
Microchip Technology - AT32UC3B1128-Z1UR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 60MHz

Connectivity I²C, IrDA, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 28

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b1128-z1ur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3b1128-z1ur-4411637
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

10
32059L–AVR32–01/2012

AT32UC3B

4.3 High Drive Current GPIO
Ones of GPIOs can be used to drive twice current than other GPIO capability (see Electrical
Characteristics section).

5. Signals Description
The following table gives details on the signal name classified by peripheral.

Table 4-4. Oscillator pinout

QFP48 pin QFP64 pin Pad Oscillator pin

30 39 PA18 XIN0

41 PA28 XIN1

22 30 PA11 XIN32

31 40 PA19 XOUT0

42 PA29 XOUT1

23 31 PA12 XOUT32

Table 4-5. High Drive Current GPIO

GPIO Name

PA20

PA21

PA22

PA23

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

Power

VDDPLL PLL Power Supply Power
Input 1.65V to 1.95 V

VDDCORE Core Power Supply Power
Input 1.65V to 1.95 V

VDDIO I/O Power Supply Power
Input 3.0V to 3.6V

VDDANA Analog Power Supply Power
Input 3.0V to 3.6V

VDDIN Voltage Regulator Input Supply Power
Input 3.0V to 3.6V

16
32059L–AVR32–01/2012

AT32UC3B

Refer to Section 9.3 on page 38 for decoupling capacitors values and regulator characteristics.

For decoupling recommendations for VDDIO, VDDANA, VDDCORE and VDDPLL, please refer
to the Schematic checklist.

5.6.2.2 Dual Power Supply
In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent
from leakage current.

To avoid over consumption during the power up sequence, VDDIO and VDDCORE voltage dif-
ference needs to stay in the range given Figure 5-3.

Figure 5-3. VDDIO versus VDDCORE during power up sequence

5.6.3 Analog-to-Digital Converter (ADC) reference.
The ADC reference (ADVREF) must be provided from an external source. Two decoupling
capacitors must be used to insure proper decoupling.

Figure 5-4. ADVREF Decoupling

Refer to Section 9.4 on page 38 for decoupling capacitors values and electrical characteristics.

In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra
consumption.

Extra consumption on VDDCORE

VDDCORE (V)

Extra consumption on VDDIO

VD
D

IO
 (V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1.5

1

2

2.5

3

3.5

4

ADVREF

CC
VREF1VREF2

3.3V

18
32059L–AVR32–01/2012

AT32UC3B

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

6.3 The AVR32UC CPU
The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the Memories
chapter of this data sheet.

Figure 6-1 on page 19 displays the contents of AVR32UC.

27
32059L–AVR32–01/2012

AT32UC3B

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

6.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM,
and GM bits in the Status Register are used to mask different events. Not all events can
be masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 6-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

6.5.3 Supervisor Calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

6.5.4 Debug Requests
The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

32
32059L–AVR32–01/2012

AT32UC3B

7.3 Peripheral Address Map

Table 7-2. Peripheral Address Mapping

Address Peripheral Name

0xFFFE0000
USB USB 2.0 Interface - USB

0xFFFE1000
HMATRIX HSB Matrix - HMATRIX

0xFFFE1400
HFLASHC Flash Controller - HFLASHC

0xFFFF0000
PDCA Peripheral DMA Controller - PDCA

0xFFFF0800
INTC Interrupt controller - INTC

0xFFFF0C00
PM Power Manager - PM

0xFFFF0D00
RTC Real Time Counter - RTC

0xFFFF0D30
WDT Watchdog Timer - WDT

0xFFFF0D80
EIM External Interrupt Controller - EIM

0xFFFF1000
GPIO General Purpose Input/Output Controller - GPIO

0xFFFF1400
USART0 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART0

0xFFFF1800
USART1 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART1

0xFFFF1C00
USART2 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART2

0xFFFF2400
SPI0 Serial Peripheral Interface - SPI0

0xFFFF2C00
TWI Two-wire Interface - TWI

0xFFFF3000
PWM Pulse Width Modulation Controller - PWM

0xFFFF3400
SSC Synchronous Serial Controller - SSC

0xFFFF3800
TC Timer/Counter - TC

43
32059L–AVR32–01/2012

AT32UC3B

9.5.1 Power Consumtion for Different Sleep Modes

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fPLL0 < 160 MHz and 10 MHz < fXIN0 < 12 MHz.

