
Microchip Technology - AT32UC3B0512-Z2UR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 60MHz

Connectivity I²C, IrDA, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 44

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 96K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b0512-z2ur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3b0512-z2ur-4386420
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4
32059L–AVR32–01/2012

AT32UC3B

2. Overview

2.1 Blockdiagram

Figure 2-1. Block diagram

TIMER/COUNTER

INTERRUPT
CONTROLLER

REAL TIME
COUNTER

PERIPHERAL
DMA

CONTROLLER

HSB-PB
BRIDGE B

HSB-PB
BRIDGE A

S

M M M

S

S

M

EXTERNAL
INTERRUPT

CONTROLLER

HIGH SPEED
BUS MATRIX

G
E

N
E

R
AL

 P
U

R
P

O
S

E
 IO

s

G
E

N
E

R
A

L
P

U
R

P
O

S
E

 IO
s

PA
PB

A[2..0]
B[2..0]

CLK[2..0]

EXTINT[7..0]
KPS[7..0]

NMI

GCLK[3..0]

XIN32
XOUT32

XIN0

XOUT0

PA
PB

RESET_N

32 KHz
OSC

115 kHz
RCOSC

OSC0

PLL0

SERIAL
PERIPHERAL
INTERFACE

TWO-WIRE
INTERFACE

P
D

C
PD

C

MISO, MOSI

NPCS[3..0]

SCL

SDA

USART1

PD
C

RXD
TXD
CLK

RTS, CTS
DSR, DTR, DCD, RI

USART0
USART2P

D
C

RXD
TXD
CLK

RTS, CTS

SYNCHRONOUS
SERIAL

CONTROLLER

P
D

C

TX_CLOCK, TX_FRAME_SYNC

RX_DATA

TX_DATA

RX_CLOCK, RX_FRAME_SYNC

ANALOG TO
DIGITAL

CONVERTER

P
D

C

AD[7..0]

ADVREF

WATCHDOG
TIMER

XIN1

XOUT1
OSC1

PLL1

SCK

JTAG
INTERFACE

MCKO
MDO[5..0]

MSEO[1..0]
EVTI_N

TCK

TDO
TDI
TMS

POWER
MANAGER

RESET
CONTROLLER

SLEEP
CONTROLLER

CLOCK
CONTROLLER

CLOCK
GENERATOR

CONFIGURATION REGISTERS BUS

PB

PB

HSBHSB

S FL
A

S
H

C
O

N
TR

O
LL

E
R

M
S

USB
INTERFACE

DMA

ID
VBOF

VBUS

D-
D+

EVTO_N

AVR32 UC
CPUNEXUS

CLASS 2+
OCD

INSTR
INTERFACE

DATA
INTERFACE M

E
M

O
R

Y
IN

TE
R

FA
C

E FAST GPIO

16/32/96 KB
 SRAM

MEMORY PROTECTION UNIT

LOCAL BUS
INTERFACE

AUDIO
BITSTREAM

DAC

P
D

C DATA[1..0]

DATAN[1..0]

PULSE WIDTH
MODULATION
CONTROLLER

PWM[6..0]

64/128/
256/512 KB

FLASH

5
32059L–AVR32–01/2012

AT32UC3B

3. Configuration Summary
The table below lists all AT32UC3B memory and package configurations:

Table 3-1. Configuration Summary

Feature AT32UC3B0512 AT32UC3B0256/128/64 AT32UC3B1512 AT32UC3B1256/128/64

Flash 512 KB 256/128/64 KB 512 KB 256/128/64 KB

SRAM 96KB 32/32/16KB 96KB 32/16/16KB

GPIO 44 28

External Interrupts 8 6

TWI 1

USART 3

Peripheral DMA Channels 7

SPI 1

Full Speed USB Mini-Host + Device Device

SSC 1 0

Audio Bitstream DAC 1 0 1 0

Timer/Counter Channels 3

PWM Channels 7

Watchdog Timer 1

Real-Time Clock Timer 1

Power Manager 1

Oscillators

PLL 80-240 MHz (PLL0/PLL1)
Crystal Oscillators 0.4-20 MHz (OSC0)

Crystal Oscillator 32 KHz (OSC32K)
RC Oscillator 115 kHz (RCSYS)

Crystal Oscillators 0.4-20 MHz (OSC1)

10-bit ADC
number of channels

8 6

JTAG 1

Max Frequency 60 MHz

Package TQFP64, QFN64 TQFP48, QFN48

10
32059L–AVR32–01/2012

AT32UC3B

4.3 High Drive Current GPIO
Ones of GPIOs can be used to drive twice current than other GPIO capability (see Electrical
Characteristics section).

