72	7-1-1			KR2/SO21	Input/output can be specified in 1-bit units.					
P73				KR3	software setting at input port.					
P74	7-1-2			KR4/INTP8	Output of P71 and P74 can be set to N-ch open-drain					
P75	7-1-1			KR5/INTP9	output (EV _{DD} tolerance).					
P76				KR6/INTP10/(RxD2)						
P77				KR7/INTP11/(TxD2)						
P80	8-1-2	I/O	Input port	(SCK10)/(SCL10)	Port 8.					
P81				(SI10)/(RxD1)/(SDA10)	8-bit I/O port.					
P82	7-1-2			(SO10)/(TxD1)	Input/output can be specified in 1-bit units.					
P83	7-1-1			—	software setting at input port.					
P84				(INTP6)	Input of P80 and P81 can be set to TTL input buffer.					
P85				(INTP7)	Output of P80 to P82 can be set to N-ch open-drain					
P86				(INTP8)	output (EV _{DD} tolerance).					
P87				(INTP9)						
P90	7-1-1	I/O	Input port	_	Port 9.					
P91	-			_	8-bit I/O port.					
P92	_			—	Input/output can be specified in 1-bit units.					
P93					software setting at input port.					
P94	-				Output of P96 can be set to N-ch open-drain output					
P95				SCK11/SCL11	(EV _{DD} tolerance).					
P96	7-1-2			SI11/SDA11	-					
P97	7-1-1			SO11						
P100	7-3-1	I/O	Analog input	ANI20	Port 10.					
D101	744	-	port		7-bit I/O port.					
P101	7-1-1		Input port		Use of an on-chip pull-up resistor can be specified by a					
P102				TI06/TO06	software setting at input port.					
P103	-			TI14/TO14	P100 can be set to analog input ^{Note} .					
P104	-			TI15/TO15	4					
P105	-			TI16/TO16	4					
P106				TI17/TO17						

Note Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit unit).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

RENESAS

6.3.9 Timer output enable register m (TOEm)

The TOEm register is used to enable or disable timer output of each channel.

Channel n for which timer output has been enabled becomes unable to rewrite the value of the TOmn bit of timer output register m (TOm) described later by software, and the value reflecting the setting of the timer output function through the count operation is output from the timer output pin (TOmn).

The TOEm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TOEm register can be set with a 1-bit or 8-bit memory manipulation instruction with TOEmL. Reset signal generation clears this register to 0000H.

Figure 6-17. Format of Timer Output Enable register m (TOEm)

Address: F01BAH, F01BBH (TOE0), F01FAH, F01FBH (TOE1) After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOEm	0	0	0	0	0	0	0	0	TOE							
									m7	m6	m5	m4	m3	m2	m1	m0

TOE mn	Timer output enable/disable of channel n
0	Disable output of timer. Without reflecting on TOmn bit timer operation, to fixed the output. Writing to the TOmn bit is enabled and the level set in the TOmn bit is output from the TOmn pin.
1	Enable output of timer. Reflected in the TOmn bit timer operation, to generate the output waveform. Writing to the TOmn bit is disabled (writing is ignored).

Caution Be sure to clear bits 15 to 8 to 0.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)

The window open period can be set is as follows.

WINDOW1	WINDOW0	Window Open Period of Watchdog Timer
0	0	Setting prohibited
0	1	50%
1	0	75% ^{Note}
1	1	100%

<R>

Note When the window open period is set to 75%, clearing the counter of the watchdog timer (writing ACH to WDTE) must proceed outside the corresponding period from among those listed below, over which clearing of the counter is prohibited (for example, confirming that the interval timer interrupt request flag (WDTIIF) of the watchdog timer is set).

WDCS2	WDCS1	WDCS0	Watchdog timer overflow time	Period over which clearing the
			(f _{IL} = 17.25 kHz (MAX.))	counter is prohibited when the
				window open period is set to 75%
0	0	0	2 ⁶ /f _{IL} (3.71 ms)	1.85 ms to 2.51 ms
0	0	1	2 ⁷ /f _{IL} (7.42 ms)	3.71 ms to 5.02 ms
0	1	0	2 ⁸ /f _{IL} (14.84 ms)	7.42 ms to 10.04 ms
0	1	1	2 ⁹ /f _{IL} (29.68 ms)	14.84 ms to 20.08 ms
1	0	0	2 ¹¹ /f _{IL} (118.72 ms)	56.36 ms to 80.32 ms
1	0	1	2 ¹³ /f _{IL} (474.90 ms)	237.44 ms to 321.26 ms
1	1	0	2 ¹⁴ /f _{IL} (949.80 ms)	474.89 ms to 642.51 ms
1	1	1	2 ¹⁶ /f _{IL} (3799.19 ms)	1899.59 ms to 2570.04 ms

- Caution When bit 0 (WDSTBYON) of the option byte (000C0H) = 0, the window open period is 100% regardless of the values of the WINDOW1 and WINDOW0 bits.
- **Remark** If the overflow time is set to $2^{9}/f_{IL}$, the window close time and open time are as follows.

