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Figure 4-2. TQFP48 / QFN48 Pinout

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to 
increase board level reliability.

4.2 Peripheral Multiplexing on I/O lines

4.2.1 Multiplexed signals
Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D (D is only avail-
able for UC3Bx512 parts). The following table define how the I/O lines on the peripherals A, B,C
or D are multiplexed by the GPIO.
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Table 4-1. GPIO Controller Function Multiplexing

48-pin 64-pin PIN GPIO Pin Function A Function B Function C
Function D

(only for UC3Bx512)

3 3 PA00 GPIO 0

4 4 PA01 GPIO 1

5 5 PA02 GPIO 2

7 9 PA03 GPIO 3 ADC - AD[0] PM - GCLK[0] USBB - USB_ID ABDAC - DATA[0]

8 10 PA04 GPIO 4 ADC - AD[1] PM - GCLK[1] USBB - USB_VBOF ABDAC - DATAN[0]

9 11 PA05 GPIO 5 EIC - EXTINT[0] ADC - AD[2] USART1 - DCD ABDAC - DATA[1]
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Figure 5-1. Power Supply

5.6.2 Voltage Regulator

5.6.2.1 Single Power Supply
The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be exter-
nally connected to the 1.8V domains. 

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

Figure 5-2. Supply Decoupling
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The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

6.3 The AVR32UC CPU
The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the Memories
chapter of this data sheet.

Figure 6-1 on page 19 displays the contents of AVR32UC.
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The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

6.3.6 Unimplemented Instructions
The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

• All SIMD instructions
• All coprocessor instructions if no coprocessors are present
• retj, incjosp, popjc, pushjc
• tlbr, tlbs, tlbw
• cache

6.3.7 CPU and Architecture Revision
Three major revisions of the AVR32UC CPU currently exist. 

The Architecture Revision field in the CONFIG0 system register identifies which architecture
revision is implemented in a specific device. 

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Table 6-1. Instructions with Unaligned Reference Support

Instruction Supported alignment

ld.d Word

st.d Word
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6.4 Programming Model

6.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 6-3. The AVR32UC Register File

6.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 6-4 on
page 22 and Figure 6-5 on page 23. The lower word contains the C, Z, N, V, and Q condition
code flags and the R, T, and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 6-4. The Status Register High Halfword
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7. Memories 

7.1 Embedded Memories
• Internal High-Speed Flash

– 512KBytes (AT32UC3B0512, AT32UC3B1512)
– 256 KBytes (AT32UC3B0256, AT32UC3B1256)
– 128 KBytes (AT32UC3B0128, AT32UC3B1128)
– 64 KBytes (AT32UC3B064, AT32UC3B164)

• - 0 Wait State Access at up to 30 MHz in Worst Case Conditions
• - 1 Wait State Access at up to 60 MHz in Worst Case Conditions
• - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, 

hiding penalty of 1 wait state access
• - 100 000 Write Cycles, 15-year Data Retention Capability
• - 4 ms Page Programming Time, 8 ms Chip Erase Time
• - Sector Lock Capabilities, Bootloader Protection, Security Bit
• - 32 Fuses, Erased During Chip Erase
• - User Page For Data To Be Preserved During Chip Erase

• Internal High-Speed SRAM, Single-cycle access at full speed
– 96KBytes ((AT32UC3B0512, AT32UC3B1512)
– 32KBytes (AT32UC3B0256, AT32UC3B0128, AT32UC3B1256 and AT32UC3B1128)
– 16KBytes (AT32UC3B064 and AT32UC3B164)

7.2 Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented
translation, as described in the AVR32UC Technical Architecture Manual. The 32-bit physical
address space is mapped as follows:

Table 7-1. AT32UC3B Physical Memory Map

Device Embedded 
SRAM

Embedded 
Flash USB Data

HSB-PB 
Bridge A

HSB-PB 
Bridge B

Start Address 0x0000_0000 0x8000_0000 0xD000_0000 0xFFFF_0000 0xFFFE_0000

Size

AT32UC3B0512
AT32UC3B1512

96 Kbytes 512 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B0256
AT32UC3B1256

32 Kbytes 256 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B0128 
AT32UC3B1128 

32 Kbytes 128 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B064
AT32UC3B164

16 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes
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9.2 DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.
Table 9-1. DC Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VVDDCORE DC Supply Core 1.65 1.95 V

