

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿХF

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, IrDA, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	28
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b1256-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10	12	PA06	GPIO 6	EIC - EXTINT[1]	ADC - AD[3]	USART1 - DSR	ABDAC - DATAN[1]
11	13	PA07	GPIO 7	PWM - PWM[0]	ADC - AD[4]	USART1 - DTR	SSC - RX_FRAME_SYNC
12	14	PA08	GPIO 8	PWM - PWM[1]	ADC - AD[5]	USART1 - RI	SSC - RX_CLOCK
20	28	PA09	GPIO 9	TWI - SCL	SPI0 - NPCS[2]	USART1 - CTS	
21	29	PA10	GPIO 10	TWI - SDA	SPI0 - NPCS[3]	USART1 - RTS	
22	30	PA11	GPIO 11	USART0 - RTS	TC - A2	PWM - PWM[0]	SSC - RX_DATA
23	31	PA12	GPIO 12	USART0 - CTS	TC - B2	PWM - PWM[1]	USART1 - TXD
25	33	PA13	GPIO 13	EIC - NMI	PWM - PWM[2]	USART0 - CLK	SSC - RX_CLOCK
26	34	PA14	GPIO 14	SPI0 - MOSI	PWM - PWM[3]	EIC - EXTINT[2]	PM - GCLK[2]
27	35	PA15	GPIO 15	SPI0 - SCK	PWM - PWM[4]	USART2 - CLK	
28	36	PA16	GPIO 16	SPI0 - NPCS[0]	TC - CLK1	PWM - PWM[4]	
29	37	PA17	GPIO 17	SPI0 - NPCS[1]	TC - CLK2	SPI0 - SCK	USART1 - RXD
30	39	PA18	GPIO 18	USART0 - RXD	PWM - PWM[5]	SPI0 - MISO	SSC - RX_FRAME_SYNC
31	40	PA19	GPIO 19	USART0 - TXD	PWM - PWM[6]	SPI0 - MOSI	SSC - TX_CLOCK
32	44	PA20	GPIO 20	USART1 - CLK	TC - CLK0	USART2 - RXD	SSC - TX_DATA
33	45	PA21	GPIO 21	PWM - PWM[2]	TC - A1	USART2 - TXD	SSC - TX_FRAME_SYNC
34	46	PA22	GPIO 22	PWM - PWM[6]	TC - B1	ADC - TRIGGER	ABDAC - DATA[0]
35	47	PA23	GPIO 23	USART1 - TXD	SPI0 - NPCS[1]	EIC - EXTINT[3]	PWM - PWM[0]
43	59	PA24	GPIO 24	USART1 - RXD	SPI0 - NPCS[0]	EIC - EXTINT[4]	PWM - PWM[1]
44	60	PA25	GPIO 25	SPI0 - MISO	PWM - PWM[3]	EIC - EXTINT[5]	
45	61	PA26	GPIO 26	USBB - USB_ID	USART2 - TXD	TC - A0	ABDAC - DATA[1]
46	62	PA27	GPIO 27	USBB - USB_VBOF	USART2 - RXD	TC - B0	ABDAC - DATAN[1]
	41	PA28	GPIO 28	USART0 - CLK	PWM - PWM[4]	SPI0 - MISO	ABDAC - DATAN[0]
	42	PA29	GPIO 29	TC - CLK0	TC - CLK1	SPI0 - MOSI	
	15	PA30	GPIO 30	ADC - AD[6]	EIC - SCAN[0]	PM - GCLK[2]	
	16	PA31	GPIO 31	ADC - AD[7]	EIC - SCAN[1]	PWM - PWM[6]	
	6	PB00	GPIO 32	TC - A0	EIC - SCAN[2]	USART2 - CTS	
	7	PB01	GPIO 33	TC - B0	EIC - SCAN[3]	USART2 - RTS	
	24	PB02	GPIO 34	EIC - EXTINT[6]	TC - A1	USART1 - TXD	
	25	PB03	GPIO 35	EIC - EXTINT[7]	TC - B1	USART1 - RXD	
	26	PB04	GPIO 36	USART1 - CTS	SPI0 - NPCS[3]	TC - CLK2	
	27	PB05	GPIO 37	USART1 - RTS	SPI0 - NPCS[2]	PWM - PWM[5]	
	38	PB06	GPIO 38	SSC - RX_CLOCK	USART1 - DCD	EIC - SCAN[4]	ABDAC - DATA[0]
	43	PB07	GPIO 39	SSC - RX_DATA	USART1 - DSR	EIC - SCAN[5]	ABDAC - DATAN[0]
	54	PB08	GPIO 40	SSC - RX_FRAME_SYNC	USART1 - DTR	EIC - SCAN[6]	ABDAC - DATA[1]

