

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, IrDA, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b0256-z2ur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AT32UC3B

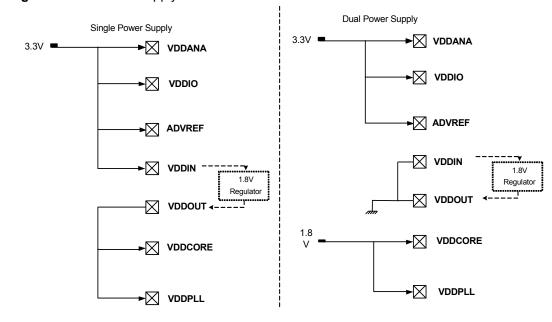


Figure 5-1. Power Supply

5.6.2 Voltage Regulator

5.6.2.1 Single Power Supply

The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. Two input decoupling capacitors must be placed close to the chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and GND as close to the chip as possible

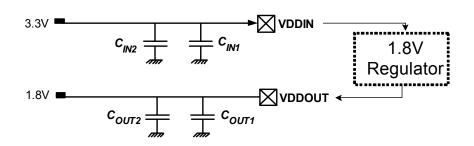
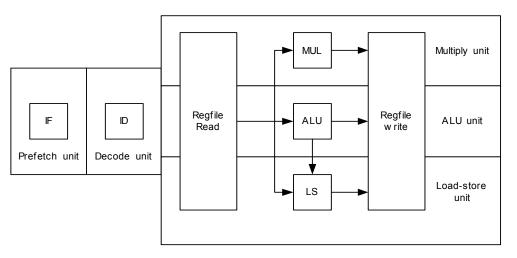


Figure 5-2. Supply Decoupling

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

6.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration hardware is not implemented.


AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the Memories chapter of this data sheet.

Figure 6-1 on page 19 displays the contents of AVR32UC.

Figure 6-2. The AVR32UC Pipeline

6.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

6.3.3 Java Support

AVR32UC does not provide Java hardware acceleration.

6.3.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

6.3.5 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

Fable 6-3. System Registers (Continued)				
Reg #	Address	Name	Function	
26	104	JAVA_LV3	Unused in AVR32UC	
27	108	JAVA_LV4	Unused in AVR32UC	
28	112	JAVA_LV5	Unused in AVR32UC	
29	116	JAVA_LV6	Unused in AVR32UC	
30	120	JAVA_LV7	Unused in AVR32UC	
31	124	JTBA	Unused in AVR32UC	
32	128	JBCR	Unused in AVR32UC	
33-63	132-252	Reserved	Reserved for future use	
64	256	CONFIG0	Configuration register 0	
65	260	CONFIG1	Configuration register 1	
66	264	COUNT	Cycle Counter register	
67	268	COMPARE	Compare register	
68	272	TLBEHI	Unused in AVR32UC	
69	276	TLBELO	Unused in AVR32UC	
70	280	PTBR	Unused in AVR32UC	
71	284	TLBEAR	Unused in AVR32UC	
72	288	MMUCR	Unused in AVR32UC	
73	292	TLBARLO	Unused in AVR32UC	
74	296	TLBARHI	Unused in AVR32UC	
75	300	PCCNT	Unused in AVR32UC	
76	304	PCNT0	Unused in AVR32UC	
77	308	PCNT1	Unused in AVR32UC	
78	312	PCCR	Unused in AVR32UC	
79	316	BEAR	Bus Error Address Register	
80	320	MPUAR0	MPU Address Register region 0	
81	324	MPUAR1	MPU Address Register region 1	
82	328	MPUAR2	MPU Address Register region 2	
83	332	MPUAR3	MPU Address Register region 3	
84	336	MPUAR4	MPU Address Register region 4	
85	340	MPUAR5	MPU Address Register region 5	
86	344	MPUAR6	MPU Address Register region 6	
87	348	MPUAR7	MPU Address Register region 7	
88	352	MPUPSR0	MPU Privilege Select Register region 0	
89	356	MPUPSR1	MPU Privilege Select Register region 1	
90	360	MPUPSR2	MPU Privilege Select Register region 2	
91	364	MPUPSR3	MPU Privilege Select Register region 3	