Table 9-10. Power Consumption for Different Sleep Modes for AT32UC3B064, AT32UC3B0128, AT32UC3B0256,
AT32UC3B164, AT32UC3B1128, AT32UC3B1256

Mode Conditions Typ. Unit

Active

- CPU running a recursive Fibonacci Algorithm from flash and clocked from
PLL0 at f MHz.
- Voltage regulator is on.
- XIN0: external clock. Xin1 Stopped. XIN32 stopped.
- All peripheral clocks activated with a division by 8.
- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-
up and Input pins are connected to GND

0.3xf(MHz)+0.443 mA/MHz

Same conditions at 60 MHz 18.5 mA

Idle
See Active mode conditions 0.117xf(MHz)+0.28 mA/MHz

Same conditions at 60 MHz 7.3 mA

Frozen
See Active mode conditions 0.058xf(MHz)+0.115 mA/MHz

Same conditions at 60 MHz 3.6 mA

Standby
See Active mode conditions 0.042xf(MHz)+0.115 mA/MHz

Same conditions at 60 MHz 2.7 mA

Stop

- CPU running in sleep mode
- XIN0, Xin1 and XIN32 are stopped.
- All peripheral clocks are desactived.
- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-
up and Input pins are connected to GND.

37.8 µA

Deepstop See Stop mode conditions 24.9 µA

Static See Stop mode conditions
Voltage Regulator On 13.9 µA

Voltage Regulator Off 8.9 µA

Table 9-11. Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512

Mode Conditions Typ. Unit

Active

- CPU running a recursive Fibonacci Algorithm from flash and clocked from
PLL0 at f MHz.
- Voltage regulator is on.
- XIN0: external clock. Xin1 Stopped. XIN32 stopped.
- All peripheral clocks activated with a division by 8.
- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-
up and Input pins are connected to GND

0.359xf(MHz)+1.53 mA/MHz

Same conditions at 60 MHz 24 mA

Idle
See Active mode conditions 0.146xf(MHz)+0.291 mA/MHz

Same conditions at 60 MHz 9 mA

51
32059L–AVR32–01/2012

AT32UC3B

9.10 JTAG Characteristics

9.10.1 JTAG Timing

Figure 9-6. JTAG Interface Signals

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers
manufactured in the same pro-cess technology. These values are not covered by test limits in
production.

JTAG2

JTAG3

JTAG1

JTAG4

JTAG0

TMS/TDI

TCK

TDO

JTAG5

JTAG6

JTAG7 JTAG8

JTAG9

JTAG10

Boundary
Scan Inputs

Boundary
Scan Outputs

Table 9-26. JTAG Timings(1)

Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period

VVDDIO from
3.0V to 3.6V,

maximum
external

capacitor =
40pF

23.2 ns

JTAG1 TCK High Half-period 8.8 ns

JTAG2 TCK Period 32.0 ns

JTAG3 TDI, TMS Setup before TCK High 3.9 ns

JTAG4 TDI, TMS Hold after TCK High 0.6 ns

JTAG5 TDO Hold Time 4.5 ns

JTAG6 TCK Low to TDO Valid 23.2 ns

JTAG7 Boundary Scan Inputs Setup Time 0 ns

JTAG8 Boundary Scan Inputs Hold Time 5.0 ns

JTAG9 Boundary Scan Outputs Hold Time 8.7 ns

JTAG10 TCK to Boundary Scan Outputs Valid 17.7 ns

53
32059L–AVR32–01/2012

AT32UC3B

Figure 9-10. SPI Slave mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Notes: 1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40 pF.
2. tCPMCK: Master Clock period in ns.