 Table 4-1.
 GPIO Controller Function Multiplexing

Table 5-1. Signal Description List (Continued)

Signal Name Function			Active Level	Comments				
VDDOUT	Voltage Regulator Output	Power Output		1.65V to 1.95 V				
GNDANA	Analog Ground	Ground						
GND	Ground	Ground						
	Clocks, Oscillators, and PLL's							
XIN0, XIN1, XIN32	Crystal 0, 1, 32 Input	Analog						
XOUT0, XOUT1, XOUT32	Crystal 0, 1, 32 Output	Analog						
	JTAG							
тск	Test Clock	Input						
TDI	Test Data In	Input						
TDO	Test Data Out	Output						
TMS	Test Mode Select	Input						
Auxiliary Port - AUX								
МСКО	Trace Data Output Clock	Output						
MDO0 - MDO5	Trace Data Output	Output						
MSEO0 - MSEO1	Trace Frame Control	Output						
EVTI_N	Event In	Output	Low					
EVTO_N	Event Out	Output	Low					
	Power Manager	- PM						
GCLK0 - GCLK2	Generic Clock Pins	Output						
RESET_N	Reset Pin	Input	Low					
External Interrupt Controller - EIC								
EXTINT0 - EXTINT7	External Interrupt Pins	Input						
KPS0 - KPS7	Keypad Scan Pins	Output						
NMI	Non-Maskable Interrupt Pin	Input	Low					
	General Purpose I/O pin-	GPIOA, GPI	ОВ					
PA0 - PA31	Parallel I/O Controller GPIOA	I/O						
PB0 - PB11	Parallel I/O Controller GPIOB	I/O						

6.4 Programming Model

6.4.1 Register File Configuration

The AVR32UC register file is shown below.

Figure 6-3. The AVR32UC Register File

6.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 6-4 on page 22 and Figure 6-5 on page 23. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T, and L bits, while the upper halfword contains information about the mode and state the processor executes in. Refer to the *AVR32 Architecture Manual* for details.

Figure 6-5. The Status Register Low Halfword

6.4.3 Processor States

6.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 6-2 on page 23.

Drierity	Mede		
Priority	Mode	Security	Description
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode
2	Exception	Privileged	Execute exceptions
3	Interrupt 3	Privileged	General purpose interrupt mode
4	Interrupt 2	Privileged	General purpose interrupt mode
5	Interrupt 1	Privileged	General purpose interrupt mode
6	Interrupt 0	Privileged	General purpose interrupt mode
N/A	Supervisor	Privileged	Runs supervisor calls
N/A	Application	Unprivileged	Normal program execution mode

 Table 6-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

6.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the *retd* instruction.

6.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

Reg #	Address	Name	Function	
0	0	SR	Status Register	
1	4	EVBA	Exception Vector Base Address	
2	8	ACBA	Application Call Base Address	
3	12	CPUCR	CPU Control Register	
4	16	ECR	Exception Cause Register	
5	20	RSR_SUP	Unused in AVR32UC	
6	24	RSR_INT0	Unused in AVR32UC	
7	28	RSR_INT1	Unused in AVR32UC	
8	32	RSR_INT2	Unused in AVR32UC	
9	36	RSR_INT3	Unused in AVR32UC	
10	40	RSR_EX	Unused in AVR32UC	
11	44	RSR_NMI	Unused in AVR32UC	
12	48	RSR_DBG	Return Status Register for Debug mode	
13	52	RAR_SUP	Unused in AVR32UC	
14	56	RAR_INT0	Unused in AVR32UC	
15	60	RAR_INT1	Unused in AVR32UC	
16	64	RAR_INT2	Unused in AVR32UC	
17	68	RAR_INT3	Unused in AVR32UC	
18	72	RAR_EX	Unused in AVR32UC	
19	76	RAR_NMI	Unused in AVR32UC	
20	80	RAR_DBG	Return Address Register for Debug mode	
21	84	JECR	Unused in AVR32UC	
22	88	JOSP	Unused in AVR32UC	
23	92	JAVA_LV0	Unused in AVR32UC	
24	96	JAVA_LV1	Unused in AVR32UC	
25	100	JAVA_LV2	Unused in AVR32UC	