 Table 6-3.
 System Registers (Continued)

7. Memories

7.1 Embedded Memories

Internal High-Speed Flash

- 512KBytes (AT32UC3B0512, AT32UC3B1512)
- 256 KBytes (AT32UC3B0256, AT32UC3B1256)
- 128 KBytes (AT32UC3B0128, AT32UC3B1128)
- 64 KBytes (AT32UC3B064, AT32UC3B164)
 - 0 Wait State Access at up to 30 MHz in Worst Case Conditions
 - 1 Wait State Access at up to 60 MHz in Worst Case Conditions
 - - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding penalty of 1 wait state access
 - 100 000 Write Cycles, 15-year Data Retention Capability
 - - 4 ms Page Programming Time, 8 ms Chip Erase Time
 - Sector Lock Capabilities, Bootloader Protection, Security Bit
 - 32 Fuses, Erased During Chip Erase
 - User Page For Data To Be Preserved During Chip Erase
- Internal High-Speed SRAM, Single-cycle access at full speed
 - 96KBytes ((AT32UC3B0512, AT32UC3B1512)
 - 32KBytes (AT32UC3B0256, AT32UC3B0128, AT32UC3B1256 and AT32UC3B1128)
 - 16KBytes (AT32UC3B064 and AT32UC3B164)

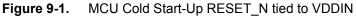
7.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented translation, as described in the AVR32UC Technical Architecture Manual. The 32-bit physical address space is mapped as follows:

Device		Embedded SRAM	Embedded Flash	USB Data	HSB-PB Bridge A	HSB-PB Bridge B
Start Address		0x0000_0000	0x8000_0000	0xD000_0000	0xFFFF_0000	0xFFFE_0000
	AT32UC3B0512 AT32UC3B1512	96 Kbytes	512 Kbytes	64 Kbytes	64 Kbytes	64 Kbytes
Size	AT32UC3B0256 AT32UC3B1256	32 Kbytes	256 Kbytes	64 Kbytes	64 Kbytes	64 Kbytes
	AT32UC3B0128 AT32UC3B1128	32 Kbytes	128 Kbytes	64 Kbytes	64 Kbytes	64 Kbytes
	AT32UC3B064 AT32UC3B164	16 Kbytes	64 Kbytes	64 Kbytes	64 Kbytes	64 Kbytes

7.3 Peripheral Address Map

Table 7-2. Peripheral Address Mapping


Address	o mapping	Peripheral Name
0xFFFE0000	USB	USB 2.0 Interface - USB
0xFFFE1000	HMATRIX	HSB Matrix - HMATRIX
0xFFFE1400	HFLASHC	Flash Controller - HFLASHC
0xFFFF0000	PDCA	Peripheral DMA Controller - PDCA
0xFFFF0800	INTC	Interrupt controller - INTC
0xFFFF0C00	PM	Power Manager - PM
0xFFFF0D00	RTC	Real Time Counter - RTC
0xFFFF0D30	WDT	Watchdog Timer - WDT
0xFFFF0D80	EIM	External Interrupt Controller - EIM
0xFFFF1000	GPIO	General Purpose Input/Output Controller - GPIO
0xFFFF1400	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter - USART0
0xFFFF1800	USART1	Universal Synchronous/Asynchronous Receiver/Transmitter - USART1
0xFFFF1C00	USART2	Universal Synchronous/Asynchronous Receiver/Transmitter - USART2
0xFFFF2400	SPI0	Serial Peripheral Interface - SPI0
0xFFFF2C00	TWI	Two-wire Interface - TWI
0xFFFF3000	PWM	Pulse Width Modulation Controller - PWM
0xFFFF3400	SSC	Synchronous Serial Controller - SSC
0xFFFF3800	TC	Timer/Counter - TC

