

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, IrDA, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b0256-a2ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Overview

2.1 Blockdiagram

4. Package and Pinout

4.1 Package

The device pins are multiplexed with peripheral functions as described in the Peripheral Multiplexing on I/O Line section.

Figure 4-1. TQFP64 / QFN64 Pinout

Figure 4-2. TQFP48 / QFN48 Pinout

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

4.2 Peripheral Multiplexing on I/O lines

4.2.1 Multiplexed signals

Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D (D is only available for UC3Bx512 parts). The following table define how the I/O lines on the peripherals A, B,C or D are multiplexed by the GPIO.

48-pin	64-pin	PIN	GPIO Pin	Function A	Function B	Function C	Function D (only for UC3Bx512)
3	3	PA00	GPIO 0				
4	4	PA01	GPIO 1				
5	5	PA02	GPIO 2				
7	9	PA03	GPIO 3	ADC - AD[0]	PM - GCLK[0]	USBB - USB_ID	ABDAC - DATA[0]
8	10	PA04	GPIO 4	ADC - AD[1]	PM - GCLK[1]	USBB - USB_VBOF	ABDAC - DATAN[0]
9	11	PA05	GPIO 5	EIC - EXTINT[0]	ADC - AD[2]	USART1 - DCD	ABDAC - DATA[1]

 Table 4-1.
 GPIO Controller Function Multiplexing

Figure 6-5. The Status Register Low Halfword

6.4.3 Processor States

6.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 6-2 on page 23.

Drierity	Mede	Security	Description
Priority	Mode	Security	Description
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode
2	Exception	Privileged	Execute exceptions
3	Interrupt 3	Privileged	General purpose interrupt mode
4	Interrupt 2	Privileged	General purpose interrupt mode
5	Interrupt 1	Privileged	General purpose interrupt mode
6	Interrupt 0	Privileged	General purpose interrupt mode
N/A	Supervisor	Privileged	Runs supervisor calls
N/A	Application	Unprivileged	Normal program execution mode

 Table 6-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

6.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

	Cyclonina		54)
Reg #	Address	Name	Function
92	368	MPUPSR4	MPU Privilege Select Register region 4
93	372	MPUPSR5	MPU Privilege Select Register region 5
94	376	MPUPSR6	MPU Privilege Select Register region 6
95	380	MPUPSR7	MPU Privilege Select Register region 7
96	384	MPUCRA	Unused in this version of AVR32UC
97	388	MPUCRB	Unused in this version of AVR32UC
98	392	MPUBRA	Unused in this version of AVR32UC
99	396	MPUBRB	Unused in this version of AVR32UC
100	400	MPUAPRA	MPU Access Permission Register A
101	404	MPUAPRB	MPU Access Permission Register B
102	408	MPUCR	MPU Control Register
103-191	448-764	Reserved	Reserved for future use
192-255	768-1020	IMPL	IMPLEMENTATION DEFINED

 Table 6-3.
 System Registers (Continued)

6.5 Exceptions and Interrupts

AVR32UC incorporates a powerful exception handling scheme. The different exception sources, like Illegal Op-code and external interrupt requests, have different priority levels, ensuring a well-defined behavior when multiple exceptions are received simultaneously. Additionally, pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is passed to an event handler at an address specified in Table 6-4 on page 29. Most of the handlers are placed sequentially in the code space starting at the address specified by EVBA, with four bytes between each handler. This gives ample space for a jump instruction to be placed there, jumping to the event routine itself. A few critical handlers have larger spacing between them, allowing the entire event routine to be placed directly at the address specified by the EVBA-relative offset generated by hardware. All external interrupt sources have autovectored interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up appropriately. The same mechanisms are used to service all different types of events, including external interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the external interrupts and provides the autovector offset to the CPU.

6.5.1 System Stack Issues

Event handling in AVR32UC uses the system stack pointed to by the system stack pointer, SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section, since the timing of accesses to this memory section is both fast and deterministic.