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

Table 9-27. SPI Timings

Symbol Parameter Conditions Min. Max. Unit

SPI0
MISO Setup time before SPCK rises
(master) 3.3V domain(1) 22 +

(tCPMCK)/2(2) ns

SPI1
MISO Hold time after SPCK rises
(master) 3.3V domain(1) 0 ns

SPI2
SPCK rising to MOSI Delay
(master) 3.3V domain(1) 7 ns

SPI3
MISO Setup time before SPCK falls
(master) 3.3V domain(1) 22 +

(tCPMCK)/2(2) ns

SPI4
MISO Hold time after SPCK falls
(master) 3.3V domain(1) 0 ns

SPI5
SPCK falling to MOSI Delay
master) 3.3V domain(1) 7 ns

SPI6
SPCK falling to MISO Delay
(slave) 3.3V domain(1) 26.5 ns

SPI7
MOSI Setup time before SPCK rises
(slave) 3.3V domain(1) 0 ns

SPI8
MOSI Hold time after SPCK rises
(slave) 3.3V domain(1) 1.5 ns

SPI9
SPCK rising to MISO Delay
(slave) 3.3V domain(1) 27 ns

SPI10
MOSI Setup time before SPCK falls
(slave) 3.3V domain(1) 0 ns

SPI11
MOSI Hold time after SPCK falls
(slave) 3.3V domain(1) 1 ns

55
32059L–AVR32–01/2012

AT32UC3B

10. Mechanical Characteristics

10.1 Thermal Considerations

10.1.1 Thermal Data
Table 10-1 summarizes the thermal resistance data depending on the package.

10.1.2 Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:

1.
2.

where:

• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 10-1 on
page 55.

• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 10-1 on page 55.

• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.
• PD = device power consumption (W) estimated from data provided in the section ”Power

Consumption” on page 42.
• TA = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 10-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air TQFP64 49.6
⋅C/W

θJC Junction-to-case thermal resistance TQFP64 13.5

θJA Junction-to-ambient thermal resistance Still Air TQFP48 51.1
⋅C/W

θJC Junction-to-case thermal resistance TQFP48 13.7

TJ TA PD θJA×()+=
TJ TA P(D θ(HEATSINK× θJC))+ +=

60
32059L–AVR32–01/2012

AT32UC3B

10.3 Soldering Profile
Table 10-14 gives the recommended soldering profile from J-STD-20.

Note: It is recommended to apply a soldering temperature higher than 250°C.
A maximum of three reflow passes is allowed per component.

Table 10-14. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/s

Preheat Temperature 175°C ±25°C Min. 150°C, Max. 200°C

Temperature Maintained Above 217°C 60-150s

Time within 5⋅C of Actual Peak Temperature 30s

Peak Temperature Range 260°C

Ramp-down Rate 6°C/s

Time 25⋅C to Peak Temperature Max. 8mn

61
32059L–AVR32–01/2012

AT32UC3B

11. Ordering Information

Device Ordering Code Package Conditioning
Temperature Operating

Range
AT32UC3B0512 AT32UC3B0512-A2UES TQFP 64 - Industrial (-40°C to 85°C)

AT32UC3B0512-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0512-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UES QFN 64 - Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256 AT32UC3B0256-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0256-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0128 AT32UC3B0128-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0128-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0128-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0128-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B064 AT32UC3B064-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B064-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B064-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B064-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B1512 AT32UC3B1512-Z1UT QFN 48 - Industrial (-40°C to 85°C)

AT32UC3B1512-Z1UR QFN 48 - Industrial (-40°C to 85°C)

AT32UC3B1256 AT32UC3B1256-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1256-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1256-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1256-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1128 AT32UC3B1128-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1128-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1128-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1128-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

AT32UC3B164 AT32UC3B164-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B164-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B164-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B164-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

66
32059L–AVR32–01/2012

AT32UC3B

7. TC

8. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

4. USART

5. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

6. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

75
32059L–AVR32–01/2012

AT32UC3B

3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected.

8. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.
Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

1. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128.
Fix/Workaround
None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources
will not be turned off. This will result in a significantly higher power consumption during the
sleep mode.
Fix/Workaround
Before going to sleep modes where the system RC oscillator is stopped, make sure that the
factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

82
32059L–AVR32–01/2012

AT32UC3B

15. SSC

16. Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:
TCMR.START = Receive Start,
TCMR.STTDLY = more than ZERO,
RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,
RFMR.FSOS = None (input).
Fix/Workaround
None.

17. TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:
TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer
TCMR.START = Receive start
RFMR.FSOS = None (Input)
RCMR.START = any on RF (edge/level)
Fix/Workaround
None.

18. Frame Synchro and Frame Synchro Data are delayed by one clock cycle
The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:
- Clock is CKDIV
- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)
Fix/Workaround
Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START
condition is performed on a generated frame synchro.

19. USB

20. UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).
Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID
Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel.

84
32059L–AVR32–01/2012

AT32UC3B

- OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz
The auxiliary trace does not work for CPU/HSB speed higher than 50MHz.
Fix/Workaround
Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled
RETS behaves incorrectly when MPU is enabled and MPU is configured so that system
stack is not readable in unprivileged mode.
Fix/Workaround
Make system stack readable in unprivileged mode, or return from supervisor mode using
rete instead of rets. This requires:
1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the
mode bits to the desired value must be done using a single mtsr instruction so it is done
atomically. Even if this step is generally described as not safe in the UC technical reference
manual, it is safe in this very specific case.
2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

5. USART

6. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

7. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

85
32059L–AVR32–01/2012

AT32UC3B

8. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

9. Corruption after receiving too many bits in SPI slave mode
If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8
bits) by the SPI master, an error occurs. After that, the next reception may be corrupted
even if the frame is correct and the USART has been disabled, reset by a soft reset and re-
enabled.
Fix/Workaround
None.

10. USART slave synchronous mode external clock must be at least 9 times lower in fre-
quency than CLK_USART
When the USART is operating in slave synchronous mode with an external clock, the fre-
quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.
Fix/Workaround
When the USART is operating in slave synchronous mode with an external clock, provide a
signal on CLK that has a frequency at least 9 times lower than CLK_USART.

11. HMATRIX

12. In the PRAS and PRBS registers, the MxPR fields are only two bits
In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.
The unused bits are undefined when reading the registers.
Fix/Workaround
Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

92
32059L–AVR32–01/2012

AT32UC3B

7. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

8. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

9. Corruption after receiving too many bits in SPI slave mode
If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8
bits) by the SPI master, an error occurs. After that, the next reception may be corrupted
even if the frame is correct and the USART has been disabled, reset by a soft reset and re-
enabled.
Fix/Workaround
None.

10. USART slave synchronous mode external clock must be at least 9 times lower in fre-
quency than CLK_USART
When the USART is operating in slave synchronous mode with an external clock, the fre-
quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.
Fix/Workaround
When the USART is operating in slave synchronous mode with an external clock, provide a
signal on CLK that has a frequency at least 9 times lower than CLK_USART.

11. HMATRIX

12. In the PRAS and PRBS registers, the MxPR fields are only two bits
In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.
The unused bits are undefined when reading the registers.
Fix/Workaround
Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important

96
32059L–AVR32–01/2012

AT32UC3B

- SSC

1. SSC does not trigger RF when data is low
The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or
RCMR respectively.
Fix/Workaround
Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the GPIO.

- USB

1. USB No end of host reset signaled upon disconnection
In host mode, in case of an unexpected device disconnection whereas a usb reset is being
sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at
the end of the reset.
Fix/Workaround
A software workaround consists in testing (by polling or interrupt) the disconnection
(UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid
being stuck.

