

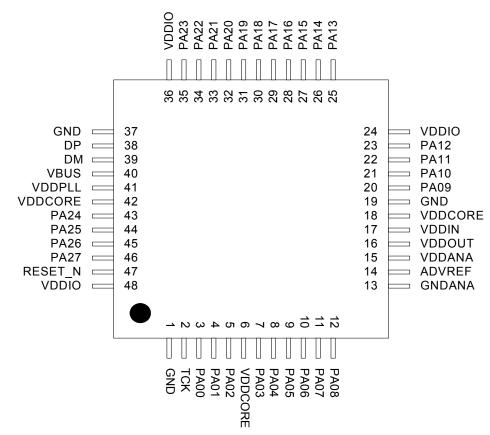
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, IrDA, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b0512-a2ur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4-2. TQFP48 / QFN48 Pinout

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

4.2 Peripheral Multiplexing on I/O lines

4.2.1 Multiplexed signals

Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D (D is only available for UC3Bx512 parts). The following table define how the I/O lines on the peripherals A, B,C or D are multiplexed by the GPIO.

48-pin	64-pin	PIN	GPIO Pin	Function A	Function B	Function C	Function D (only for UC3Bx512)
3	3	PA00	GPIO 0				
4	4	PA01	GPIO 1				
5	5	PA02	GPIO 2				
7	9	PA03	GPIO 3	ADC - AD[0]	PM - GCLK[0]	USBB - USB_ID	ABDAC - DATA[0]
8	10	PA04	GPIO 4	ADC - AD[1]	PM - GCLK[1]	USBB - USB_VBOF	ABDAC - DATAN[0]
9	11	PA05	GPIO 5	EIC - EXTINT[0]	ADC - AD[2]	USART1 - DCD	ABDAC - DATA[1]

 Table 4-1.
 GPIO Controller Function Multiplexing

Table 5-1. Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Comments
	Serial Peripheral In	terface - SPI0	·	·
MISO	Master In Slave Out	I/O		
MOSI	Master Out Slave In	I/O		
NPCS0 - NPCS3	SPI Peripheral Chip Select	I/O	Low	
SCK	Clock	Output		
	Synchronous Serial C	Controller - SS	С	
RX_CLOCK	SSC Receive Clock	I/O		
RX_DATA	SSC Receive Data	Input		
RX_FRAME_SYNC	SSC Receive Frame Sync	I/O		
TX_CLOCK	SSC Transmit Clock	I/O		
TX_DATA	SSC Transmit Data	Output		
TX_FRAME_SYNC	SSC Transmit Frame Sync	I/O		
	Timer/Counter	- TIMER	•	
A0	Channel 0 Line A	I/O		
A1	Channel 1 Line A	I/O		
A2	Channel 2 Line A	I/O		
В0	Channel 0 Line B	I/O		
B1	Channel 1 Line B	I/O		
B2	Channel 2 Line B	I/O		
CLK0	Channel 0 External Clock Input	Input		
CLK1	Channel 1 External Clock Input	Input		
CLK2	Channel 2 External Clock Input	Input		
	Two-wire Interf	ace - TWI		
SCL	Serial Clock	I/O		
SDA	Serial Data	I/O		
Uni	versal Synchronous Asynchronous Receive	r Transmitter -	USART0, U	ISART1, USART2
CLK	Clock	I/O		
СТЅ	Clear To Send	Input		

AT32UC3B

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000_0000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04	TLB multiple hit	MPU	
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50	ITLB Miss	MPU	
14	EVBA+0x18	ITLB Protection	MPU	PC of offending instruction
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60	DTLB Miss (Read)	MPU	
25	EVBA+0x70	DTLB Miss (Write)	MPU	
26	EVBA+0x3C	DTLB Protection (Read)	MPU	PC of offending instruction
27	EVBA+0x40	DTLB Protection (Write)	MPU	PC of offending instruction
28	EVBA+0x44	DTLB Modified	UNUSED	

Table 6-4. Priority and Handler Addresses for Events

6.6 Module Configuration

All AT32UC3B parts do not implement the same CPU and Architecture Revision.

