
Microchip Technology - AT32UC3B1512-Z1UT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 60MHz

Connectivity I²C, IrDA, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 28

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 96K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3b1512-z1ut

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3b1512-z1ut-4392498
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

8
32059L–AVR32–01/2012

AT32UC3B

10 12 PA06 GPIO 6 EIC - EXTINT[1] ADC - AD[3] USART1 - DSR ABDAC - DATAN[1]

11 13 PA07 GPIO 7 PWM - PWM[0] ADC - AD[4] USART1 - DTR SSC -
RX_FRAME_SYNC

12 14 PA08 GPIO 8 PWM - PWM[1] ADC - AD[5] USART1 - RI SSC - RX_CLOCK

20 28 PA09 GPIO 9 TWI - SCL SPI0 - NPCS[2] USART1 - CTS

21 29 PA10 GPIO 10 TWI - SDA SPI0 - NPCS[3] USART1 - RTS

22 30 PA11 GPIO 11 USART0 - RTS TC - A2 PWM - PWM[0] SSC - RX_DATA

23 31 PA12 GPIO 12 USART0 - CTS TC - B2 PWM - PWM[1] USART1 - TXD

25 33 PA13 GPIO 13 EIC - NMI PWM - PWM[2] USART0 - CLK SSC - RX_CLOCK

26 34 PA14 GPIO 14 SPI0 - MOSI PWM - PWM[3] EIC - EXTINT[2] PM - GCLK[2]

27 35 PA15 GPIO 15 SPI0 - SCK PWM - PWM[4] USART2 - CLK

28 36 PA16 GPIO 16 SPI0 - NPCS[0] TC - CLK1 PWM - PWM[4]

29 37 PA17 GPIO 17 SPI0 - NPCS[1] TC - CLK2 SPI0 - SCK USART1 - RXD

30 39 PA18 GPIO 18 USART0 - RXD PWM - PWM[5] SPI0 - MISO SSC -
RX_FRAME_SYNC

31 40 PA19 GPIO 19 USART0 - TXD PWM - PWM[6] SPI0 - MOSI SSC - TX_CLOCK

32 44 PA20 GPIO 20 USART1 - CLK TC - CLK0 USART2 - RXD SSC - TX_DATA

33 45 PA21 GPIO 21 PWM - PWM[2] TC - A1 USART2 - TXD SSC -
TX_FRAME_SYNC

34 46 PA22 GPIO 22 PWM - PWM[6] TC - B1 ADC - TRIGGER ABDAC - DATA[0]

35 47 PA23 GPIO 23 USART1 - TXD SPI0 - NPCS[1] EIC - EXTINT[3] PWM - PWM[0]

43 59 PA24 GPIO 24 USART1 - RXD SPI0 - NPCS[0] EIC - EXTINT[4] PWM - PWM[1]

44 60 PA25 GPIO 25 SPI0 - MISO PWM - PWM[3] EIC - EXTINT[5]

45 61 PA26 GPIO 26 USBB - USB_ID USART2 - TXD TC - A0 ABDAC - DATA[1]

46 62 PA27 GPIO 27 USBB - USB_VBOF USART2 - RXD TC - B0 ABDAC - DATAN[1]