	Se	Setting of Window Open Period							
	50%	75%	100%						
Window close time	0 to 20.08 ms	0 to 10.04 ms	None						
Window open time	20.08 to 29.68 ms	10.04 to 29.68 ms	0 to 29.68 ms						

<When window open period is 50%>

- Overflow time:
 - 2⁹/fi∟ (MAX.) = 2⁹/17.25 kHz = 29.68 ms
- Window close time:
 - 0 to 2^{9} /fiL (MIN.) × (1 0.5) = 0 to 2^{9} /12.75 kHz × 0.5 = 0 to 20.08 ms
- Window open time: $2^{9}/f_{IL}$ (MIN.) × (1 0.5) to $2^{9}/f_{IL}$ (MAX.) = $2^{9}/12.75$ kHz × 0.5 to $2^{9}/17.25$ kHz = 20.08 to 29.68 ms

RENESAS

ADCS	ADCE	A/D Conversion Operation						
0	0	Conversion stopped state						
0	1	Conversion standby state						
1	0	Setting prohibited						
1	1	Conversion-in-progress state						

Table 11-1. Settings of ADCS and ADCE Bits

Table 11-2. Setting and Clearing Conditions for ADCS Bit

	A/D Conversior	n Mode	Set Conditions	Clear Conditions			
Software trigger	Select mode	Sequential conversion mode	When 1 is written to ADCS	When 0 is written to ADCS			
		One-shot conversion		When 0 is written to ADCS			
		mode		• The bit is automatically cleared to 0 when A/D conversion ends.			
	Scan mode	Sequential conversion mode		When 0 is written to ADCS			
		One-shot conversion		When 0 is written to ADCS			
		mode		 The bit is automatically cleared to 0 when conversion ends on the specified four channels. 			
Hardware trigger no-wait	Select mode	Sequential conversion mode		When 0 is written to ADCS			
mode		One-shot conversion mode		When 0 is written to ADCS			
	Scan mode	Sequential conversion mode		When 0 is written to ADCS			
		One-shot conversion mode		When 0 is written to ADCS			
Hardware trigger wait	Select mode	Sequential conversion mode	When a hardware trigger	When 0 is written to ADCS			
mode		One-shot conversion	is input	When 0 is written to ADCS			
		mode		• The bit is automatically cleared to 0 when A/D conversion ends.			
	Scan mode	Sequential conversion mode		When 0 is written to ADCS			
		One-shot conversion		When 0 is written to ADCS			
		mode		• The bit is automatically cleared to 0 when conversion ends on the specified four channels.			

11.6.12 Hardware trigger wait mode (scan mode, one-shot conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the A/D conversion standby status.
- <2> If a hardware trigger is input while in the hardware trigger standby status, A/D conversion is performed on the four analog input channels specified by scan 0 to scan 3, which are specified by the analog input channel specification register (ADS). The ADCS bit of the ADM0 register is automatically set to 1 according to the hardware trigger input. A/D conversion is performed on the analog input channels in order, starting with that specified by scan 0.
- <3> A/D conversion is sequentially performed on the four analog input channels, the conversion results are stored in the A/D conversion result register (ADCR, ADCRH) each time conversion ends, and the A/D conversion end interrupt request signal (INTAD) is generated.
- <4> After A/D conversion ends, the ADCS bit is automatically cleared to 0, and the A/D converter enters the stop status.
- <5> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and conversion restarts at the first channel. The partially converted data is discarded.
- <6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the first channel respecified by the ADS register. The partially converted data is discarded.
- <7> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <8> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, the system enters the hardware trigger standby status, and the A/D converter enters the stop status. When ADCE = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

Figure 11-28. Example of Hardware Trigger Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

12.3.2 Serial clock select register m (SPSm)

The SPSm register is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of the SPSm register , and CKm0 is selected by bits 3 to 0.

Rewriting the SPSm register is prohibited when the register is in operation (when SEmn = 1).

The SPSm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SPSm register can be set with an 8-bit memory manipulation instruction with SPSmL. Reset signal generation clears the SPSm register to 0000H.

Figure 12-6. Format of Serial Clock Select Register m (SPSm)

Address: F0126H, F0127H (SPS0), F0166H, F0167H (SPS1) Note 1 After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPSm	0	0	0	0	0	0	0	0	PRS							
									m13	m12	m11	m10	m03	m02	m01	m00

PRS	PRS	PRS	PRS		Section of operation clock (CKmk) ^{Note 2}								
mk3	mk2	mk1	mk0		fclк = 2 MHz	fclk = 5 MHz fclk = 10 MHz		fclk = 20 MHz	fclк = 32 MHz				
0	0	0	0	fськ	2 MHz	5 MHz	10 MHz	20 MHz	32 MHz				
0	0	0	1	fclк/2	1 MHz	2.5 MHz	5 MHz	10 MHz	16 MHz				
0	0	1	0	fськ/2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	8 MHz				
0	0	1	1	fськ/2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	4 MHz				
0	1	0	0	fськ/2 ⁴	125 kHz	313 kHz	625 kHz	1.25 MHz	2 MHz				
0	1	0	1	fськ/2 ⁵	62.5 kHz	156 kHz	313 kHz	625 kHz	1 MHz				
0	1	1	0	fськ/2 ⁶	31.3 kHz	78.1 kHz	156 kHz	313 kHz	500 kHz				
0	1	1	1	fclк/2 ⁷	15.6 kHz	39.1 kHz	78.1 kHz	156 kHz	250 kHz				
1	0	0	0	fclк/2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	125 kHz				
1	0	0	1	fськ/2 ⁹	3.91 kHz	9.77 kHz	19.5 kHz	39.1 kHz	62.5 kHz				
1	0	1	0	fclк/2 ¹⁰	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz	31.3 kHz				
1	0	1	1	fclк/2 ¹¹	977 Hz	2.44 kHz	4.88 kHz	9.77 kHz	15.6 kHz				
1	1	0	0	fськ/2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	7.81 kHz				
1	1	0	1	fclк/2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	3.91 kHz				
1	1	1	0	fськ/2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.95 kHz				
1	1	1	1	fclк/2 ¹⁵	61 Hz	153 kHz	305 Hz	610 Hz	977 Hz				