AT32UC3B

9.2 DC Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to 85°C, unless otherwise specified and are certified for a junction temperature up to $T_J = 100^{\circ}C$.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _{VDDCORE}	DC Supply Core			1.65		1.95	V
V _{VDDPLL}	DC Supply PLL			1.65		1.95	V
V _{VDDIO}	DC Supply Peripheral I/Os			3.0		3.6	V
V _{IL}	Input Low-level Voltage			-0.3		+0.8	V
V _{IH}		AT32UC3B064 AT32UC3B0128 AT32UC3B0256	All I/O pins except TCK, RESET_N, PA03, PA04, PA05, PA06, PA07, PA08, PA11, PA12, PA18, PA19, PA28, PA29, PA30, PA31	2.0		5.5	V
		AT32UC3B164 AT32UC3B1128 AT32UC3B1256	TCK, RESET_N, PA03, PA04, PA05, PA06, PA07, PA08, PA11, PA12, PA18, PA19, PA28, PA29, PA30, PA31	2.0		3.6	V
	Input High-level Voltage	AT32UC3B0512 AT32UC3B1512	All I/O pins except TCK, RESET_N, PA03, PA04, PA05, PA06, PA07, PA08, PA11, PA12, PA18, PA19, PA28, PA29, PA30, PA31	2.0		5.5	V
			TCK, RESET_N	2.5		3.6	V
			PA03, PA04, PA05, PA06, PA07, PA08, PA11, PA12, PA18, PA19, PA28, PA29, PA30, PA31	2.0		3.6	V
V _{OI}	Output Low-level Voltage	I _{OL} = -4mA for all I/ PA23	O except PA20, PA21, PA22,			0.4	V
01		I _{OL} = -8mA for PA2	0, PA21, PA22, PA23			0.4	V
M	Output Lligh Joyal Valtage	I _{OL} = -4mA for all I/ PA23	O except PA20, PA21, PA22,	V _{VDDIO} -0.4			v
v _{OH}	Output High-level Voltage	I _{OL} = -8mA for PA2	0, PA21, PA22, PA23	V _{VDDIO} -0.4			V
1	Output Law Java Durant	All I/O pins except	t PA20, PA21, PA22, PA23			-4	mA
OL	Output Low-level Current	PA20, PA21, PA22	2, PA23			-8	mA
I _{ОН}	Output High-level Current	All I/O pins except PA23	t for PA20, PA21, PA22,			4	mA
0.1		PA20, PA21, PA22	2, PA23			8	mA
I _{LEAK}	Input Leakage Current	Pullup resistors di	sabled			1	μA

9.3 Regulator Characteristics

Table 9-2. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{VDDIN}	Supply voltage (input)		3	3.3	3.6	V
V _{VDDOUT}	Supply voltage (output)		1.70	1.8	1.85	V
I _{OUT}	Maximum DC output current	V _{VDDIN} = 3.3V			100	mA
I _{SCR}	Static Current of internal regulator	Low Power mode (stop, deep stop or static) at $T_A = 25^{\circ}C$		10		μA

Table 9-3. Decoupling Requirements

Symbol	Parameter	Conditions	Тур.	Technology	Unit
C _{IN1}	Input Regulator Capacitor 1		1	NPO	nF
C _{IN2}	Input Regulator Capacitor 2		4.7	X7R	μF
C _{OUT1}	Output Regulator Capacitor 1		470	NPO	pF
C _{OUT2}	Output Regulator Capacitor 2		2.2	X7R	μF

9.4 Analog Characteristics

9.4.1 ADC Reference

Table 9-4. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{ADVREF}	Analog voltage reference (input)		2.6		3.6	V

Table 9-5. Decoupling Requirements

Symbol	Parameter	Conditions	Тур.	Technology	Unit
C _{VREF1}	Voltage reference Capacitor 1		10	NPO	nF
C _{VREF2}	Voltage reference Capacitor 2		1	NPO	uF

9.4.2 BOD

Table 9-6. BOD Level Values

Symbol	Parameter Value	Conditions	Min.	Тур.	Max.	Unit
BODLEVEL	00 0000b			1.44		V
	01 0111b			1.52		V
	01 1111b			1.61		V
	10 0111b			1.71		V

Table 9-6 describes the values of the BODLEVEL field in the flash FGPFR register.

Therefore VDDCORE rise rate (VDDRR) must be equal or superior to 2.5V/ms and VDDIO must reach VDDIO mini value before 500 us (< TRST + TSSU1) after VDDCORE has reached V_{POR+} min value.