41 PA28 GPIO 28 USART0 - CLK PWM - PWM[4] SPI0 - MISO ABDAC - DATAN[0]

42 PA29 GPIO 29 TC - CLK0 TC - CLK1 SPI0 - MOSI

15 PA30 GPIO 30 ADC - AD[6] EIC - SCAN[0] PM - GCLK[2]

16 PA31 GPIO 31 ADC - AD[7] EIC - SCAN[1] PWM - PWM[6]

6 PB00 GPIO 32 TC - A0 EIC - SCAN[2] USART2 - CTS

7 PB01 GPIO 33 TC - B0 EIC - SCAN[3] USART2 - RTS

24 PB02 GPIO 34 EIC - EXTINT[6] TC - A1 USART1 - TXD

25 PB03 GPIO 35 EIC - EXTINT[7] TC - B1 USART1 - RXD

26 PB04 GPIO 36 USART1 - CTS SPI0 - NPCS[3] TC - CLK2

27 PB05 GPIO 37 USART1 - RTS SPI0 - NPCS[2] PWM - PWM[5]

38 PB06 GPIO 38 SSC - RX_CLOCK USART1 - DCD EIC - SCAN[4] ABDAC - DATA[0]

43 PB07 GPIO 39 SSC - RX_DATA USART1 - DSR EIC - SCAN[5] ABDAC - DATAN[0]

54 PB08 GPIO 40 SSC -
RX_FRAME_SYNC USART1 - DTR EIC - SCAN[6] ABDAC - DATA[1]

Table 4-1. GPIO Controller Function Multiplexing

21
32059L–AVR32–01/2012

AT32UC3B

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

6.3.6 Unimplemented Instructions
The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

• All SIMD instructions
• All coprocessor instructions if no coprocessors are present
• retj, incjosp, popjc, pushjc
• tlbr, tlbs, tlbw
• cache

6.3.7 CPU and Architecture Revision
Three major revisions of the AVR32UC CPU currently exist.

The Architecture Revision field in the CONFIG0 system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Table 6-1. Instructions with Unaligned Reference Support

Instruction Supported alignment

ld.d Word

st.d Word

22
32059L–AVR32–01/2012

AT32UC3B

6.4 Programming Model

6.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 6-3. The AVR32UC Register File

6.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 6-4 on
page 22 and Figure 6-5 on page 23. The lower word contains the C, Z, N, V, and Q condition
code flags and the R, T, and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 6-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2LC
1

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

-

Mode Bit 2
Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

-

26
32059L–AVR32–01/2012

AT32UC3B

6.5 Exceptions and Interrupts
AVR32UC incorporates a powerful exception handling scheme. The different exception sources,
like Illegal Op-code and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple exceptions are received simultaneously. Additionally, pending
exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-
ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 6-4 on page 29. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-
ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as
(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception
code segments must be set up appropriately. The same mechanisms are used to service all dif-
ferent types of events, including external interrupt requests, yielding a uniform event handling
scheme.

An interrupt controller does the priority handling of the external interrupts and provides the
autovector offset to the CPU.

6.5.1 System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

92 368 MPUPSR4 MPU Privilege Select Register region 4

93 372 MPUPSR5 MPU Privilege Select Register region 5

94 376 MPUPSR6 MPU Privilege Select Register region 6

95 380 MPUPSR7 MPU Privilege Select Register region 7

96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC

100 400 MPUAPRA MPU Access Permission Register A

101 404 MPUAPRB MPU Access Permission Register B

102 408 MPUCR MPU Control Register

103-191 448-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

Table 6-3. System Registers (Continued)

Reg # Address Name Function

30
32059L–AVR32–01/2012

AT32UC3B

6.6 Module Configuration
All AT32UC3B parts do not implement the same CPU and Architecture Revision.

Table 6-5. CPU and Architecture Revision

Part Name Architecture Revision

AT32UC3Bx512 2

AT32UC3Bx256 1

AT32UC3Bx128 1

AT32UC3Bx64 1

31
32059L–AVR32–01/2012

AT32UC3B

7. Memories

7.1 Embedded Memories
• Internal High-Speed Flash

– 512KBytes (AT32UC3B0512, AT32UC3B1512)
– 256 KBytes (AT32UC3B0256, AT32UC3B1256)
– 128 KBytes (AT32UC3B0128, AT32UC3B1128)
– 64 KBytes (AT32UC3B064, AT32UC3B164)

• - 0 Wait State Access at up to 30 MHz in Worst Case Conditions
• - 1 Wait State Access at up to 60 MHz in Worst Case Conditions
• - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations,

hiding penalty of 1 wait state access
• - 100 000 Write Cycles, 15-year Data Retention Capability
• - 4 ms Page Programming Time, 8 ms Chip Erase Time
• - Sector Lock Capabilities, Bootloader Protection, Security Bit
• - 32 Fuses, Erased During Chip Erase
• - User Page For Data To Be Preserved During Chip Erase