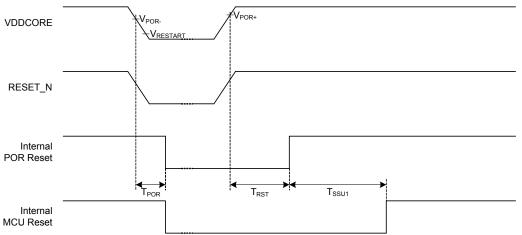
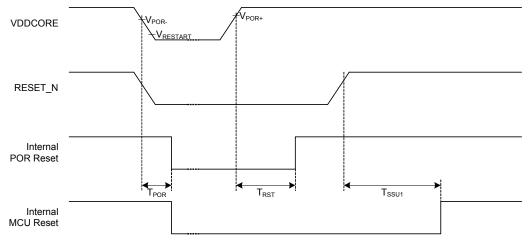
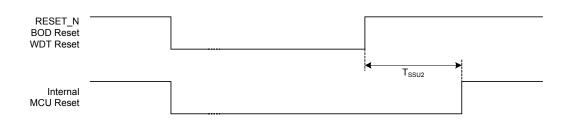


Table 9-1.DC Characteristics


Symbol	Parameter	Conditions			Min.	Тур.	Max.	Unit
		QFP64					7	pF
C	Input Consoltance	QFP48					7	pF
C _{IN}	Input Capacitance	QFN64					7	pF
		QFN48					7 7	pF
		AT32UC3B064 AT32UC3B0128 AT32UC3B0256	All I/O pins except RESET_N, TCK, T TMS pins		13	19	25	KΩ
	AT32UC3B164 AT32UC3B1128 AT32UC3B1256	RESET_N pin, TCI TMS pins	K, TDI,	5	12	25	KΩ	
R _{PULLUP}	Pull-up Resistance	AT32UC3B0512	All I/O pins except PA21, PA22, PA23 RESET_N, TCK, T TMS pins	,	10	15	20	KΩ
	AT32	AT32UC3B1512	PA20, PA21, PA22	, PA23	5	7.5	12	KΩ
			RESET_N pin, TC TMS pins	K, TDI,	5	10	25	KΩ
	AT32UC3B064 AT32UC3B0128 AT32UC3B0256 AT32UC3B154	On V _{VDDCORE} = 1.8V, device in static mode	T _A = 25°C		6		μΑ	
1	AT32UC3B1256 RESET N=1	42.5		μΑ				
I _{SC}	Static Current	AT32UC3B0512	On V _{VDDCORE} = 1.8V, device in static mode	T _A = 25°C		7.5	μΑ	
		AT32UC3B1512	All inputs driven including JTAG; RESET_N=1	T _A = 85°C		39		μA



VDDCORE

In dual supply configuration, the power up sequence must be carefully managed to ensure a safe startup of the device in all conditions.

The power up sequence must ensure that the internal logic is safely powered when the internal reset (Power On Reset) is released and that the internal Flash logic is safely powered when the CPU fetch the first instructions.

9.5.1 Power Consumtion for Different Sleep Modes

Table 9-10.Power Consumption for Different Sleep Modes for AT32UC3B064, AT32UC3B0128, AT32UC3B0256,
AT32UC3B164, AT32UC3B1128, AT32UC3B1256