Part Name	Architecture Revision
AT32UC3Bx512	2
AT32UC3Bx256	1
AT32UC3Bx128	1
AT32UC3Bx64	1

 Table 6-5.
 CPU and Architecture Revision

9.3 Regulator Characteristics

Table 9-2. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{VDDIN}	Supply voltage (input)		3	3.3	3.6	V
V _{VDDOUT}	Supply voltage (output)		1.70	1.8	1.85	V
I _{OUT}	Maximum DC output current	V _{VDDIN} = 3.3V			100	mA
I _{SCR}	Static Current of internal regulator	Low Power mode (stop, deep stop or static) at $T_A = 25^{\circ}C$		10		μA

Table 9-3. Decoupling Requirements

Symbol	Parameter	Conditions	Тур.	Technology	Unit
C _{IN1}	Input Regulator Capacitor 1		1	NPO	nF
C _{IN2}	Input Regulator Capacitor 2		4.7	X7R	μF
C _{OUT1}	Output Regulator Capacitor 1		470	NPO	pF
C _{OUT2}	Output Regulator Capacitor 2		2.2	X7R	μF

9.4 Analog Characteristics

9.4.1 ADC Reference

Table 9-4.Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{ADVREF}	Analog voltage reference (input)		2.6		3.6	V

Table 9-5. Decoupling Requirements

Symbol	Parameter	Conditions	Тур.	Technology	Unit
C _{VREF1}	Voltage reference Capacitor 1		10	NPO	nF
C _{VREF2}	Voltage reference Capacitor 2		1	NPO	uF

9.4.2 BOD

Table 9-6. BOD Level Values

Symbol	Parameter Value	Conditions	Min.	Тур.	Max.	Unit
	00 0000b			1.44		V
	01 0111b			1.52		V
BODLEVEL	01 1111b			1.61		V
	10 0111b			1.71		V

Table 9-6 describes the values of the BODLEVEL field in the flash FGPFR register.

9.5.1 Power Consumtion for Different Sleep Modes

Table 9-10.Power Consumption for Different Sleep Modes for AT32UC3B064, AT32UC3B0128, AT32UC3B0256,
AT32UC3B164, AT32UC3B1128, AT32UC3B1256

Mode	Conditions		Тур.	Unit
	- CPU running a recursive Fibonacci Algorithm fr PLL0 at f MHz.	om flash and clocked from		
	- Voltage regulator is on.			
Active	- XIN0: external clock. Xin1 Stopped. XIN32 stop		0.3xf(MHz)+0.443	mA/MHz
Active	- All peripheral clocks activated with a division by			
	- GPIOs are inactive with internal pull-up, JTAG u up and Input pins are connected to GND	inconnected with external pull-		
	Same conditions at 60 MHz		18.5	mA
1-11-	See Active mode conditions		0.117xf(MHz)+0.28	mA/MHz
Idle	Same conditions at 60 MHz		7.3	mA
F	See Active mode conditions		0.058xf(MHz)+0.115	mA/MHz
Frozen	Same conditions at 60 MHz		3.6	mA
Ota is allow	See Active mode conditions		0.042xf(MHz)+0.115	mA/MHz
Standby	Same conditions at 60 MHz		2.7	mA
	- CPU running in sleep mode			
	- XIN0, Xin1 and XIN32 are stopped.			
Stop	- All peripheral clocks are desactived.		18.5 0.117xf(MHz)+0.28 7.3 0.058xf(MHz)+0.115 3.6 0.042xf(MHz)+0.115	μA
	- GPIOs are inactive with internal pull-up, JTAG u up and Input pins are connected to GND.	inconnected with external pull-		
Deepstop	See Stop mode conditions		24.9	μA
Chatia		Voltage Regulator On	13.9	μA
Static	See Stop mode conditions	Voltage Regulator Off	8.9	μA

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < f_{PLL0} < 160 MHz and 10 MHz < f_{XIN0} < 12 MHz.

Table 9-11. Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512

Mode	Conditions	Тур.	Unit
	- CPU running a recursive Fibonacci Algorithm from flash and clocked from PLL0 at f MHz.		
	- Voltage regulator is on. - XIN0: external clock, Xin1 Stopped, XIN32 stopped, 0.3		
Active	- XIN0: external clock. Xin1 Stopped. XIN32 stopped.	0.359xf(MHz)+1.53	mA/MHz
	- All peripheral clocks activated with a division by 8.		
	- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull- up and Input pins are connected to GND		
	Same conditions at 60 MHz	24	mA
امام	See Active mode conditions	0.146xf(MHz)+0.291	mA/MHz
Idle	Same conditions at 60 MHz	9	mA