Table 6-3.System Registers

	Cyclonina		54)	
Reg #	Address	Name	Function	
92	368	MPUPSR4	MPU Privilege Select Register region 4	
93	372	MPUPSR5	MPU Privilege Select Register region 5	
94	376	MPUPSR6	MPU Privilege Select Register region 6	
95	380	MPUPSR7	MPU Privilege Select Register region 7	
96	384	MPUCRA	Unused in this version of AVR32UC	
97	388	MPUCRB	Unused in this version of AVR32UC	
98	392	MPUBRA	Unused in this version of AVR32UC	
99	396	MPUBRB	Unused in this version of AVR32UC	
100	400	MPUAPRA	MPU Access Permission Register A	
101	404	MPUAPRB	MPU Access Permission Register B	
102	408	MPUCR	MPU Control Register	
103-191	448-764	Reserved	Reserved for future use	
192-255	768-1020	IMPL	IMPLEMENTATION DEFINED	

 Table 6-3.
 System Registers (Continued)

6.5 Exceptions and Interrupts

AVR32UC incorporates a powerful exception handling scheme. The different exception sources, like Illegal Op-code and external interrupt requests, have different priority levels, ensuring a well-defined behavior when multiple exceptions are received simultaneously. Additionally, pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is passed to an event handler at an address specified in Table 6-4 on page 29. Most of the handlers are placed sequentially in the code space starting at the address specified by EVBA, with four bytes between each handler. This gives ample space for a jump instruction to be placed there, jumping to the event routine itself. A few critical handlers have larger spacing between them, allowing the entire event routine to be placed directly at the address specified by the EVBA-relative offset generated by hardware. All external interrupt sources have autovectored interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up appropriately. The same mechanisms are used to service all different types of events, including external interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the external interrupts and provides the autovector offset to the CPU.

6.5.1 System Stack Issues

Event handling in AVR32UC uses the system stack pointed to by the system stack pointer, SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section, since the timing of accesses to this memory section is both fast and deterministic.

AT32UC3B

Mode	Conditions	Тур.	Unit	
Frozen	See Active mode conditions	0.0723xf(MHz)+0.15 6	mA/MHz	
	Same conditions at 60 MHz		4.5	mA
Standby	See Active mode conditions		0.0537xf(MHz)+0.16 6	mA/MHz
	Same conditions at 60 MHz	3.4	mA	
Stop	 CPU running in sleep mode XIN0, Xin1 and XIN32 are stopped. All peripheral clocks are desactived. GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-up and Input pins are connected to GND. 		62	μA
Deepstop	See Stop mode conditions		30	μA
Static	See Step mode conditions	Voltage Regulator On	15.5	
	See Stop mode conditions Voltage Regulator (7.5	μΑ

|--|

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < f_{PLL0} < 160 MHz and 10 MHz < f_{XIN0} < 12 MHz.

Table 9-12. Peripheral Interface Power Consumption in Active Mode

Peripheral	Conditions	Consumption	Unit	
INTC		20		
GPIO		16		
PDCA	AT32UC3B064	12		
USART	AT32UC3B0128	14	_	
USB	AT32UC3B0256	23		
ADC	AT32UC3B164	8		
TWI	AT32UC3B1256	7	µA/MHz	
PWM	AT32UC3B0512	18		
SPI	AT32UC3B1512	8		
SSC		11	11	
TC		11		
ABDAC	AT32UC3B0512 AT32UC3B1512	6		

9.9 USB Transceiver Characteristics

9.9.1 Electrical Characteristics

Table 9-25. Electrical Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{EXT}	Recommended external USB series resistor	In series with each USB pin with $\pm 5\%$		39		Ω

The USB on-chip buffers comply with the Universal Serial Bus (USB) v2.0 standard. All AC parameters related to these buffers can be found within the USB 2.0 electrical specifications.