2. USBFSM and UHADDR1/2/3 registers are not available
Do not use USBFSM register.
Fix/Workaround
Do not use USBFSM register and use HCON[6:0] field instead for all the pipes.

- Cycle counter

1. CPU Cycle Counter does not reset the COUNT system register on COMPARE match.
The device revision B does not reset the COUNT system register on COMPARE match. In
this revision, the COUNT register is clocked by the CPU clock, so when the CPU clock
stops, so does incrementing of COUNT.
Fix/Workaround
None.

- ADC

1. ADC possible miss on DRDY when disabling a channel
The ADC does not work properly when more than one channel is enabled.
Fix/Workaround
Do not use the ADC with more than one channel enabled at a time.

2. ADC OVRE flag sometimes not reset on Status Register read
The OVRE flag does not clear properly if read simultaneously to an end of conversion.
Fix/Workaround
None.

3. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

100
32059L–AVR32–01/2012

AT32UC3B

Figure 12-1. Timer/Counter clock connections on RevB

7. Spurious interrupt may corrupt core SR mode to exception
If the rules listed in the chapter `Masking interrupt requests in peripheral modules' of the
AVR32UC Technical Reference Manual are not followed, a spurious interrupt may occur. An
interrupt context will be pushed onto the stack while the core SR mode will indicate an
exception. A RETE instruction would then corrupt the stack.
Fix/Workaround
Follow the rules of the AVR32UC Technical Reference Manual. To increase software
robustness, if an exception mode is detected at the beginning of an interrupt handler,
change the stack interrupt context to an exception context and issue a RETE instruction.

8. CPU cannot operate on a divided slow clock (internal RC oscillator)
CPU cannot operate on a divided slow clock (internal RC oscillator).
Fix/Workaround
Do not run the CPU on a divided slow clock.

9. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set,
i.e. the pointer is always updated. This happens even if the ++ field is cleared. Specifically,
the increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

10. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

11. Exceptions when system stack is protected by MPU
RETS behaves incorrectly when MPU is enabled and MPU is configured so that system
stack is not readable in unprivileged mode.
Fix/Workaround
Workaround 1: Make system stack readable in unprivileged mode,
or
Workaround 2: Return from supervisor mode using rete instead of rets. This requires: 1.
Changing the mode bits from 001b to 110b before issuing the instruction.
Updating the mode bits to the desired value must be done using a single mtsr instruction so

Source Name Connection

Internal TIMER_CLOCK1 32KHz Oscillator

TIMER_CLOCK2 PBA Clock / 4

TIMER_CLOCK3 PBA Clock / 8

TIMER_CLOCK4 PBA Clock / 16

TIMER_CLOCK5 PBA Clock / 32

External XC0

XC1

XC2

105
32059L–AVR32–01/2012

AT32UC3B

Table of Contents

1 Description ... 3

2 Overview ... 4
2.1 Blockdiagram ...4

3 Configuration Summary .. 5

4 Package and Pinout ... 6
4.1 Package ...6

4.2 Peripheral Multiplexing on I/O lines ...7

4.3 High Drive Current GPIO ...10

5 Signals Description ... 10
5.1 JTAG pins ..13

5.2 RESET_N pin ..14

5.3 TWI pins ..14

5.4 GPIO pins ..14

5.5 High drive pins ...14

5.6 Power Considerations ...14

6 Processor and Architecture .. 17
6.1 Features ..17

6.2 AVR32 Architecture ...17

6.3 The AVR32UC CPU ..18

6.4 Programming Model ..22

6.5 Exceptions and Interrupts ..26

6.6 Module Configuration ..30

7 Memories .. 31
7.1 Embedded Memories ..31

7.2 Physical Memory Map ...31

7.3 Peripheral Address Map ..32

7.4 CPU Local Bus Mapping ...33

8 Boot Sequence ... 34
8.1 Starting of clocks ...34

8.2 Fetching of initial instructions ..34

9 Electrical Characteristics .. 35
9.1 Absolute Maximum Ratings* ...35