5. Signals Description
The following table gives details on the signal name classified by peripheral.

Table 4-4. Oscillator pinout

QFP48 pin QFP64 pin Pad Oscillator pin

30 39 PA18 XIN0

41 PA28 XIN1

22 30 PA11 XIN32

31 40 PA19 XOUT0

42 PA29 XOUT1

23 31 PA12 XOUT32

Table 4-5. High Drive Current GPIO

GPIO Name

PA20

PA21

PA22

PA23

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

Power

VDDPLL PLL Power Supply Power
Input 1.65V to 1.95 V

VDDCORE Core Power Supply Power
Input 1.65V to 1.95 V

VDDIO I/O Power Supply Power
Input 3.0V to 3.6V

VDDANA Analog Power Supply Power
Input 3.0V to 3.6V

VDDIN Voltage Regulator Input Supply Power
Input 3.0V to 3.6V

15
32059L–AVR32–01/2012

AT32UC3B

Figure 5-1. Power Supply

5.6.2 Voltage Regulator

5.6.2.1 Single Power Supply
The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be exter-
nally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

Figure 5-2. Supply Decoupling

3.3V VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

3.3V

1.8
V

VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

Single Power Supply
Dual Power Supply

1.8V
Regulator1.8V

Regulator

3.3V

1.8V

VDDIN

VDDOUT

1.8V
Regulator

CIN1

COUT1COUT2

CIN2

17
32059L–AVR32–01/2012

AT32UC3B

6. Processor and Architecture
Rev: 1.0.0.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

6.1 Features
• 32-bit load/store AVR32A RISC architecture

– 15 general-purpose 32-bit registers
– 32-bit Stack Pointer, Program Counter and Link Register reside in register file
– Fully orthogonal instruction set
– Privileged and unprivileged modes enabling efficient and secure Operating Systems
– Innovative instruction set together with variable instruction length ensuring industry leading

code density
– DSP extention with saturating arithmetic, and a wide variety of multiply instructions

• 3-stage pipeline allows one instruction per clock cycle for most instructions
– Byte, halfword, word and double word memory access
– Multiple interrupt priority levels

• MPU allows for operating systems with memory protection

6.2 AVR32 Architecture
AVR32 is a high-performance 32-bit RISC microprocessor architecture, designed for cost-sensi-
tive embedded applications, with particular emphasis on low power consumption and high code
density. In addition, the instruction set architecture has been tuned to allow a variety of micro-
architectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and halfword data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, halfword, word, and double word data
with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

24
32059L–AVR32–01/2012

AT32UC3B

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

6.4.4 System Registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 6-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INT0 Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INT0 Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LV0 Unused in AVR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

32
32059L–AVR32–01/2012

AT32UC3B

7.3 Peripheral Address Map

Table 7-2. Peripheral Address Mapping

Address Peripheral Name

0xFFFE0000
USB USB 2.0 Interface - USB

0xFFFE1000
HMATRIX HSB Matrix - HMATRIX

0xFFFE1400
HFLASHC Flash Controller - HFLASHC

0xFFFF0000
PDCA Peripheral DMA Controller - PDCA

0xFFFF0800
INTC Interrupt controller - INTC

0xFFFF0C00
PM Power Manager - PM

0xFFFF0D00
RTC Real Time Counter - RTC

0xFFFF0D30
WDT Watchdog Timer - WDT

0xFFFF0D80
EIM External Interrupt Controller - EIM

0xFFFF1000
GPIO General Purpose Input/Output Controller - GPIO

0xFFFF1400
USART0 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART0

0xFFFF1800
USART1 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART1

0xFFFF1C00
USART2 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART2

0xFFFF2400
SPI0 Serial Peripheral Interface - SPI0

0xFFFF2C00
TWI Two-wire Interface - TWI

0xFFFF3000
PWM Pulse Width Modulation Controller - PWM

0xFFFF3400
SSC Synchronous Serial Controller - SSC

0xFFFF3800
TC Timer/Counter - TC

39
32059L–AVR32–01/2012

AT32UC3B

9.4.3 Reset Sequence

Table 9-7. BOD Timing

Symbol Parameter Conditions Min. Typ. Max. Unit

TBOD
Minimum time with VDDCORE <
VBOD to detect power failure Falling VDDCORE from 1.8V to 1.1V 300 800 ns