9.11 SPI Characteristics

Figure 9-7. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 9-8. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

10.2 Package Drawings

Figure 10-1. TQFP-64 package drawing

COMMON DIMENSIONS IN MM

SYMBOL	Min	Min Max		
Α		1. 20		
A1	0. 95			
С	0, 09			
D	12. 0			
D 1	10.0	O BSC		
E	12. 0	O BSC		
E 1	10. 0			
J	0. 05			
L	0.45			
e	0, 5			
f	0.17	0. 27		

<u>0° to 7°</u>

Table 10-2. Device and Package Maximum Weight

Weight	300 mg
Weight	Cee ng

Table 10-3. Package Characteristics

Moisture Sensitivity Level

Jedec J-STD-20D-MSL3

Table 10-4.Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	e3

Compliant JEDEC Standard MD-220 variation VMMD-3

Table 10-8.	Device and Package	Maximum Weight
	Borrioo ana r aonago	maximan rroigne

MSL3
)-

Table 10-10. Package Reference

JEDEC Drawing Reference	M0-220
JESD97 Classification	e3

AT32UC3B

Figure 10-4. QFN-48 package drawing

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-220, Variation VKKD-4, for proper dimensions, tolerances, datums, etc. 2. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optical radius on the other end of the terminal, the dimension should not be measured in that radius area.

Table 10-11.	Device and	Package	Maximum	Weight
	Device una	i uonugo	Maximum	vvoigni

Weight	100 mg	
Table 10-12. Package Characteristics		
Moisture Sensitivity Level	Jedec J-STD-20D-MSL3	
Table 10-13. Package Reference		
JEDEC Drawing Reference	M0-220	
JESD97 Classification	e3	

AT32UC3B

the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the USART Control Register (CR). This will drive the RTS output high. After the next DMA transfer is started and a receive buffer is available, write a one to the RTSEN bit in the USART CR so that RTS will be driven low.

8. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8 bits) by the SPI master, an error occurs. After that, the next reception may be corrupted even if the frame is correct and the USART has been disabled, reset by a soft reset and reenabled.

Fix/Workaround None.

9. USART slave synchronous mode external clock must be at least 9 times lower in frequency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the frequency of the signal provided on CLK must be at least 9 times lower than CLK USART. Fix/Workaround

When the USART is operating in slave synchronous mode with an external clock, provide a signal on CLK that has a frequency at least 9 times lower than CLK USART.

10. HMATRIX

11. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits. The unused bits are undefined when reading the registers. Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

12.2 AT32UC3B0256, AT32UC3B0128, AT32UC3B064, AT32UC3B1256, AT32UC3B1128, AT32UC3B164

All industrial parts labelled with -UES (for engineering samples) are revision B parts.

12.2.1 Rev I, J, K

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission. **Fix/Workaround**

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA.
- 2. Enable SPI.

12.2.2 Rev. G

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA.
- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode. Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

2. When the main clock is RCSYS, TIMER CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER CLOCK5 is equal to PBA Clock and not PBA Clock / 128. Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going to a sleep mode where the system RC oscillator is turned off, then high speed clock sources will not be turned off. This will result in a significantly higher power consumption during the sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

14. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm resistor.

8. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware handshaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the RTS output high when the Peripheral DMA receive buffer becomes full, use the normal mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the USART Control Register (CR). This will drive the RTS output high. After the next DMA transfer is started and a receive buffer is available, write a one to the RTSEN bit in the USART CR so that RTS will be driven low.

9. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8 bits) by the SPI master, an error occurs. After that, the next reception may be corrupted even if the frame is correct and the USART has been disabled, reset by a soft reset and reenabled.

Fix/Workaround

None.