AT32UC3B

Mode	Conditions		Тур.	Unit
Frozen	See Active mode conditions		0.0723xf(MHz)+0.15 6	mA/MHz
	Same conditions at 60 MHz		4.5	mA
Standby	See Active mode conditions		0.0537xf(MHz)+0.16 6	mA/MHz
	Same conditions at 60 MHz		3.4	mA
Stop	 CPU running in sleep mode XIN0, Xin1 and XIN32 are stopped. All peripheral clocks are desactived. GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-up and Input pins are connected to GND. 		62	μA
Deepstop	See Stop mode conditions		30	μA
Static		Voltage Regulator On	15.5	μA
	See Stop mode conditions	Voltage Regulator Off	7.5	

Table 9-11.	Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512
-------------	--

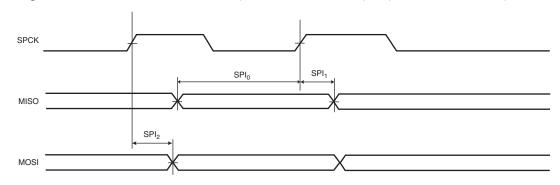
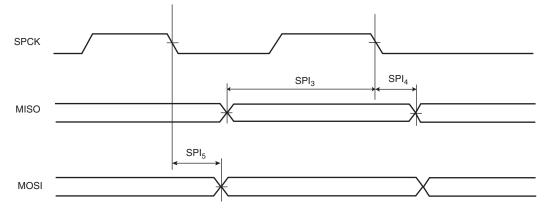
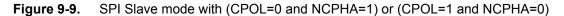

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < f_{PLL0} < 160 MHz and 10 MHz < f_{XIN0} < 12 MHz.

Table 9-12. Peripheral Interface Power Consumption in Active Mode

Peripheral	Conditions	Consumption	Unit
INTC		20	
GPIO		16	
PDCA	AT32UC3B064	AT32UC3B064 12	
USART	AT32UC3B0128	14	
USB	AT32UC3B0256	AT32UC3B164 8	_
ADC	AT32UC3B164 AT32UC3B1128		
TWI	AT32UC3B1256	7	µA/MHz
PWM	AT32UC3B0512		
SPI	AT32UC3B1512	8	
SSC		11	
TC		11	
ABDAC	AT32UC3B0512 AT32UC3B1512	6	




9.11 SPI Characteristics

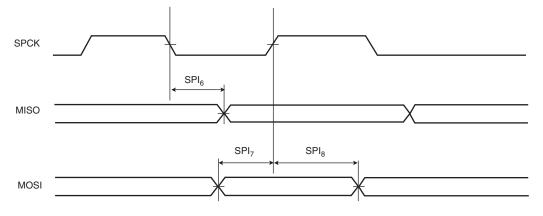
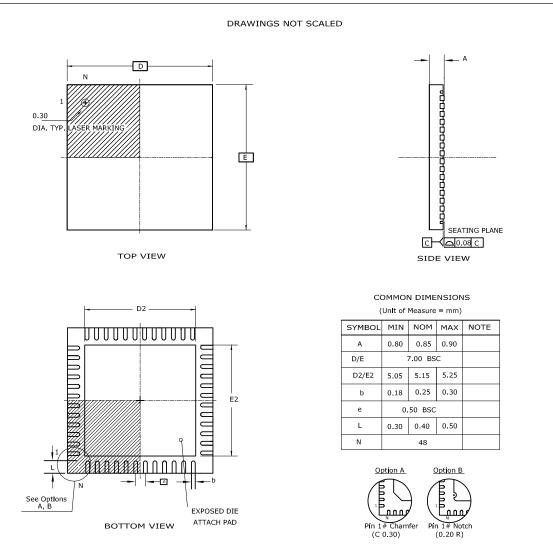


Figure 9-7. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 9-8. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)



AT32UC3B

Figure 10-4. QFN-48 package drawing

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-220, Variation VKKD-4, for proper dimensions, tolerances, datums, etc. 2. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optical radius on the other end of the terminal, the dimension should not be measured in that radius area.

Table 10-11.	Device and Package	Maximum Weight
	Borloo ana i dollago	maximum mongrit

5		
Weight	100 mg	
Table 10-12. Package Characteristics		
Moisture Sensitivity Level	Jedec J-STD-20D-MSL3	
Table 10-13. Package Reference		
JEDEC Drawing Reference	M0-220	
JESD97 Classification	e3	

12. Errata

12.1 AT32UC3B0512, AT32UC3B1512

12.1.1 Rev D

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission. **Fix/Workaround**

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. TC

8. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

RETE instruction does not clear SREG[L] from interrupts The RETE instruction clears SREG[L] as expected from exceptions. Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