Notes 1. 30 to 128-pin products only.

- 2. When changing the clock selected for fcLk (by changing the system clock control register (CKC) value), do so after having stopped (serial channel stop register m (STm) = 000FH) the operation of the serial array unit (SAU).
- Caution Be sure to clear bits 15 to 8 to "0".

Remarks 1. fcLK: CPU/peripheral hardware clock frequency

- **2.** m: Unit number (m = 0, 1)
- **3.** k = 0, 1

12.3.6 Serial flag clear trigger register mn (SIRmn)

The SIRmn register is a trigger register that is used to clear each error flag of channel n.

When each bit (FECTmn, PECTmn, OVCTmn) of this register is set to 1, the corresponding bit (FEFmn, PEFmn, OVFmn) of serial status register mn is cleared to 0. Because the SIRmn register is a trigger register, it is cleared immediately when the corresponding bit of the SSRmn register is cleared.

The SIRmn register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SIRmn register can be set with an 8-bit memory manipulation instruction with SIRmnL.

Reset signal generation clears the SIRmn register to 0000H.

Figure 12-10. Format of Serial Flag Clear Trigger Register mn (SIRmn)

Address: F0108H, F0109H (SIR00) to F010EH, F010FH (SIR03), After reset: 0000H R/W F0148H, F0149H (SIR10) to F014EH, F014FH (SIR13) ^{Note 1}

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIRmn	0	0	0	0	0	0	0	0	0	0	0	0	0	FECT	PEC	OVC
														mn	Tmn	Tmn
														Hote 1		

FEC	Clear trigger of framing error of channel n
Tmn	
0	Not cleared
1	Clears the FEFmn bit of the SSRmn register to 0.

PEC Tmn	Clear trigger of parity error flag of channel n
0	Not cleared
1	Clears the PEFmn bit of the SSRmn register to 0.

OVC	Clear trigger of overrun error flag of channel n
Tmn	
0	Not cleared
1	Clears the OVFmn bit of the SSRmn register to 0.

Notes 1. SIR00 to SIR03: All products

SIR10, SIR11: 30 to 128-pin products

SIR12, SIR13: 80 to 128-pin products

2. The SIR01, SIR03, SIR11, and SIR13 registers only.

Caution Be sure to clear bits 15 to 3 (or bits 15 to 2 for the SIR00, SIR02, SIR10, or SIR12 register) to "0".

Remarks 1. m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

2. When the SIRmn register is read, 0000H is always read.

EOCmn Bit	SSECm Bit	Reception Ended Successfully	Reception Ended in an Error
0	0	INTSRx is generated.	INTSRx is generated.
0	1	INTSRx is generated.	INTSRx is generated.
1	0	INTSRx is generated.	INTSREx is generated.
1	1	INTSRx is generated.	No interrupt is generated.

Figure 12-20.	Interrupt in UART	Reception	Operation	in SNOOZE Mode

12.3.15 Input switch control register (ISC)

The ISC1 and ISC0 bits of the ISC register are used to realize a LIN-bus communication operation by UART2 in coordination with an external interrupt and the timer array unit.

When bit 0 is set to 1, the input signal of the serial data input (RxD2) pin is selected as an external interrupt (INTP0) that can be used to detect a wakeup signal.

When bit 1 is set to 1, the input signal of the serial data input (RxD2) pin is selected as a timer input, so that wake up signal can be detected, the low width of the break field, and the pulse width of the sync field can be measured by the timer.

The ISC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears the ISC register to 00H.

Figure 12-21. Format of Input Switch Control Register (ISC)

Symbol 7 6 5 4				
· · · · · · · · · · · · · · · · · · ·	4 3	2	1	0
ISC 0 0 0 0	0 0	0	ISC1	ISC0

ISC1	Switching channel 7 input of timer array unit
0	30, 32, 36, 40, 44, 48, 52, 64, 80, 100, and 128-pin products:
	Uses the input signal of the TI07 pin as a timer input (normal operation).
	20, 24, and 25-pin products:
	Do not use a timer input signal for channel 7.
1	Input signal of the RxD2 pin is used as timer input (detects the wakeup signal and measures the low width of the break field and the pulse width of the sync field).
	Setting is prohibited in the 20, 24, and 25-pin products.

ISC0	Switching external interrupt (INTP0) input
0	Uses the input signal of the INTP0 pin as an external interrupt (normal operation).
1	Uses the input signal of the RxD2 pin as an external interrupt (wakeup signal detection).