VVDDPLL DC Supply PLL 1.65 1.95 V

VVDDIO DC Supply Peripheral I/Os 3.0 3.6 V

VIL Input Low-level Voltage -0.3 +0.8 V

VIH Input High-level Voltage

AT32UC3B064
AT32UC3B0128
AT32UC3B0256
AT32UC3B164
AT32UC3B1128
AT32UC3B1256

All I/O pins except TCK, 
RESET_N, PA03, PA04, 
PA05, PA06, PA07, PA08, 
PA11, PA12, PA18, PA19, 
PA28, PA29, PA30, PA31

2.0 5.5 V

TCK, RESET_N, PA03, 
PA04, PA05, PA06, PA07, 
PA08, PA11, PA12, PA18, 
PA19, PA28, PA29, PA30, 
PA31

2.0 3.6 V

AT32UC3B0512
AT32UC3B1512

All I/O pins except TCK, 
RESET_N, PA03, PA04, 
PA05, PA06, PA07, PA08, 
PA11, PA12, PA18, PA19, 
PA28, PA29, PA30, PA31

2.0 5.5 V

TCK, RESET_N 2.5 3.6 V

PA03, PA04, PA05, PA06, 
PA07, PA08, PA11, PA12, 
PA18, PA19, PA28, PA29, 
PA30, PA31

2.0 3.6 V

VOL Output Low-level Voltage
IOL= -4mA for all I/O except PA20, PA21, PA22, 
PA23 0.4 V

IOL= -8mA for PA20, PA21, PA22, PA23 0.4 V

VOH Output High-level Voltage

IOL= -4mA for all I/O except PA20, PA21, PA22, 
PA23

VVDDIO
-0.4 V

IOL= -8mA for PA20, PA21, PA22, PA23 VVDDIO
-0.4 V

IOL Output Low-level Current
All I/O pins except PA20, PA21, PA22, PA23 -4 mA

PA20, PA21, PA22, PA23 -8 mA

IOH Output High-level Current
All I/O pins except for PA20, PA21, PA22, 
PA23 4 mA

PA20, PA21, PA22, PA23 8 mA

ILEAK Input Leakage Current Pullup resistors disabled 1 µA
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9.4.3 Reset Sequence

Table 9-7. BOD Timing

Symbol Parameter Conditions Min. Typ. Max. Unit

TBOD
Minimum time with VDDCORE < 
VBOD to detect power failure Falling VDDCORE from 1.8V to 1.1V 300 800 ns

Table 9-8. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VDDRR
VDDCORE rise rate to ensure power-
on-reset 2.5 V/ms

VDDFR
VDDCORE fall rate to ensure power-
on-reset 0.01 400 V/ms

VPOR+

Rising threshold voltage: voltage up 
to which device is kept under reset by 
POR on rising VDDCORE

Rising VDDCORE:
VRESTART -> VPOR+

1.4 1.55 1.65 V

VPOR-

Falling threshold voltage: voltage 
when POR resets device on falling 
VDDCORE

Falling VDDCORE:
1.8V -> VPOR+

1.2 1.3 1.4 V

VRESTART

On falling VDDCORE, voltage must 
go down to this value before supply 
can rise again to ensure reset signal 
is released at VPOR+

Falling VDDCORE:
1.8V -> VRESTART

-0.1 0.5 V

TPOR
Minimum time with VDDCORE < 
VPOR-

Falling VDDCORE:
1.8V -> 1.1V 15 µs

TRST
Time for reset signal to be propagated 
to system 200 400 µs

TSSU1

Time for Cold System Startup: Time 
for CPU to fetch its first instruction 
(RCosc not calibrated)

480 960 µs

TSSU2

Time for Hot System Startup: Time for 
CPU to fetch its first instruction 
(RCosc calibrated)

420 µs
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9.10 JTAG Characteristics

9.10.1 JTAG Timing

Figure 9-6. JTAG Interface Signals

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers 
manufactured in the same pro-cess technology. These values are not covered by test limits in 
production.
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Table 9-26. JTAG Timings(1)

Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period

VVDDIO from 
3.0V to 3.6V, 

maximum 
external 

capacitor = 
40pF

23.2 ns

JTAG1 TCK High Half-period 8.8 ns

JTAG2 TCK Period 32.0 ns

JTAG3 TDI, TMS Setup before TCK High 3.9 ns

JTAG4 TDI, TMS Hold after TCK High 0.6 ns

JTAG5 TDO Hold Time 4.5 ns

JTAG6 TCK Low to TDO Valid 23.2 ns

JTAG7 Boundary Scan Inputs Setup Time 0 ns

JTAG8 Boundary Scan Inputs Hold Time 5.0 ns

JTAG9 Boundary Scan Outputs Hold Time 8.7 ns

JTAG10 TCK to Boundary Scan Outputs Valid 17.7 ns
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10.3 Soldering Profile
Table 10-14 gives the recommended soldering profile from J-STD-20.