• Internal High-Speed SRAM, Single-cycle access at full speed
– 96KBytes ((AT32UC3B0512, AT32UC3B1512)
– 32KBytes (AT32UC3B0256, AT32UC3B0128, AT32UC3B1256 and AT32UC3B1128)
– 16KBytes (AT32UC3B064 and AT32UC3B164)

7.2 Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented
translation, as described in the AVR32UC Technical Architecture Manual. The 32-bit physical
address space is mapped as follows:

Table 7-1. AT32UC3B Physical Memory Map

Device Embedded
SRAM

Embedded
Flash USB Data

HSB-PB
Bridge A

HSB-PB
Bridge B

Start Address 0x0000_0000 0x8000_0000 0xD000_0000 0xFFFF_0000 0xFFFE_0000

Size

AT32UC3B0512
AT32UC3B1512

96 Kbytes 512 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B0256
AT32UC3B1256

32 Kbytes 256 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B0128
AT32UC3B1128

32 Kbytes 128 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B064
AT32UC3B164

16 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

33
32059L–AVR32–01/2012

AT32UC3B

7.4 CPU Local Bus Mapping
Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

The following GPIO registers are mapped on the local bus:

0xFFFF3C00
ADC Analog to Digital Converter - ADC

0xFFFF4000
ABDAC Audio Bitstream DAC - ABDAC

Table 7-2. Peripheral Address Mapping

Table 7-3. Local bus mapped GPIO registers

Port Register Mode
Local Bus
Address Access

0 Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only

SET 0x4000_0044 Write-only

CLEAR 0x4000_0048 Write-only

TOGGLE 0x4000_004C Write-only

Output Value Register (OVR) WRITE 0x4000_0050 Write-only

SET 0x4000_0054 Write-only

CLEAR 0x4000_0058 Write-only

TOGGLE 0x4000_005C Write-only

Pin Value Register (PVR) - 0x4000_0060 Read-only

1 Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only

SET 0x4000_0144 Write-only

CLEAR 0x4000_0148 Write-only

TOGGLE 0x4000_014C Write-only

Output Value Register (OVR) WRITE 0x4000_0150 Write-only

SET 0x4000_0154 Write-only

CLEAR 0x4000_0158 Write-only

TOGGLE 0x4000_015C Write-only

Pin Value Register (PVR) - 0x4000_0160 Read-only

36
32059L–AVR32–01/2012

AT32UC3B

9.2 DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.
Table 9-1. DC Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VVDDCORE DC Supply Core 1.65 1.95 V

VVDDPLL DC Supply PLL 1.65 1.95 V

VVDDIO DC Supply Peripheral I/Os 3.0 3.6 V

VIL Input Low-level Voltage -0.3 +0.8 V

VIH Input High-level Voltage

AT32UC3B064
AT32UC3B0128
AT32UC3B0256
AT32UC3B164
AT32UC3B1128
AT32UC3B1256

All I/O pins except TCK,
RESET_N, PA03, PA04,
PA05, PA06, PA07, PA08,
PA11, PA12, PA18, PA19,
PA28, PA29, PA30, PA31

2.0 5.5 V

TCK, RESET_N, PA03,
PA04, PA05, PA06, PA07,
PA08, PA11, PA12, PA18,
PA19, PA28, PA29, PA30,
PA31

2.0 3.6 V

AT32UC3B0512
AT32UC3B1512

All I/O pins except TCK,
RESET_N, PA03, PA04,
PA05, PA06, PA07, PA08,
PA11, PA12, PA18, PA19,
PA28, PA29, PA30, PA31

2.0 5.5 V

TCK, RESET_N 2.5 3.6 V

PA03, PA04, PA05, PA06,
PA07, PA08, PA11, PA12,
PA18, PA19, PA28, PA29,
PA30, PA31

2.0 3.6 V

VOL Output Low-level Voltage
IOL= -4mA for all I/O except PA20, PA21, PA22,
PA23 0.4 V

IOL= -8mA for PA20, PA21, PA22, PA23 0.4 V

VOH Output High-level Voltage

IOL= -4mA for all I/O except PA20, PA21, PA22,
PA23

VVDDIO
-0.4 V

IOL= -8mA for PA20, PA21, PA22, PA23 VVDDIO
-0.4 V

IOL Output Low-level Current
All I/O pins except PA20, PA21, PA22, PA23 -4 mA

PA20, PA21, PA22, PA23 -8 mA

IOH Output High-level Current
All I/O pins except for PA20, PA21, PA22,
PA23 4 mA