Caution Be sure to clear bits 7 to 2 to "0".

(1) Register setting

Figure 12-111. Example of Contents of Registers for Data Reception of Simplified I²C (IIC00, IIC01, IIC10, IIC11, IIC20, IIC21, IIC30, IIC31)

(a) Serial mode register mn (SMRmn) ... Do not manipulate this register during data

transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKSmn 0/1	CCSmn 0	0	0	0	0	0	STSmn O Note 1	0	SISmn0 0 Note 1	1	0	0	MDmn2 1	MDmn1 0	MDmn0 0

(b) Serial communication operation setting register mn (SCRmn) ... Do not manipulate the bits of this register, except the TXEmn and

RXEmn bits, during data transmission/reception.

(c) Serial data register mn (SDRmn) (lower 8 bits: SIOr)

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDRmn	Baud rate setting Note 4										Dummy	transmit	data settir	ng (FFH)		
-															~	

SIOr

(d) Serial output register m (SOm) ... Do not manipulate this register during data transmission/reception.

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	CKOm3 0/1 Note 5	CKOm2 0/1 Note 5	CKOm1 0/1 Note 5	CKOm0 0/1 Note 5	0	0	0	0	SOm3 0/1 Note 5	SOm2 0/1 Note 5	SOm1 0/1 Note 5	SOm0 0/1 Note 5

(e) Serial output enable register m (SOEm) ... Do not manipulate this register during data

transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm													SOEm3	SOEm2	SOEm1	SOEm0
	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1

(f) Serial channel start register m (SSm) ... Do not manipulate this register during data

transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 0/1	SSm2 0/1	SSm1 0/1	^{SSm0} 0/1

(Notes and Remarks are listed on the next page.)

