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computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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1. Description
The AT32UC3B is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 60 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems. 

Higher computation capability is achieved using a rich set of DSP instructions.

The AT32UC3B incorporates on-chip Flash and SRAM memories for secure and fast access. 

The Peripheral Direct Memory Access controller enables data transfers between peripherals and
memories without processor involvement. PDCA drastically reduces processing overhead when
transferring continuous and large data streams between modules within the MCU.

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform frequency measurement, event counting, interval mea-
surement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options
including polarity, edge alignment and waveform non overlap control. One PWM channel can
trigger ADC conversions for more accurate close loop control implementations.

The AT32UC3B also features many communication interfaces for communication intensive
applications. In addition to standard serial interfaces like USART, SPI or TWI, other interfaces
like flexible Synchronous Serial Controller and USB are available. The USART supports different
communication modes, like SPI mode.

The Synchronous Serial Controller provides easy access to serial communication protocols and
audio standards like I2S, UART or SPI.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time
thanks to the rich End-Point configuration. The Embedded Host interface allows device like a
USB Flash disk or a USB printer to be directly connected to the processor. 

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers
robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key
Suppression® (AKS®) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3B integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control. The
Nanotrace interface enables trace feature for JTAG-based debuggers.
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5.2 RESET_N pin
The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

5.3 TWI pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as GPIO pins.

5.4 GPIO pins
All the I/O lines integrate a pull-up resistor. Programming of this pull-up resistor is performed
independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as
inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset
Value” of the GPIO Controller user interface table.

5.5 High drive pins
The four pins PA20, PA21, PA22, PA23 have high drive output capabilities.

5.6 Power Considerations

5.6.1 Power Supplies
The AT32UC3B has several types of power supply pins:

• VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
• VDDANA: Powers the ADC Voltage is 3.3V nominal.
• VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
• VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
• VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO and VDDPLL. The ground pin for
VDDANA is GNDANA.

Refer to Electrical Characteristics section for power consumption on the various supply pins.

The main requirement for power supplies connection is to respect a star topology for all electrical
connection.
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Figure 5-1. Power Supply

5.6.2 Voltage Regulator

5.6.2.1 Single Power Supply
The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be exter-
nally connected to the 1.8V domains. 

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

Figure 5-2. Supply Decoupling
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Figure 6-1. Overview of the AVR32UC CPU

6.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 6-2 on page 20 shows an overview of the AVR32UC pipeline stages.
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Figure 6-2. The AVR32UC Pipeline

6.3.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensit ive, lower-end applications l ike smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

6.3.3 Java Support
AVR32UC does not provide Java hardware acceleration.

6.3.4 Memory Protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

6.3.5 Unaligned Reference Handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and ld.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.
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All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

6.4.4 System Registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 6-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INT0 Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INT0 Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LV0 Unused in AVR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC
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7.4 CPU Local Bus Mapping
Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

The following GPIO registers are mapped on the local bus:

0xFFFF3C00
ADC Analog to Digital Converter - ADC

0xFFFF4000
ABDAC Audio Bitstream DAC - ABDAC

Table 7-2. Peripheral Address Mapping

Table 7-3. Local bus mapped GPIO registers

Port Register Mode
Local Bus 
Address Access

0 Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only

SET 0x4000_0044 Write-only

CLEAR 0x4000_0048 Write-only

TOGGLE 0x4000_004C Write-only

Output Value Register (OVR) WRITE 0x4000_0050 Write-only

SET 0x4000_0054 Write-only

CLEAR 0x4000_0058 Write-only

TOGGLE 0x4000_005C Write-only

Pin Value Register (PVR) - 0x4000_0060 Read-only

1 Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only

SET 0x4000_0144 Write-only

CLEAR 0x4000_0148 Write-only

TOGGLE 0x4000_014C Write-only

Output Value Register (OVR) WRITE 0x4000_0150 Write-only

SET 0x4000_0154 Write-only

CLEAR 0x4000_0158 Write-only

TOGGLE 0x4000_015C Write-only

Pin Value Register (PVR) - 0x4000_0160 Read-only
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CIN Input Capacitance

QFP64 7 pF

QFP48 7 pF

QFN64 7 pF

QFN48 7 pF

RPULLUP Pull-up Resistance

AT32UC3B064
AT32UC3B0128
AT32UC3B0256
AT32UC3B164
AT32UC3B1128
AT32UC3B1256

All I/O pins except 
RESET_N, TCK, TDI, 
TMS pins

13 19 25 KΩ

RESET_N pin, TCK, TDI, 
TMS pins 5 12 25 KΩ

AT32UC3B0512
AT32UC3B1512

All I/O pins except PA20, 
PA21, PA22, PA23, 
RESET_N, TCK, TDI, 
TMS pins

10 15 20 KΩ

PA20, PA21, PA22, PA23 5 7.5 12 KΩ

RESET_N pin, TCK, TDI, 
TMS pins 5 10 25 KΩ

ISC Static Current

AT32UC3B064
AT32UC3B0128
AT32UC3B0256
AT32UC3B164
AT32UC3B1128
AT32UC3B1256

On VVDDCORE = 
1.8V,
device in static 
mode

TA = 
25°C 6 µA

All inputs driven 
including JTAG; 
RESET_N=1

TA = 
85°C 42.5 µA

AT32UC3B0512
AT32UC3B1512

On VVDDCORE = 
1.8V,
device in static 
mode

TA = 
25°C 7.5 µA

All inputs driven 
including JTAG; 
RESET_N=1

TA = 
85°C 39 µA

Table 9-1. DC Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit
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9.3 Regulator Characteristics

9.4 Analog Characteristics

9.4.1 ADC Reference

9.4.2 BOD

Table 9-6 describes the values of the BODLEVEL field in the flash FGPFR register.