9.4.4 RESET_N Characteristics

Table 9-9. RESET_N Waveform Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{RESET}	RESET_N minimum pulse width		10			ns

9.5.1 Power Consumtion for Different Sleep Modes

Table 9-10.Power Consumption for Different Sleep Modes for AT32UC3B064, AT32UC3B0128, AT32UC3B0256,
AT32UC3B164, AT32UC3B1128, AT32UC3B1256

Mode	Conditions		Тур.	Unit
Active	 - CPU running a recursive Fibonacci Algorithm from f PLL0 at f MHz. - Voltage regulator is on. - XIN0: external clock. Xin1 Stopped. XIN32 stopped. 	0.3xf(MHz)+0.443	mA/MHz	
	 All peripheral clocks activated with a division by 8. GPIOs are inactive with internal pull-up, JTAG uncor up and Input pins are connected to GND 	nnected with external pull-		
	Same conditions at 60 MHz		18.5	mA
Idla	See Active mode conditions		0.117xf(MHz)+0.28	mA/MHz
lule	Same conditions at 60 MHz		7.3	mA
Frazan	See Active mode conditions		0.058xf(MHz)+0.115	mA/MHz
FIOZEII	Same conditions at 60 MHz		3.6	mA
Chandhu	See Active mode conditions		0.042xf(MHz)+0.115	mA/MHz
Standby	Same conditions at 60 MHz		2.7	mA
Stop	 CPU running in sleep mode XIN0, Xin1 and XIN32 are stopped. All peripheral clocks are desactived. GPIOs are inactive with internal pull-up, JTAG uncor up and Input pins are connected to GND. 	nnected with external pull-	37.8	μA
Deepstop	See Stop mode conditions		24.9	μA
Otatia		Voltage Regulator On	13.9	μA
Static	See Stop mode conditions	Voltage Regulator Off	8.9	μA

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < f_{PLL0} < 160 MHz and 10 MHz < f_{XIN0} < 12 MHz.

Table 9-11. Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512

Mode	Conditions	Тур.	Unit
Active	 CPU running a recursive Fibonacci Algorithm from flash and clocked from PLL0 at f MHz. Voltage regulator is on. XIN0: external clock. Xin1 Stopped. XIN32 stopped. All peripheral clocks activated with a division by 8. GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-up and Input pins are connected to GND 	0.359xf(MHz)+1.53	mA/MHz
	Same conditions at 60 MHz	24	mA
Idle	See Active mode conditions	0.146xf(MHz)+0.291	mA/MHz
	Same conditions at 60 MHz	9	mA

Figure 10-2. TQFP-48 package drawing

DRAWINGS NOT SCALED

0.102 max. LEAD COPLANARITY

DETAIL VIEW

SYMBOL	MIN	NOM	МАХ	NOTE
А			1.20	
A1	0.05		0.15	
A2	0.95		1.05	
с	0.09		0.20	
D/E	9.00 BSC			
D1/E1	7.00 BSC			
L	0.45		0.75	
b	0.17		0.27	
e	0.50 BSC			

Notes : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABC.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10mm maximum.

Device and Package Maximum Weight Table 10-5.