Table 9-8. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VDDRR
VDDCORE rise rate to ensure power-
on-reset 2.5 V/ms

VDDFR
VDDCORE fall rate to ensure power-
on-reset 0.01 400 V/ms

VPOR+

Rising threshold voltage: voltage up
to which device is kept under reset by
POR on rising VDDCORE

Rising VDDCORE:
VRESTART -> VPOR+

1.4 1.55 1.65 V

VPOR-

Falling threshold voltage: voltage
when POR resets device on falling
VDDCORE

Falling VDDCORE:
1.8V -> VPOR+

1.2 1.3 1.4 V

VRESTART

On falling VDDCORE, voltage must
go down to this value before supply
can rise again to ensure reset signal
is released at VPOR+

Falling VDDCORE:
1.8V -> VRESTART

-0.1 0.5 V

TPOR
Minimum time with VDDCORE <
VPOR-

Falling VDDCORE:
1.8V -> 1.1V 15 µs

TRST
Time for reset signal to be propagated
to system 200 400 µs

TSSU1

Time for Cold System Startup: Time
for CPU to fetch its first instruction
(RCosc not calibrated)

480 960 µs

TSSU2

Time for Hot System Startup: Time for
CPU to fetch its first instruction
(RCosc calibrated)

420 µs

40
32059L–AVR32–01/2012

AT32UC3B

Figure 9-1. MCU Cold Start-Up RESET_N tied to VDDIN

Figure 9-2. MCU Cold Start-Up RESET_N Externally Driven

Figure 9-3. MCU Hot Start-Up

In dual supply configuration, the power up sequence must be carefully managed to ensure a
safe startup of the device in all conditions.

The power up sequence must ensure that the internal logic is safely powered when the internal
reset (Power On Reset) is released and that the internal Flash logic is safely powered when the
CPU fetch the first instructions.

VPOR+VDDCORE

Internal
MCU Reset

TSSU1

Internal
POR Reset

VPOR-

TPOR TRST

RESET_N

VRESTART

VPOR+VDDCORE

Internal
MCU Reset

TSSU1

Internal
POR Reset

VPOR-

TPOR TRST

RESET_N

VRESTART

VDDCORE

Internal
MCU Reset

TSSU2

RESET_N
BOD Reset
WDT Reset

46
32059L–AVR32–01/2012

AT32UC3B

9.7 Oscillator Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

9.7.1 Slow Clock RC Oscillator

9.7.2 32 KHz Oscillator

Note: 1. CL is the equivalent load capacitance.

Table 9-16. RC Oscillator Frequency

Symbol Parameter Conditions Min. Typ. Max. Unit

FRC RC Oscillator Frequency

Calibration point: TA = 85°C 115.2 116 KHz

TA = 25°C 112 KHz

TA = -40°C 105 108 KHz

Table 9-17. 32 KHz Oscillator Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCP32KHz) Oscillator Frequency
External clock on XIN32 30 MHz

Crystal 32 768 Hz

CL Equivalent Load Capacitance 6 12.5 pF

ESR Crystal Equivalent Series Resistance 100 KΩ

tST Startup Time CL = 6pF(1)

CL = 12.5pF(1)
600
1200 ms

tCH XIN32 Clock High Half-period 0.4 tCP 0.6 tCP

tCL XIN32 Clock Low Half-period 0.4 tCP 0.6 tCP

CIN XIN32 Input Capacitance 5 pF

IOSC Current Consumption
Active mode 1.8 µA

Standby mode 0.1 µA

52
32059L–AVR32–01/2012

AT32UC3B

9.11 SPI Characteristics

Figure 9-7. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 9-8. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Figure 9-9. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

SPCK

MISO

MOSI

SPI5

SPI3 SPI4

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

55
32059L–AVR32–01/2012

AT32UC3B

10. Mechanical Characteristics

10.1 Thermal Considerations

10.1.1 Thermal Data
Table 10-1 summarizes the thermal resistance data depending on the package.

10.1.2 Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:

1.
2.

where:

• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 10-1 on
page 55.

• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 10-1 on page 55.

• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.
• PD = device power consumption (W) estimated from data provided in the section ”Power

Consumption” on page 42.
• TA = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 10-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air TQFP64 49.6
⋅C/W

θJC Junction-to-case thermal resistance TQFP64 13.5

θJA Junction-to-ambient thermal resistance Still Air TQFP48 51.1
⋅C/W

θJC Junction-to-case thermal resistance TQFP48 13.7

TJ TA PD θJA×()+=
TJ TA P(D θ(HEATSINK× θJC))+ +=

62
32059L–AVR32–01/2012

AT32UC3B

12. Errata

12.1 AT32UC3B0512, AT32UC3B1512

12.1.1 Rev D

- PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

66
32059L–AVR32–01/2012

AT32UC3B

7. TC

8. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

4. USART

5. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

6. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

72
32059L–AVR32–01/2012

AT32UC3B

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

4. Flash

5. Reset vector is 80000020h rather than 80000000h
Reset vector is 80000020h rather than 80000000h.
Fix/Workaround
The flash program code must start at the address 80000020h. The flash memory range
80000000h-80000020h must be programmed with 00000000h.

- USART

1. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

2. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

3. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

89
32059L–AVR32–01/2012

AT32UC3B

15. SSC

16. Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:
TCMR.START = Receive Start,
TCMR.STTDLY = more than ZERO,
RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,
RFMR.FSOS = None (input).
Fix/Workaround
None.

17. TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:
TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer
TCMR.START = Receive start
RFMR.FSOS = None (Input)
RCMR.START = any on RF (edge/level)
Fix/Workaround
None.

18. Frame Synchro and Frame Synchro Data are delayed by one clock cycle
The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:
- Clock is CKDIV
- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)
Fix/Workaround
Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START
condition is performed on a generated frame synchro.

19. USB

20. UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).
Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID
Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel.

91
32059L–AVR32–01/2012

AT32UC3B

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

- OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz
The auxiliary trace does not work for CPU/HSB speed higher than 50MHz.
Fix/Workaround
Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled
RETS behaves incorrectly when MPU is enabled and MPU is configured so that system
stack is not readable in unprivileged mode.
Fix/Workaround
Make system stack readable in unprivileged mode, or return from supervisor mode using
rete instead of rets. This requires:
1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the
mode bits to the desired value must be done using a single mtsr instruction so it is done
atomically. Even if this step is generally described as not safe in the UC technical reference
manual, it is safe in this very specific case.
2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

5. USART

6. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

92
32059L–AVR32–01/2012

AT32UC3B

7. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

8. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

9. Corruption after receiving too many bits in SPI slave mode
If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8
bits) by the SPI master, an error occurs. After that, the next reception may be corrupted
even if the frame is correct and the USART has been disabled, reset by a soft reset and re-
enabled.
Fix/Workaround
None.

10. USART slave synchronous mode external clock must be at least 9 times lower in fre-
quency than CLK_USART
When the USART is operating in slave synchronous mode with an external clock, the fre-
quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.
Fix/Workaround
When the USART is operating in slave synchronous mode with an external clock, provide a
signal on CLK that has a frequency at least 9 times lower than CLK_USART.

11. HMATRIX

12. In the PRAS and PRBS registers, the MxPR fields are only two bits
In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.
The unused bits are undefined when reading the registers.
Fix/Workaround
Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important

93
32059L–AVR32–01/2012

AT32UC3B

and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results
Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC
instruction.
Fix/Workaround
Place breakpoints on earlier or later instructions.

101
32059L–AVR32–01/2012

AT32UC3B

it is done atomically. Even if this step is described in general as not safe in the UC technical
reference guide, it is safe in this very specific case.
2. Execute the RETE instruction.