	<6>	<5>	<4>	<3>	<2>	<1>	<0>			
IICEn	LRELn	WRELn	SPIEn	WTIMn	ACKEn	STTn	SPTn			
llCEn			l ² (C operation ena	ble					
0	Stop operation	n. Reset the II	CA status regis	ter n (IICSn) ^{№te}	¹ . Stop interna	l operation.				
1	Enable operat	tion.								
Be sure to s	et this bit (1) whi	le the SCLAn a	and SDAAn line	s are at high le	vel.					
Condition for	r clearing (IICEn	= 0)		Condition for	setting (IICEn =	1)				
Cleared bReset	y instruction			 Set by instruct 	uction					
LRELn ^{Notes 2,}	3		Exit f	rom communic	ations					
0	Normal opera	lormal operation								
	The SCLAn a	s uses include cases in which a locally irrelevant extension code has been received. The SCLAn and SDAAn lines are set to high impedance. The following flags of IICA control register n0 (IICCTLn0) and the IICA status register n (IICSn) are sleared to 0. STTN • SPTN • MSTSN • EXCN • COIN • TRCN • ACKDN • STDN								
The stendly	cleared to 0. • STTn • SF	PTn • MSTSn	● EXCn ● C	Oln • TRCn	• ACKDn • S	TDn				
The standb conditions a • After a sto • An addres	cleared to 0. • STTn • SF y mode following re met. pp condition is de ss match or exter	PTn • MSTSn g exit from con tected, restart ision code rece	■ ● EXCn ● C mmunications r is in master mo eption occurs af	OIn • TRCn remains in effe de. ter the start cor	ACKDn • S ct until the follo	TDn	nications e			
The standb conditions a • After a sto • An addres Condition for	cleared to 0. • STTn • SF y mode following re met. op condition is de as match or exter r clearing (LREL	PTn • MSTSn g exit from col tected, restart nsion code rece n = 0)	● EXCn ● C mmunications r is in master mo eption occurs af	OIn • TRCn remains in effe de. ter the start cor Condition for s	ACKDn • S ct until the follo ndition. setting (LRELn =	TDn pwing commun	nications e			
The standb conditions a • After a sto • An address Condition fo • Automatio • Reset	cleared to 0. • STTn • SF y mode following re met. op condition is de as match or exter r clearing (LREL ally cleared after	PTn • MSTSn g exit from col tected, restart asion code rece n = 0) execution	● EXCn ● C mmunications r is in master mo eption occurs af	OIn • TRCn remains in effe de. ter the start cor Condition for s • Set by instru	ACKDn • S ct until the follo ndition. setting (LRELn = uction	TDn pwing commun	nications e			
The standb conditions a • After a sto • An address Condition for • Automatio • Reset WRELn ^{Notes 2}	cleared to 0. • STTn • SF y mode following re met. op condition is de as match or exter r clearing (LREL ally cleared after	PTn • MSTSn g exit from col tected, restart asion code rece n = 0) • execution	■ ● EXCn ● C mmunications r is in master mo eption occurs af	OIn • TRCn remains in effe de. ter the start cor Condition for • Set by instru Wait cancellatio	ACKDn • S ct until the follo ndition. setting (LRELn = uction n	TDn pwing commun = 1)	nications e			
The standb conditions a • After a sto • An addres Condition fo • Automatio • Reset WRELn ^{Notes 2} 0	cleared to 0. • STTn • SF y mode following re met. pp condition is de ass match or exter r clearing (LREL) ally cleared after .3 Do not cancel	PTn • MSTSn g exit from col tected, restart nsion code rece n = 0) • execution	■ ● EXCn ● C mmunications r is in master mo eption occurs af	OIn • TRCn remains in effe de. ter the start cor Condition for s • Set by instru Wait cancellatio	ACKDn • S ct until the follo ndition. setting (LRELn = uction n	TDn pwing commun = 1)	nications e			
The standb conditions a • After a sto • An address Condition fo • Automatic • Reset WRELn ^{Notes 2} 0 1	cleared to 0. • STTn • SF y mode following re met. p condition is de ss match or exter r clearing (LREL) ally cleared after ,3 Do not cancel Cancel wait.	PTn • MSTSn g exit from con tected, restart ision code rece n = 0) r execution	• EXCn • C mmunications r is in master mo eption occurs af	OIn • TRCn remains in effe de. ter the start cor Condition for s • Set by instru Nait cancellation eared after wait	ACKDn • S ct until the follo idition. setting (LRELn = uction n t is canceled.	TDn pwing commune = 1)	nications e			
The standb conditions a • After a sto • An address Condition for • Automatic • Reset WRELn ^{Notes 2} 0 1 When the W (TRCn = 1),	cleared to 0. • STTn • SF y mode following re met. pp condition is de ss match or exter r clearing (LREL) ally cleared after .3 Do not cancel Cancel wait. /RELn bit is set (the SDAAn line	PTn • MSTSn g exit from con tected, restart ision code rece n = 0) r execution wait This setting is a wait canceled) goes into the h	• EXCn • C mmunications r is in master mo ption occurs af automatically cl during the wait igh impedance	OIn • TRCn remains in effe de. ter the start cor Condition for • Set by instru Wait cancellation eared after wait period at the ni state (TRCn =	ACKDn • S ct until the follo ndition. setting (LRELn = uction n t is canceled. nth clock pulse 0).	TDn pwing commun = 1) in the transmis	nications en			
The standb conditions a • After a sto • An address Condition for • Automatic • Reset WRELn ^{Notes 2} 0 1 When the W (TRCn = 1), Condition for	cleared to 0. • STTn • SF y mode following re met. pp condition is de ass match or exter r clearing (LREL) ally cleared after Cancel wait. /RELn bit is set (the SDAAn line r clearing (WREL)	PTn • MSTSn g exit from col tected, restart asion code rece n = 0) execution wait This setting is a wait canceled) goes into the h n = 0)	• EXCn • C mmunications r is in master mo eption occurs af automatically cl during the wait igh impedance	OIn • TRCn remains in effe de. ter the start cor Condition for s • Set by instru Wait cancellation eared after wait period at the ni state (TRCn = Condition for s	ACKDn • S ct until the follo indition. setting (LRELn = uction n t is canceled. nth clock pulse 0). setting (WRELn	TDn pwing commun = 1) in the transmis = 1)	nications e			
The standb conditions a • After a sto • An address Condition for • Automatic • Reset WRELn ^{Notes 2} 0 1 When the W (TRCn = 1), Condition for • Automatic • Reset	cleared to 0. • STTn • SF y mode following re met. pp condition is de ass match or exter r clearing (LREL) ally cleared after Do not cancel Cancel wait. /RELn bit is set (the SDAAn line r clearing (WREL) ally cleared after	PTn • MSTSn g exit from contected, restart asion code recent n = 0) execution wait This setting is a wait canceled) goes into the h n = 0) rexecution	• EXCn • C mmunications r is in master mo ption occurs af automatically cl during the wait igh impedance	OIn • TRCn remains in effe de. ter the start cor Condition for s • Set by instru- Wait cancellation eared after wait period at the mistate (TRCn = Condition for s • Set by instru-	ACKDn • S ct until the follo idition. setting (LRELn = uction n t is canceled. nth clock pulse 0). setting (WRELn uction	TDn pwing commun = 1) in the transmis = 1)	nications e			
The standb conditions a • After a sto • An address Condition for • Automatic • Reset WRELn ^{Notes 2} 0 1 When the W (TRCn = 1), Condition for • Automatic • Reset Notes 1.	cleared to 0. • STTn • SF y mode following re met. p condition is de ss match or exter r clearing (LREL) ally cleared after Do not cancel Cancel wait. /RELn bit is set (' the SDAAn line r clearing (WREL ally cleared after The IICA status and the CLDn a	PTn • MSTSn g exit from con- tected, restart ision code rece n = 0) r execution wait This setting is is wait canceled) goes into the h n = 0) execution is register n (I and DADn bits	e EXCn • C mmunications r is in master mo ption occurs af automatically cl during the wait igh impedance ICSn), the ST s of IICA contr	OIn • TRCn emains in effe de. ter the start cor Condition for s • Set by instru- Nait cancellation eared after wait period at the ni state (TRCn = Condition for s • Set by instru- condition for s • Set by instru-	ACKDn • S ct until the follo idition. setting (LRELn = uction n t is canceled. nth clock pulse 0). setting (WRELn uction BSYn bits of th (IICCTLn1) ar	TDn pwing commun = 1) in the transmis = 1) the IICA flag re reset.	nications e			

Figure 13-6. Format of IICA Control Register n0 (IICCTLn0) (1/4)

line is low level, and the digital filter is turned on (DFCn bit of IICCTLn1 register = 1), a start condition will be inadvertently detected immediately. In this case, set (1) the LRELn bit by using a 1-bit memory manipulation instruction immediately after enabling operation of I²C (IICEn = 1).