Weight	100 mg

Table 10-6. Package Characteristics

Moisture	Sensitivity	/ Level
monorune	OCHORINE	

Jedec J-STD-20D-MSL3

Table 10-7. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	e3

11. Ordering Information

Device	Ordering Code	Package	Conditioning	Temperature Operating Range
AT32UC3B0512	AT32UC3B0512-A2UES	TQFP 64	-	Industrial (-40°C to 85°C)
	AT32UC3B0512-A2UR	TQFP 64	Reel	Industrial (-40°C to 85°C)
	AT32UC3B0512-A2UT	TQFP 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B0512-Z2UES	QFN 64	-	Industrial (-40°C to 85°C)
	AT32UC3B0512-Z2UR	QFN 64	Reel	Industrial (-40°C to 85°C)
	AT32UC3B0512-Z2UT	QFN 64	Tray	Industrial (-40°C to 85°C)
AT32UC3B0256	AT32UC3B0256-A2UT	TQFP 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B0256-A2UR	TQFP 64	Reel	Industrial (-40°C to 85°C)
	AT32UC3B0256-Z2UT	QFN 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B0256-Z2UR	QFN 64	Reel	Industrial (-40°C to 85°C)
AT32UC3B0128	AT32UC3B0128-A2UT	TQFP 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B0128-A2UR	TQFP 64	Reel	Industrial (-40°C to 85°C)
	AT32UC3B0128-Z2UT	QFN 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B0128-Z2UR	QFN 64	Reel	Industrial (-40°C to 85°C)
AT32UC3B064	AT32UC3B064-A2UT	TQFP 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B064-A2UR	TQFP 64	Reel	Industrial (-40°C to 85°C)
	AT32UC3B064-Z2UT	QFN 64	Tray	Industrial (-40°C to 85°C)
	AT32UC3B064-Z2UR	QFN 64	Reel	Industrial (-40°C to 85°C)
AT32UC3B1512	AT32UC3B1512-Z1UT	QFN 48	-	Industrial (-40°C to 85°C)
	AT32UC3B1512-Z1UR	QFN 48	-	Industrial (-40°C to 85°C)
AT32UC3B1256	AT32UC3B1256-AUT	TQFP 48	Tray	Industrial (-40°C to 85°C)
	AT32UC3B1256-AUR	TQFP 48	Reel	Industrial (-40°C to 85°C)
	AT32UC3B1256-Z1UT	QFN 48	Tray	Industrial (-40°C to 85°C)
	AT32UC3B1256-Z1UR	QFN 48	Reel	Industrial (-40°C to 85°C)
AT32UC3B1128	AT32UC3B1128-AUT	TQFP 48	Tray	Industrial (-40°C to 85°C)
	AT32UC3B1128-AUR	TQFP 48	Reel	Industrial (-40°C to 85°C)
	AT32UC3B1128-Z1UT	QFN 48	Tray	Industrial (-40°C to 85°C)
	AT32UC3B1128-Z1UR	QFN 48	Reel	Industrial (-40°C to 85°C)
AT32UC3B164	AT32UC3B164-AUT	TQFP 48	Tray	Industrial (-40°C to 85°C)
	AT32UC3B164-AUR	TQFP 48	Reel	Industrial (-40°C to 85°C)
	AT32UC3B164-Z1UT	QFN 48	Tray	Industrial (-40°C to 85°C)
	AT32UC3B164-Z1UR	QFN 48	Reel	Industrial (-40°C to 85°C)

- Processor and Architecture

- LDM instruction with PC in the register list and without ++ increments Rp For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. Fix/Workaround None.
- 2. RETE instruction does not clear SREG[L] from interrupts The RETE instruction clears SREG[L] as expected from exceptions. Fix/Workaround
 When using the STCOND instruction, clear SREC[L] in the stacked value of

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

- 4. USART
- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.
- ISO7816 Mode T1: RX impossible after any TX RX impossible after any TX.
 Fix/Workaround SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware handshaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the RTS output high when the Peripheral DMA receive buffer becomes full, use the normal mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the USART Control Register (CR). This will drive the RTS output high. After the next DMA transfer is started and a receive buffer is available, write a one to the RTSEN bit in the USART CR so that RTS will be driven low.

8. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8 bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode. Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

2. When the main clock is RCSYS, TIMER CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER CLOCK5 is equal to PBA Clock and not PBA Clock / 128. Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going to a sleep mode where the system RC oscillator is turned off, then high speed clock sources will not be turned off. This will result in a significantly higher power consumption during the sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

14. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm resistor.

- OCD
- 1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz The auxiliary trace does not work for CPU/HSB speed higher than 50MHz. Fix/Workaround
 - Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions. **Fix/Workaround**

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is generally described as not safe in the UC technical reference manual, it is safe in this very specific case.

2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

5. USART

- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.
- 7. ISO7816 Mode T1: RX impossible after any TX RX impossible after any TX.
 Fix/Workaround SOFT RESET on RX+ Config US MR + Config US CR.

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode. Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

3. When the main clock is RCSYS, TIMER CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER CLOCK5 is equal to PBA Clock and not PBA Clock / 128. Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going to a sleep mode where the system RC oscillator is turned off, then high speed clock sources will not be turned off. This will result in a significantly higher power consumption during the sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

14. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm resistor.

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

- OCD

 The auxiliary trace does not work for CPU/HSB speed higher than 50MHz The auxiliary trace does not work for CPU/HSB speed higher than 50MHz. Fix/Workaround

Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions. **Fix/Workaround**

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is generally described as not safe in the UC technical reference manual, it is safe in this very specific case.

2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

5. USART

ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.

- SSC

1. SSC does not trigger RF when data is low

The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or RCMR respectively.

Fix/Workaround

Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the GPIO.