Table 9-2. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VVDDIN Supply voltage (input) 3 3.3 3.6 V

VVDDOUT Supply voltage (output) 1.70 1.8 1.85 V

IOUT Maximum DC output current VVDDIN = 3.3V 100 mA

ISCR Static Current of internal regulator Low Power mode (stop, deep stop or 
static) at TA = 25°C 10 µA

Table 9-3. Decoupling Requirements

Symbol Parameter Conditions Typ. Technology Unit

CIN1 Input Regulator Capacitor 1 1 NPO nF

CIN2 Input Regulator Capacitor 2 4.7 X7R µF

COUT1 Output Regulator Capacitor 1 470 NPO pF

COUT2 Output Regulator Capacitor 2 2.2 X7R µF

Table 9-4. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VADVREF Analog voltage reference (input) 2.6 3.6 V

Table 9-5. Decoupling Requirements

Symbol Parameter Conditions Typ. Technology Unit

CVREF1 Voltage reference Capacitor 1 10 NPO nF

CVREF2 Voltage reference Capacitor 2 1 NPO uF

Table 9-6. BOD Level Values

Symbol Parameter Value Conditions Min. Typ. Max. Unit

BODLEVEL

00 0000b 1.44 V

01 0111b 1.52 V

01 1111b 1.61 V

10 0111b 1.71 V
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Differential Non-linearity
ADC Clock = 5 MHz 0.3 0.5 LSB

ADC Clock = 8 MHz 0.5 1.0 LSB

Offset Error ADC Clock = 5 MHz -0.5 0.5 LSB

Gain Error ADC Clock = 5 MHz -0.5 0.5 LSB

Table 9-23. Transfer Characteristics in 8-bit Mode

Parameter Conditions Min. Typ. Max. Unit

Table 9-24. Transfer Characteristics in 10-bit Mode
Parameter Conditions Min. Typ. Max. Unit
Resolution 10 Bit

Absolute Accuracy ADC Clock = 5 MHz 3 LSB

Integral Non-linearity ADC Clock = 5 MHz 1.5 2 LSB

Differential Non-linearity
ADC Clock = 5 MHz 1 2 LSB

ADC Clock = 2.5 MHz 0.6 1 LSB

Offset Error ADC Clock = 5 MHz -2 2 LSB

Gain Error ADC Clock = 5MHz -2 2 LSB
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9.11 SPI Characteristics

Figure 9-7. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1) 

Figure 9-8. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0) 

Figure 9-9. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)
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7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected. 

8. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST). 

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS. 

10. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA. 

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.
Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD. 

13. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128. 
Fix/Workaround
None. 

14. Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources
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the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low. 

8. Corruption after receiving too many bits in SPI slave mode
If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8
bits) by the SPI master, an error occurs. After that, the next reception may be corrupted
even if the frame is correct and the USART has been disabled, reset by a soft reset and re-
enabled.
Fix/Workaround
None. 

9. USART slave synchronous mode external clock must be at least 9 times lower in fre-
quency than CLK_USART
When the USART is operating in slave synchronous mode with an external clock, the fre-
quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.
Fix/Workaround
When the USART is operating in slave synchronous mode with an external clock, provide a
signal on CLK that has a frequency at least 9 times lower than CLK_USART. 

10. HMATRIX

11. In the PRAS and PRBS registers, the MxPR fields are only two bits
In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.
The unused bits are undefined when reading the registers.
Fix/Workaround
Mask undefined bits when reading PRAS and PRBS. 

-  DSP Operations

1. Hardware breakpoints may corrupt MAC results
Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC
instruction.
Fix/Workaround
Place breakpoints on earlier or later instructions. 
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12.1.2 Rev C

-  PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled. 

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period. 

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0. 

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none. 

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0. 

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected. 
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3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected. 

8. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST). 

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS. 

10. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA. 

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.
Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD. 

1. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128. 
Fix/Workaround
None. 

13. Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources
will not be turned off. This will result in a significantly higher power consumption during the
sleep mode.
Fix/Workaround
Before going to sleep modes where the system RC oscillator is stopped, make sure that the
factor between the CPU/HSB and PBx frequencies is less than or equal to 4. 
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12.2.2 Rev. G

-  PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled. 

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period. 

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0. 

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none. 

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0. 

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected. 
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2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error. 

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read. 

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready. 

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode. 

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant: PA29 and PA30.
Fix/Workaround
None. 

-  TC

1. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values. 
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2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error. 

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read. 

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready. 

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode. 

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant: PA29 and PA30.
Fix/Workaround
None. 

9. Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant
Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20,
PB21, PB22, PB23, PB27, PB28.
Fix/Workaround
None. 

10. TC

11. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
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2. The command Quick Page Read User Page(QPRUP) is not functional
The command Quick Page Read User Page(QPRUP) is not functional.
Fix/Workaround
None.

3. PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0]
on revision B instead of WriteData[7:0], ByteAddress[2:0]
PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on
revision B instead of WriteData[7:0], ByteAddress[2:0].
Fix/Workaround
None.

4. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash. 

5.

-  RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the
RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the
HSB clock
Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC
peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock.
Fix/Workaround
Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of
four or more relative to the HSB clock.

2. The RTC CLKEN bit (bit number 16) of CTRL register is not available
The RTC CLKEN bit (bit number 16) of CTRL register is not available.
Fix/Workaround
Do not use the CLKEN bit of the RTC on Rev B.
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