Mode	Conditions		Тур.	Unit
	- CPU running a recursive Fibonacci Algorithm fr PLL0 at f MHz.			
	- Voltage regulator is on.			
Active	- XIN0: external clock. Xin1 Stopped. XIN32 stop		0.3xf(MHz)+0.443	mA/MHz
Active	- All peripheral clocks activated with a division by			
	- GPIOs are inactive with internal pull-up, JTAG u up and Input pins are connected to GND	inconnected with external pull-		
	Same conditions at 60 MHz		18.5	mA
1-11-	See Active mode conditions		0.117xf(MHz)+0.28	mA/MHz
Idle	Same conditions at 60 MHz		7.3	mA
F	See Active mode conditions		0.058xf(MHz)+0.115	mA/MHz
Frozen	Same conditions at 60 MHz		3.6	mA
Otau alla i	See Active mode conditions		0.042xf(MHz)+0.115	mA/MHz
Standby	Same conditions at 60 MHz		2.7	mA
	- CPU running in sleep mode			
	- XIN0, Xin1 and XIN32 are stopped.			
Stop	- All peripheral clocks are desactived.		37.8	μA
	- GPIOs are inactive with internal pull-up, JTAG u up and Input pins are connected to GND.	inconnected with external pull-		
Deepstop	See Stop mode conditions		24.9	μA
Chatia		Voltage Regulator On	13.9	μA
Static	See Stop mode conditions	Voltage Regulator Off	8.9	μA

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < f_{PLL0} < 160 MHz and 10 MHz < f_{XIN0} < 12 MHz.

Table 9-11. Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512

Mode	Conditions	Тур.	Unit
Active	- CPU running a recursive Fibonacci Algorithm from flash and clocked from PLL0 at f MHz.		
	- Voltage regulator is on.		
	- XIN0: external clock. Xin1 Stopped. XIN32 stopped.	0.359xf(MHz)+1.53	mA/MHz
	- All peripheral clocks activated with a division by 8.		
	- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull- up and Input pins are connected to GND		
	Same conditions at 60 MHz	24	mA
	See Active mode conditions	0.146xf(MHz)+0.291	mA/MHz
Idle	Same conditions at 60 MHz	9	mA

AT32UC3B

Mode	Conditions		Тур.	Unit	
Frozen	See Active mode conditions	0.0723xf(MHz)+0.15 6	mA/MHz		
	Same conditions at 60 MHz		4.5	mA	
See Active mode conditions			0.0537xf(MHz)+0.16 6	mA/MHz	
2	Same conditions at 60 MHz		3.4	mA	
Stop	 CPU running in sleep mode XIN0, Xin1 and XIN32 are stopped. All peripheral clocks are desactived. GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-up and Input pins are connected to GND. 		62	μA	
Deepstop	See Stop mode conditions		30	μA	
.		Voltage Regulator On	15.5		
Static	See Stop mode conditions Voltage Regulator Off		7.5	μA	

Table 9-11.	Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512
-------------	--

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < f_{PLL0} < 160 MHz and 10 MHz < f_{XIN0} < 12 MHz.

Table 9-12. Peripheral Interface Power Consumption in Active Mode

Peripheral	Conditions	Consumption	Unit
INTC		20	
GPIO		16	
PDCA	AT32UC3B064	12	
USART	AT32UC3B0128	14	
USB	AT32UC3B0256	23	
ADC	AT32UC3B164 AT32UC3B1128	8	
TWI	AT32UC3B1256	7	µA/MHz
PWM	AT32UC3B0512	18	
SPI	AT32UC3B1512	2UC3B1512 8	
SSC		11	
TC		11	
ABDAC	AT32UC3B0512 AT32UC3B1512	6	

9.6 System Clock Characteristics

These parameters are given in the following conditions:

- V_{DDCORE} = 1.8V
- Ambient Temperature = 25°C

9.6.1 CPU/HSB Clock Characteristics

Table 9-13. Core Clock Waveform Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1/(t _{CPCPU})	CPU Clock Frequency				60	MHz
t _{CPCPU}	CPU Clock Period		16.6			ns

9.6.2 PBA Clock Characteristics

Table 9-14. PBA Clock Waveform Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1/(t _{CPPBA})	PBA Clock Frequency				60	MHz
t _{CPPBA}	PBA Clock Period		16.6			ns

9.6.3 PBB Clock Characteristics

Table 9-15. PBB Clock Waveform Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1/(t _{CPPBB})	PBB Clock Frequency				60	MHz
t _{CPPBB}	PBB Clock Period		16.6			ns

9.7 Oscillator Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to 85°C and worst case of power supply, unless otherwise specified.