- USB

1. USB No end of host reset signaled upon disconnection

In host mode, in case of an unexpected device disconnection whereas a usb reset is being sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at the end of the reset.

Fix/Workaround

A software workaround consists in testing (by polling or interrupt) the disconnection (UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid being stuck.

2. USBFSM and UHADDR1/2/3 registers are not available

Do not use USBFSM register. **Fix/Workaround**

Do not use USBFSM register and use HCON[6:0] field instead for all the pipes.

- Cycle counter
 - CPU Cycle Counter does not reset the COUNT system register on COMPARE match. The device revision B does not reset the COUNT system register on COMPARE match. In this revision, the COUNT register is clocked by the CPU clock, so when the CPU clock stops, so does incrementing of COUNT. Fix/Workaround

None.

```
- ADC
```

ADC possible miss on DRDY when disabling a channel The ADC does not work properly when more than one channel is enabled. Fix/Workaround

Do not use the ADC with more than one channel enabled at a time.

ADC OVRE flag sometimes not reset on Status Register read The OVRE flag does not clear properly if read simultaneously to an end of conversion. Fix/Workaround None.

Sleep Mode activation needs additional A to D conversion If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion. Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

2. The command Quick Page Read User Page(QPRUP) is not functional The command Quick Page Read User Page(QPRUP) is not functional. Fix/Workaround

None.

- PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on revision B instead of WriteData[7:0], ByteAddress[2:0] PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on revision B instead of WriteData[7:0], ByteAddress[2:0]. Fix/Workaround None.
- 4. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), the following flash read access may return corrupted data. This erratum does not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from internal RAM. After the write operation, perform a dummy flash page write operation (FLASHC WP). Content and location of this page is not important and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It is then safe to read and fetch code from the flash.

5.

- RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock

Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock. **Fix/Workaround**

Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of four or more relative to the HSB clock.

2. The RTC CLKEN bit (bit number 16) of CTRL register is not available The RTC CLKEN bit (bit number 16) of CTRL register is not available. Fix/Workaround

Do not use the CLKEN bit of the RTC on Rev B.

- OCD

1. Stalled memory access instruction writeback fails if followed by a HW breakpoint Consider the following assembly code sequence:

A B

If a hardware breakpoint is placed on instruction B, and instruction A is a memory access instruction, register file updates from instruction A can be discarded.

Fix/Workaround

Do not place hardware breakpoints, use software breakpoints instead. Alternatively, place a hardware breakpoint on the instruction before the memory access instruction and then single step over the memory access instruction.

- Processor and Architecture

 Local Bus to fast GPIO not available on silicon Rev B Local bus is only available for silicon RevE and later. Fix/Workaround
 Do not use if silicon revision older than E

Do not use if silicon revision older than F.

2. Memory Protection Unit (MPU) is non functional Memory Protection Unit (MPU) is non functional. Fix/Workaround

Do not use the MPU.

3. Bus error should be masked in Debug mode

If a bus error occurs during debug mode, the processor will not respond to debug commands through the DINST register.

Fix/Workaround

A reset of the device will make the CPU respond to debug commands again.

4. Read Modify Write (RMW) instructions on data outside the internal RAM does not work

Read Modify Write (RMW) instructions on data outside the internal RAM does not work. **Fix/Workaround**

Do not perform RMW instructions on data outside the internal RAM.

5. Need two NOPs instruction after instructions masking interrupts

The instructions following in the pipeline the instruction masking the interrupt through SR may behave abnormally.

Fix/Workaround

Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR

6. Clock connection table on Rev B

Here is the table of Rev B

13. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

- 13.1 Rev. L- 01/2012
 - 1. Updated Mechanical Characteristics section.

13.2 Rev. K- 02/2011

- Updated USB section.
 Updated Configuration Summary section.
 Updated Electrical Characteristics section.
- 4. Updated Errata section.

13.3 Rev. J– 12/2010

- 1. Updated USB section.
- 2. Updated USART section.
- 3. Updated TWI section.
- 4. Updated PWM section.
- 5. Updated Electrical Characteristics section.

13.4 Rev. I – 06/2010

- 1. Updated SPI section.
- 2 Updated Electrical Characteristics section.

13.5 Rev. H - 10/2009

- 1. Update datasheet architecture.
- 2 Add AT32UC3B0512 and AT32UC3B1512 devices description.