Note: It is recommended to apply a soldering temperature higher than 250°C.
A maximum of three reflow passes is allowed per component.

Table 10-14. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/s

Preheat Temperature 175°C ±25°C Min. 150°C, Max. 200°C

Temperature Maintained Above 217°C 60-150s

Time within 5⋅C of Actual Peak Temperature 30s

Peak Temperature Range 260°C

Ramp-down Rate 6°C/s

Time 25⋅C to Peak Temperature Max. 8mn
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20. USB

21.  UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).
Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token. 

-  ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion. 

-  PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID
Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel. 

2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error. 

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read. 

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready. 

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode. 
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8. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST). 

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS. 

10. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA. 

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.
Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD. 

13. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128. 
Fix/Workaround
None. 

14. VDDCORE power supply input needs to be 1.95V
When used in dual power supply, VDDCORE needs to be 1.95V. 
Fix/Workaround
When used in single power supply, VDDCORE needs to be connected to VDDOUT, which is
configured on revision C at 1.95V (typ.). 

15. Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources
will not be turned off. This will result in a significantly higher power consumption during the
sleep mode.
Fix/Workaround
Before going to sleep modes where the system RC oscillator is stopped, make sure that the
factor between the CPU/HSB and PBx frequencies is less than or equal to 4. 
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14. SSC

15. Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:
TCMR.START = Receive Start,
TCMR.STTDLY = more than ZERO,
RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,
RFMR.FSOS = None (input).
Fix/Workaround
None. 

16. TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:
TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer
TCMR.START = Receive start
RFMR.FSOS = None (Input)
RCMR.START = any on RF (edge/level)
Fix/Workaround
None. 

17. Frame Synchro and Frame Synchro Data are delayed by one clock cycle
The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:
- Clock is CKDIV
- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)
Fix/Workaround
Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START
condition is performed on a generated frame synchro. 

18. USB

19.  UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).
Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token. 

-  ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion. 

-  PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID
Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel. 
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-  Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None. 

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE. 

3. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode. 

4. USART

5. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None. 

6. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR. 

7. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low. 

8. Corruption after receiving too many bits in SPI slave mode
If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8
bits) by the SPI master, an error occurs. After that, the next reception may be corrupted
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12.2.2 Rev. G

-  PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled. 

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period. 

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0. 

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none. 

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0. 

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected. 
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15. SSC

16. Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:
TCMR.START = Receive Start,
TCMR.STTDLY = more than ZERO,
RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,
RFMR.FSOS = None (input).
Fix/Workaround
None. 

17. TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:
TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer
TCMR.START = Receive start
RFMR.FSOS = None (Input)
RCMR.START = any on RF (edge/level)
Fix/Workaround
None. 

18. Frame Synchro and Frame Synchro Data are delayed by one clock cycle
The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:
- Clock is CKDIV
- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)
Fix/Workaround
Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START
condition is performed on a generated frame synchro. 

19. USB

20.  UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).
Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token. 

-  ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion. 

-  PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID
Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel. 



90
32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error. 

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read. 

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready. 

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode. 

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant: PA29 and PA30.
Fix/Workaround
None. 

9. Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant
Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20,
PB21, PB22, PB23, PB27, PB28.
Fix/Workaround
None. 

10. TC

11. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
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SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values. 

-  OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz
The auxiliary trace does not work for CPU/HSB speed higher than 50MHz.
Fix/Workaround
Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz. 

-  Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None. 

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE. 

3. RETS behaves incorrectly when MPU is enabled
RETS behaves incorrectly when MPU is enabled and MPU is configured so that system
stack is not readable in unprivileged mode.
Fix/Workaround
Make system stack readable in unprivileged mode, or return from supervisor mode using
rete instead of rets. This requires:
1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the
mode bits to the desired value must be done using a single mtsr instruction so it is done
atomically. Even if this step is generally described as not safe in the UC technical reference
manual, it is safe in this very specific case.
2. Execute the RETE instruction. 

4. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode. 

5. USART

6. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None. 
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and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash. 

-  DSP Operations

1. Hardware breakpoints may corrupt MAC results
Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC
instruction.
Fix/Workaround
Place breakpoints on earlier or later instructions. 
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