- 4. USART
- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.
- ISO7816 Mode T1: RX impossible after any TX RX impossible after any TX.
 Fix/Workaround SOFT_RESET on RX+ Config US_MR + Config_US_CR.
- 7. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware handshaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the RTS output high when the Peripheral DMA receive buffer becomes full, use the normal mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

12.1.2 Rev C

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA.
- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

- Processor and Architecture

- LDM instruction with PC in the register list and without ++ increments Rp For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. Fix/Workaround None.
- 2. RETE instruction does not clear SREG[L] from interrupts The RETE instruction clears SREG[L] as expected from exceptions. Fix/Workaround
 When using the STCOND instruction, clear SREC[L] in the stacked value of

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

- 4. USART
- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.
- ISO7816 Mode T1: RX impossible after any TX RX impossible after any TX.
 Fix/Workaround SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware handshaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the RTS output high when the Peripheral DMA receive buffer becomes full, use the normal mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the USART Control Register (CR). This will drive the RTS output high. After the next DMA transfer is started and a receive buffer is available, write a one to the RTSEN bit in the USART CR so that RTS will be driven low.

8. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8 bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

even if the frame is correct and the USART has been disabled, reset by a soft reset and reenabled.

Fix/Workaround None.

9. USART slave synchronous mode external clock must be at least 9 times lower in frequency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the frequency of the signal provided on CLK must be at least 9 times lower than CLK_USART. **Fix/Workaround**

When the USART is operating in slave synchronous mode with an external clock, provide a signal on CLK that has a frequency at least 9 times lower than CLK_USART.

10. HMATRIX

11. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits. The unused bits are undefined when reading the registers. **Fix/Workaround**

Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), the following flash read access may return corrupted data. This erratum does not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from internal RAM. After the write operation, perform a dummy flash page write operation (FLASHC WP). Content and location of this page is not important and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It is then safe to read and fetch code from the flash.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode. Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

2. When the main clock is RCSYS, TIMER CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER CLOCK5 is equal to PBA Clock and not PBA Clock / 128. Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going to a sleep mode where the system RC oscillator is turned off, then high speed clock sources will not be turned off. This will result in a significantly higher power consumption during the sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

14. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm resistor.

- OCD
- 1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz The auxiliary trace does not work for CPU/HSB speed higher than 50MHz. Fix/Workaround
 - Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions. **Fix/Workaround**

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is generally described as not safe in the UC technical reference manual, it is safe in this very specific case.

2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

5. USART

- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.
- 7. ISO7816 Mode T1: RX impossible after any TX RX impossible after any TX.
 Fix/Workaround SOFT RESET on RX+ Config US MR + Config US CR.

12.2.3 Rev. F

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA.
- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

2. The command Quick Page Read User Page(QPRUP) is not functional The command Quick Page Read User Page(QPRUP) is not functional. Fix/Workaround

None.

- PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on revision B instead of WriteData[7:0], ByteAddress[2:0] PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on revision B instead of WriteData[7:0], ByteAddress[2:0]. Fix/Workaround None.
- 4. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), the following flash read access may return corrupted data. This erratum does not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from internal RAM. After the write operation, perform a dummy flash page write operation (FLASHC WP). Content and location of this page is not important and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It is then safe to read and fetch code from the flash.

5.

- RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock

Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock. **Fix/Workaround**

Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of four or more relative to the HSB clock.

2. The RTC CLKEN bit (bit number 16) of CTRL register is not available The RTC CLKEN bit (bit number 16) of CTRL register is not available. Fix/Workaround

Do not use the CLKEN bit of the RTC on Rev B.

it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very specific case. 2. Execute the RETE instruction.

13.6 Rev. G - 06/2009

	1. 2	Open Drain Mode removed from GPIO section. Updated Errata section.
13.7	Rev. F – 04/2008	
	1.	Updated Errata section.
13.8	Rev. E – 12/2007	
	1.	Updated Memory Protection section.
13.9	Rev. D – 11/2007	
	1.	Updated Processor Architecture section.
	2.	Updated Electrical Characteristics section.
13.10	Rev. C – 10/2007	
	1.	Updated Features sections.
	2.	Updated block diagram with local bus figure
	3.	Add schematic for HMatrix master/slave connection.
	4.	Updated Features sections with local bus.
	5.	Added SPI feature to USART section.
	6.	Updated USBB section.
	7.	Updated ADC trigger selection in ADC section.
	8.	Updated JTAG and Boundary Scan section with programming procedure.
	9.	Add description for silicon revision D
13.11	Rev. B – 07/2007	

- 1. Updated registered trademarks
- 2. Updated address page.