Remark n = 0, 1

13.5.5 Stop condition

When the SCLAn pin is at high level, changing the SDAAn pin from low level to high level generates a stop condition.

A stop condition is a signal that the master device generates to the slave device when serial transfer has been completed. When the device is used as a slave, stop conditions can be detected.

Figure 13-19. Stop Condition

A stop condition is generated when bit 0 (SPTn) of IICA control register n0 (IICCTLn0) is set to 1. When the stop condition is detected, bit 0 (SPDn) of the IICA status register n (IICSn) is set to 1 and INTIICAn is generated when bit 4 (SPIEn) of the IICCTLn0 register is set to 1.

Remark n = 0, 1

- (2) When communication reservation function is disabled (bit 0 (IICRSVn) of IICA flag register n (IICFn) = 1) When bit 1 (STTn) of IICA control register n0 (IICCTLn0) is set to 1 when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.
 - When arbitration results in neither master nor slave operation
 - When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released by setting bit 6 (LRELn) of the IICCTLn0 register to 1 and saving communication)

To confirm whether the start condition was generated or request was rejected, check STCFn (bit 7 of the IICFn register). It takes up to 5 cycles of f_{MCK} until the STCFn bit is set to 1 after setting STTn = 1. Therefore, secure the time by software.

Remark n = 0, 1

16.3.1 Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon reset signal generation.

When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.

The IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, and IF3L registers can be set by a 1-bit or 8-bit memory manipulation instruction. When the IF0L and IF0H registers, the IF1L and IF1H registers, and the IF2L and IF2H registers are combined to form 16-bit registers IF0, IF1, and IF2, they can be set by a 16-bit memory manipulation instruction. Reset signal generation clears these registers to 00H.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 16-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L) (1/2)

Address: FFF	E0H After re	eset: 00H R/	N					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0L	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0	LVIIF	WDTIIF
Address: FFF	E1H After	reset: 00H	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0H	SREIF0	SRIF0	STIF0	DMAIF1	DMAIF0	SREIF2	SRIF2	STIF2
	TMIF01H	CSIIF01	CSIIF00			TMIF11H	CSIIF21	CSIIF20
		IICIF01	IICIF00				IICIF21	IICIF20
Address: FFF	E2H After	reset: 00H	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	IICAIF0	SREIF1	SRIF1	STIF1
						TMIF03H	CSIIF11	CSIIF10
							IICIF11	IICIF10
Address: FFF	E3H After	reset: 00H	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF1H	TMIF04	TMIF13	SRIF3	STIF3	KRIF	ITIF	RTCIF	ADIF
			CSIIF31	CSIIF30				
			IICIF31	IICIF30				
Address: FFF	D0H After	reset: 00H	R/W					

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF2L	PIF10	PIF9	PIF8	PIF7	PIF6	TMIF07	TMIF06	TMIF05

16.4 Interrupt Servicing Operations

16.4.1 Maskable interrupt request acknowledgment

A maskable interrupt request becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0. A vectored interrupt request is acknowledged if interrupts are in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request.

The times from generation of a maskable interrupt request until vectored interrupt servicing is performed are listed in Table 16-4 below.

For the interrupt request acknowledgment timing, see Figures 16-8 and 16-9.

Table 16-4.	Time from Generatio	n of Maskable	Interrupt Unti	Servicing
-------------	---------------------	---------------	----------------	-----------

	Minimum Time	Maximum Time ^{Note}
Servicing time	9 clocks	16 clocks

Note Maximum time does not apply when an instruction from the internal RAM area is executed.

Remark 1 clock: 1/fclk (fclk: CPU clock)

If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupts requests have the same priority level, the request with the highest default priority is acknowledged first.

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.

Figure 16-7 shows the interrupt request acknowledgment algorithm.

If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP1 and ISP0 flags. The vector table data determined for each interrupt request is the loaded into the PC and branched.

Restoring from an interrupt is possible by using the RETI instruction.