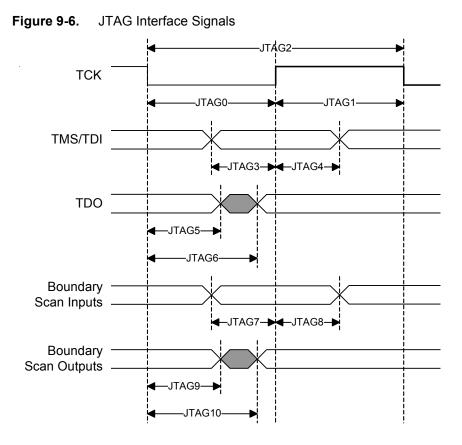
9.7.1 Slow Clock RC Oscillator

Table 9-16. RC Oscillator Frequency

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		Calibration point: $T_A = 85^{\circ}C$		115.2	116	KHz
F _{RC}	RC Oscillator Frequency	T _A = 25°C		112		KHz
		$T_A = -40^{\circ}C$	105	108		KHz

9.7.2 32 KHz Oscillator

Table 9-17. 32 KHz Oscillator Characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1//t \	Oppillator Fraguenov	External clock on XIN32			30	MHz
1/(t _{CP32KHz}) Oscillator Frequency	Crystal		32 768		Hz	
CL	Equivalent Load Capacitance		6		12.5	pF
ESR	Crystal Equivalent Series Resistance				100	KΩ
t _{st}	Startup Time	$C_L = 6pF^{(1)}$ $C_L = 12.5pF^{(1)}$			600 1200	ms
t _{CH}	XIN32 Clock High Half-period		0.4 t _{CP}		0.6 t _{CP}	
t _{CL}	XIN32 Clock Low Half-period		0.4 t _{CP}		0.6 t _{CP}	
C _{IN}	XIN32 Input Capacitance				5	pF
	Current Concurrentian	Active mode			1.8	μA
I _{OSC}	Current Consumption	Standby mode			0.1	μA

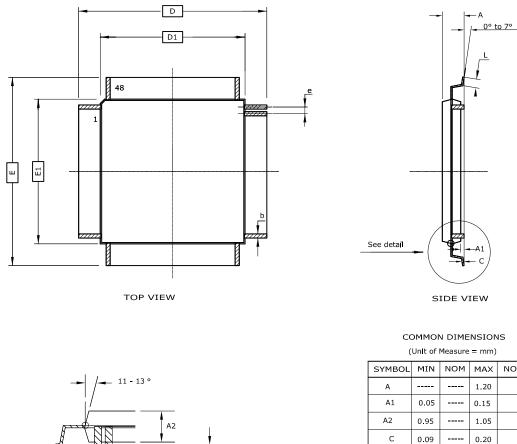
Note: 1. C_L is the equivalent load capacitance.

9.10 JTAG Characteristics

9.10.1 JTAG Timing

Table 9-26.JTAG Timings(1)

Symbol	Parameter	Conditions	Min	Max	Units
JTAG0	TCK Low Half-period		23.2		ns
JTAG1	TCK High Half-period		8.8		ns
JTAG2	TCK Period		32.0		ns
JTAG3	TDI, TMS Setup before TCK High	V _{VDDIO} from	3.9		ns
JTAG4	TDI, TMS Hold after TCK High	3.0V to 3.6V, maximum external	0.6		ns
JTAG5	TDO Hold Time		4.5		ns
JTAG6	TCK Low to TDO Valid	capacitor =		23.2	ns
JTAG7	Boundary Scan Inputs Setup Time	40pF	0		ns
JTAG8	Boundary Scan Inputs Hold Time		5.0		ns
JTAG9	Boundary Scan Outputs Hold Time		8.7		ns
JTAG10	TCK to Boundary Scan Outputs Valid			17.7	ns


Note:

 These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-cess technology. These values are not covered by test limits in production.