10. USART slave synchronous mode external clock must be at least 9 times lower in frequency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the frequency of the signal provided on CLK must be at least 9 times lower than CLK_USART. **Fix/Workaround**

When the USART is operating in slave synchronous mode with an external clock, provide a signal on CLK that has a frequency at least 9 times lower than CLK_USART.

11. HMATRIX

12. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits. The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), the following flash read access may return corrupted data. This erratum does not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from internal RAM. After the write operation, perform a dummy flash page write operation (FLASHC WP). Content and location of this page is not important and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It is then safe to read and fetch code from the flash.

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

- OCD

 The auxiliary trace does not work for CPU/HSB speed higher than 50MHz The auxiliary trace does not work for CPU/HSB speed higher than 50MHz. Fix/Workaround

Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions. **Fix/Workaround**

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is generally described as not safe in the UC technical reference manual, it is safe in this very specific case.

2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

5. USART

ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.

Table of Contents

1	Descr	iption	3
2	Overv	iew	4
	2.1	Blockdiagram	4
3	Config	guration Summary	5
4	Packa	ge and Pinout	6
	4.1	Package	6
	4.2	Peripheral Multiplexing on I/O lines	7
	4.3	High Drive Current GPIO	10
5	Signal	Is Description	10
	5.1	JTAG pins	13
	5.2	RESET_N pin	14
	5.3	TWI pins	14
	5.4	GPIO pins	14
	5.5	High drive pins	14
	5.6	Power Considerations	14
6	Proce	ssor and Architecture	17
	61	Features	17
	0.1	reatures	
	6.2	AVR32 Architecture	
	6.2 6.3	AVR32 Architecture	17 17 18
	6.2 6.3 6.4	AVR32 Architecture The AVR32UC CPU Programming Model	
	6.2 6.3 6.4 6.5	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts	17 18 22 26
	6.2 6.3 6.4 6.5 6.6	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration	17 18 22 26 30
7	6.2 6.3 6.4 6.5 6.6 Memo	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration	17 18 22 26 30 31
7	6.2 6.3 6.4 6.5 6.6 Memo 7.1	AVR32 Architecture	17 18 22 26 30 31
7	6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration <i>ries</i> Embedded Memories Physical Memory Map	17 18 22 26 30 31 31
7	6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2 7.3	AVR32 Architecture	17 18 22 26 30 31 31 31 32
7	6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2 7.3 7.4	AVR32 Architecture	17 18 22 26 30 31 31 31 32 33
7	6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2 7.3 7.4 Boot S	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration <i>ries</i> Embedded Memories Physical Memory Map Peripheral Address Map CPU Local Bus Mapping	17 18 22 26 30 31 31 31 31 32 33 34
7	6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2 7.3 7.4 Boot S 8.1	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration <i>ries</i> Embedded Memories Physical Memory Map Peripheral Address Map CPU Local Bus Mapping Starting of clocks	17 18 22 26 30 31 31 31 31 31 31 31 31 31 32 33
7	6.1 6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2 7.3 7.4 Boot S 8.1 8.2	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration ries Embedded Memories Physical Memory Map Peripheral Address Map CPU Local Bus Mapping Starting of clocks Fetching of initial instructions	17 18 22 26 30 31 31 31 31 31 31 31 31 33 33 34 34
7 8 9	6.1 6.2 6.3 6.4 6.5 6.6 Memo 7.1 7.2 7.3 7.4 Boot S 8.1 8.2 Electr	AVR32 Architecture The AVR32UC CPU Programming Model Exceptions and Interrupts Module Configuration <i>ries</i> Embedded Memories Physical Memory Map Peripheral Address Map CPU Local Bus Mapping Starting of clocks Fetching of initial instructions	17 18 22 26 30 31 31 31 31 31 31 31 31 34 34 34 34

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 www.atmel.com Atmel Asia Limited Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan

16F, Shin Osaki Kangyo Bldg. 1-6-4 Osaka Shinagawa-ku Tokyo 104-0032 JAPAN Tel: (+81) 3-6417-0300 Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof AVR[®], Qtouch[®], Adjacent Key Suppression[®], AKS[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.