STOP Mode Setting			When STOP Instruction Is Executed While CPU Is Operating on Main System Clock						
Item			When CPU Is Operating on High-speed on-chip oscillator clock (f⊮)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (f _{Ex})				
System cloc	k		Clock supply to the CPU is stopped						
Main sy	stem clock	fін	Stopped						
		fx							
		fex							
Subsyst	em clock	fхт	Status before STOP mode was	set is retained					
		fexs							
fıL			Set by bits 0 (WDSTBYON) and subsystem clock supply mode c • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTOI • WUTMMCK0 = 0, WDTON = • WUTMMCK0 = 0, WDTON =	4 4 (WDTON) of option byte (0000 control register (OSMC) N = 0: Stops 1, and WDSTBYON = 1: Oscillate 1, and WDSTBYON = 0: Stops	C0H), and WUTMMCK0 bit of				
CPU			Operation stopped						
Code flash r	nemory								
Data flash n	nemory								
RAM									
Port (latch)			Status before STOP mode was set is retained						
Timer array	unit		Operation disabled						
Real-time cl	ock (RTC)		Operable						
12-bit interv	al timer								
Watchdog ti	mer		See CHAPTER 10 WATCHDOG TIMER.						
Clock outpu	t/buzzer out	tput	Operates when the subsystem clock is selected as the clock source for counting and the RTCLPC bit is 0 (operation is disabled when a clock other than the subsystem clock is selected and the RTCLPC bit is not 0).						
A/D convert	er		Wakeup operation is enabled (switching to the SNOOZE mode)						
Serial array	unit (SAU)		Wakeup operation is enabled only for CSIp and UARTq (switching to the SNOOZE mode) Operation is disabled for anything other than CSIp and UARTq						
Serial interfa	ace (IICA)		Wakeup by address match operable						
Multiplier an accumulator	d divider/m	ultiply-	Operation disabled						
DMA contro	ller								
Power-on-re	set functior	ı	Operable						
Voltage dete	ection functi	on							
External inte	errupt								
Key interrup	t function	1000							
CRC operation	High-spee		Operation stopped						
function	CRC	ourpose							
RAM parity function	error detect	ion							
RAM guard function									
SFR guard f	unction]						
Illegal-mem detection fu	ory access								

Table 18-2. Operating Statuses in STOP Mode

Remarks 1. Operation stopped: Operation is automatically stopped before switching to the STOP mode.

Operation disabled: Operation is stopped before switching to the STOP mode.

- fin: High-speed on-chip oscillator clock
- f fL: Low-speed on-chip oscillator clock

fx: X1 clock

- f_{EX}: External main system clock f_{EXS}: External subsystem clock
- fxr: XT1 clock 2. 20 to 64-pin products: p = 00; q = 0
 - 80 to 128-pin products: p = 00, 20; q = 0, 2
- R01UH0146EJ0340 Rev.3.40 May 31, 2018

CHAPTER 22 SAFETY FUNCTIONS

22.1 Overview of Safety Functions

The following safety functions are provided in the RL78/G13 to comply with the IEC60730 and IEC61508 safety standards.

These functions enable the microcontroller to self-diagnose abnormalities and stop operating if an abnormality is detected.

(1) Flash memory CRC operation function (high-speed CRC, general-purpose CRC)

This detects data errors in the flash memory by performing CRC operations.

- Two CRC functions are provided in the RL78/G13 that can be used according to the application or purpose of use.
 - High-speed CRC: The CPU can be stopped and a high-speed check executed on its entire code flash memory area during the initialization routine.
 - General CRC: This can be used for checking various data in addition to the code flash memory area while the CPU is running.

(2) RAM parity error detection function

This detects parity errors when reading RAM data.

(3) RAM guard function

This prevents RAM data from being rewritten when the CPU freezes.

(4) SFR guard function

This prevents SFRs from being rewritten when the CPU freezes.

(5) Invalid memory access detection function

This detects illegal accesses to invalid memory areas (such as areas where no memory is allocated and areas to which access is restricted).

(6) Frequency detection function

This function allows a self-check of the CPU/peripheral hardware clock frequencies using the timer array unit.

(7) A/D test function

This is used to perform a self-check of the A/D converter by performing A/D conversion of the A/D converter's positive and negative reference voltages, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage.

Remark For usage examples of the safety functions complying with the IEC60730 safety standards, refer to RL78 Family IEC60730/60335 self test library application notes (R01AN1062, R01AN1296).

22.2 Registers Used by Safety Functions

The safety functions use the following registers for each function.

Register	Each Function of Safety Function
Flash memory CRC control register (CRC0CTL)	Flash memory CRC operation function
Flash memory CRC operation result register (PGCRCL)	(high-speed CRC)
CRC input register (CRCIN)	CRC operation function
CRC data register (CRCD)	(general-purpose CRC)
RAM parity error control register (RPECTL)	RAM parity error detection function
Invalid memory access detection control register (IAWCTL)	RAM guard function
	SFR guard function
	Invalid memory access detection function
• Timer input select register 0 (TIS0)	Frequency detection function
A/D test register (ADTES)	A/D test function

The content of each register is described in 22.3 Operation of Safety Functions.

22.3 Operation of Safety Functions

22.3.1 Flash memory CRC operation function (high-speed CRC)

The IEC60730 standard mandates the checking of data in the flash memory, and recommends using CRC to do it. The high-speed CRC provided in the RL78/G13 can be used to check the entire code flash memory area during the initialization routine. The high-speed CRC can be executed only when the program is allocated on the RAM and in the HALT mode of the main system clock.

The high-speed CRC performs an operation by reading 32-bit data per clock from the flash memory while stopping the CPU. This function therefore can finish a check in a shorter time (for example, 512 µs@32 MHz with 64-KB flash memory). The CRC generator polynomial used complies with "X¹⁶ + X¹² + X⁵ + 1" of CRC-16-CCITT.

The high-speed CRC operates in MSB first order from bit 31 to bit 0.

- Caution The CRC operation result might differ during on-chip debugging because the monitor program is allocated.
- **Remark** The operation result is different between the high-speed CRC and the general CRC, because the general CRC operates in LSB first order.