Figure 10-2. TQFP-48 package drawing

DRAWINGS NOT SCALED

0.102 max. LEAD COPLANARITY

DETAIL VIEW

SYMBOL	MIN	NOM	МАХ	NOTE
А			1.20	
A1	0.05		0.15	
A2	0.95	0.95 1.05		
с	0.09		0.20	
D/E	9.00 BSC			
D1/E1	7.00 BSC			
L	0.45 0.75			
b	0.17		0.27	
e	().50 BS0	2	

Notes : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABC.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10mm maximum.

Device and Package Maximum Weight Table 10-5.

		Weight	100 mg
--	--	--------	--------

Table 10-6. Package Characteristics

Jedec J-STD-20D-MSL3

Table 10-7. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	e3

will not be turned off. This will result in a significantly higher power consumption during the sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

15. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO. **Fix/Workaround**

Disable the OSC0 through the Power Manager (PM) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1Mohm resistor.

16. SSC

17. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when: TCMR.START = Receive Start, TCMR.STTDLY = more than ZERO, RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge, RFMR.FSOS = None (input). **Fix/Workaround** None.

18. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when: TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer TCMR.START = Receive start RFMR.FSOS = None (Input) RCMR.START = any on RF (edge/level) **Fix/Workaround** None.

19. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when: - Clock is CKDIV

- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START condition is performed on a generated frame synchro.

AT32UC3B

16. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO. **Fix/Workaround**

Disable the OSC0 through the Power Manager (PM) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1Mohm resistor.

17. SSC

18. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when: TCMR.START = Receive Start, TCMR.STTDLY = more than ZERO, RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge, RFMR.FSOS = None (input). **Fix/Workaround** None.

19. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when: TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer TCMR.START = Receive start RFMR.FSOS = None (Input) RCMR.START = any on RF (edge/level) **Fix/Workaround** None.

20. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when: - Clock is CKDIV

- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START condition is performed on a generated frame synchro.

21. USB

22. UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

2. Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral handshake of the active channel will stall and the PDCA will not do any more transfers on the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data

TWI in master mode will continue to read data on the line even if the shift register and the RHR register are full. This will generate an overrun error. **Fix/Workaround**

To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte before a STOP condition

In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP condition (what the master is not supposed to do), the following TWI slave receiver mode frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by resetting the TWI.

Fix/Workaround

If the TWI is used as a slave transmitter with a master that acknowledges the last data byte before a STOP condition, it is necessary to reset the TWI before entering slave receiver mode.

7. TC

8. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

- OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz The auxiliary trace does not work for CPU/HSB speed higher than 50MHz. Fix/Workaround

Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

12.2.2 Rev. G

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA.
- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

13. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

- 13.1 Rev. L- 01/2012
 - 1. Updated Mechanical Characteristics section.

13.2 Rev. K- 02/2011

- Updated USB section.
 Updated Configuration Summary section.
 Updated Electrical Characteristics section.
- 4. Updated Errata section.

13.3 Rev. J– 12/2010

- 1. Updated USB section.
- 2. Updated USART section.
- 3. Updated TWI section.
- 4. Updated PWM section.
- 5. Updated Electrical Characteristics section.

13.4 Rev. I – 06/2010

- 1. Updated SPI section.
- 2 Updated Electrical Characteristics section.

13.5 Rev. H - 10/2009

- 1. Update datasheet architecture.
- 2 Add AT32UC3B0512 and AT32UC3B1512 devices description.

13.12 Rev. A - 05/2007

1. Initial revision.