22.3.1.1 Flash memory CRC control register (CRC0CTL)

This register is used to control the operation of the high-speed CRC ALU, as well as to specify the operation range. The CRC0CTL register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

(10/35)

Edition	Description	Chapter
Rev.3.00	Modification of description in 12.5 Operation of 3-Wire Serial I/O	CHAPTER 12 SERIAL
	Modification of transfer rate and note in 12.5.1 Master transmission	ARRAY UNIT
	Modification of Figure 12-28	
	Modification of Figure 12-29	
	Modification of Figure 12-30	
	Modification of Figure 12-31	
	Modification of Figure 12-32	
	Modification of description, transfer rate, clock phase, and note in 12.5.2 Master reception	
	Modification of Figure 12-35	
	Modification of Figure 12-36	
	Modification of Figure 12-37	
	Modification of Figure 12-39	
	Modification of Figure 12-40	
	Modification of description, transfer rate and note in 12.5.3 Master transmission/reception	
	Modification of Figure 12-43	
	Modification of Figure 12-45	
	Modification of Figure 12-47	
	Modification of Figure 12-48	
	Modification of description and notes 1 and 2 in 12.5.4 Slave transmission	
	Modification of Figure 12-51	
	Modification of Figure 12-52	
	Modification of Figure 12-53	
	Modification of Figure 12-54	
	Modification of Figure 12-55	
	Modification of Figure 12-56	
	Modification of description and notes 1 and 2 in 12.5.5 Slave reception	
	Modification of Figure 12-59	
	Modification of Figure 12-61	
	Modification of description and notes 1 and 2 in 12.5.6 Slave transmission/reception	
	Modification of Figure 12-65	
	Modification of Figure 12-67	
	Modification of Figure 12-69	
	Modification of Figure 12-70	
	Modification of Figure 12-71 and caution 2	
	Modification of Figure 12-72	
	Modification of Figure 12-73 and caution 2	
	Modification of Figure 12-74	
	Modification of description in 12.6 Operation of UART (UART0 to UART3) Communication	
	Modification of description and note 2 in 12.6.1 UART transmission	
	Modification of note 1 in Figure 12-76	
	Modification of Figures 12-77 and 12-78	
	Modification of Figure 12-79	

		(21/35)		
Edition	Description	Chapter		
Rev.2.10	Addition of products for industrial applications ($T_A = -40$ to $+105^{\circ}C$)	CHAPTER 30 ELECTRICAL SPECIFICATIONS (G: T _A = -40 to +105°C)		
	Addition of products for industrial applications ($T_A = -40$ to $+105^{\circ}C$)	CHAPTER 31 PACKAGE DRAWINGS		
Rev.2.01	Modification of formats of register names	Throughout		
Rev.2.00	Renamed interval timer (unit) to 12-bit interval timer	Throughout		
	Addition of pin name of the peripheral I/O redirection function			
	Renamed VLVI, VLVIH, VLVIL to VLVD, VLVDH, VLVDL (LVD detection voltage)			
	Renamed interrupt source of RAM parity error (RAMTOP) to RPE			
	Renamed fexs to fext			
	Addition of 1.1 Features	CHAPTER 1 OUTLINE		
	Modification of 1.2 Ordering Information			
-	Addition of Figure 1-1. Part Number, Memory Size, and Package of RL78/G13			
	Modification of 1.3.11 64-pin products			
	Addition and Modification of description in 1.6 Outline of Functions			
	Modification of 2.1 Port Function	CHAPTER 2 PIN		
	Modification of description in 2.2 Functions other than port pins (Deletion of Description of Port Function)	FUNCTIONS		
	Addition of remark to 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins			
	Change of Table 2-3. Connection of Unused Pins (128-pin products) (2/4)			
	Addition of note 1 to Figures 3-1, 3-2, 3-5 to 3-7, 3-9	CHAPTER 3 CPU ARCHITECTURE		
	Addition of caution to Figures 3-1 to 3-10			
	Modification of note in Figures 3-3, 3-4, 3-8, 3-10			
	Addition of remark to Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory			
	Modification of description in 3.1.2 Mirror area			
	Modification of caution 2 in 3.1.3 Internal data memory space			
	Addition of note 1 to Figures 3-12, 3-13, 3-16 to 3-18, 3-20			
	Addition of caution to Figures 3-12 to 3-21			
	Addition of note 1 to Figures 3-14, 3-15, 3-19, 3-21			
	Modification of caution 3 in 3.2.1 (3) Stack pointer (SP)			
	Modification of caution 2 in 3.2.2 General-purpose registers			
	Modification of 4.1 Port Functions	CHAPTER 4 PORT		
	Modification of block diagrams	FUNCTIONS		
	Addition of description to 4.2.3 Port 2			
	Addition of description to 4.2.16 Port 15			
	Addition of caution to 4.3 Registers Controlling Port Function			
	Modification of Figure 4-66. Format of Port Register (128-pin products)			
	Modification of description and addition of caution to 4.3 (3) Pull-up resistor option registers (PUxx)			
	Addition of 4.3 (5) Port output mode registers (POMxx)			
	Addition of cautions 1 and 2 to Figure 4-70. Format of Port Mode Control Register			