PA20, PA21, PA22, PA23 8 mA

ILEAK Input Leakage Current Pullup resistors disabled 1 µA

42
32059L–AVR32–01/2012

AT32UC3B

9.5 Power Consumption
The values in Table 9-10, Table 9-11 on page 43 and Table 9-12 on page 44 are measured val-
ues of power consumption with operating conditions as follows:

•VDDIO = VDDANA = 3.3V
•VDDCORE = VDDPLL = 1.8V
•TA = 25°C, TA = 85°C
•I/Os are configured in input, pull-up enabled.

Figure 9-5. Measurement Setup

The following tables represent the power consumption measured on the power supplies.

Internal
Voltage

Regulator

Amp0

Amp1

VDDANA

VDDIO

VDDIN

VDDOUT

VDDCORE

VDDPLL

51
32059L–AVR32–01/2012

AT32UC3B

9.10 JTAG Characteristics

9.10.1 JTAG Timing

Figure 9-6. JTAG Interface Signals

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers
manufactured in the same pro-cess technology. These values are not covered by test limits in
production.

JTAG2

JTAG3

JTAG1

JTAG4

JTAG0

TMS/TDI

TCK

TDO

JTAG5

JTAG6

JTAG7 JTAG8

JTAG9

JTAG10

Boundary
Scan Inputs

Boundary
Scan Outputs

Table 9-26. JTAG Timings(1)

Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period

VVDDIO from
3.0V to 3.6V,

maximum
external

capacitor =
40pF

23.2 ns

JTAG1 TCK High Half-period 8.8 ns

JTAG2 TCK Period 32.0 ns

JTAG3 TDI, TMS Setup before TCK High 3.9 ns

JTAG4 TDI, TMS Hold after TCK High 0.6 ns

JTAG5 TDO Hold Time 4.5 ns

JTAG6 TCK Low to TDO Valid 23.2 ns

JTAG7 Boundary Scan Inputs Setup Time 0 ns

JTAG8 Boundary Scan Inputs Hold Time 5.0 ns

JTAG9 Boundary Scan Outputs Hold Time 8.7 ns

JTAG10 TCK to Boundary Scan Outputs Valid 17.7 ns

53
32059L–AVR32–01/2012

AT32UC3B

Figure 9-10. SPI Slave mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Notes: 1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40 pF.
2. tCPMCK: Master Clock period in ns.

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

Table 9-27. SPI Timings

Symbol Parameter Conditions Min. Max. Unit

SPI0
MISO Setup time before SPCK rises
(master) 3.3V domain(1) 22 +

(tCPMCK)/2(2) ns

SPI1
MISO Hold time after SPCK rises
(master) 3.3V domain(1) 0 ns

SPI2
SPCK rising to MOSI Delay
(master) 3.3V domain(1) 7 ns

SPI3
MISO Setup time before SPCK falls
(master) 3.3V domain(1) 22 +

(tCPMCK)/2(2) ns

SPI4
MISO Hold time after SPCK falls
(master) 3.3V domain(1) 0 ns

SPI5
SPCK falling to MOSI Delay
master) 3.3V domain(1) 7 ns

SPI6
SPCK falling to MISO Delay
(slave) 3.3V domain(1) 26.5 ns

SPI7
MOSI Setup time before SPCK rises
(slave) 3.3V domain(1) 0 ns

SPI8
MOSI Hold time after SPCK rises
(slave) 3.3V domain(1) 1.5 ns

SPI9
SPCK rising to MISO Delay
(slave) 3.3V domain(1) 27 ns

SPI10
MOSI Setup time before SPCK falls
(slave) 3.3V domain(1) 0 ns

SPI11
MOSI Hold time after SPCK falls
(slave) 3.3V domain(1) 1 ns

59
32059L–AVR32–01/2012

AT32UC3B

Figure 10-4. QFN-48 package drawing

Table 10-11. Device and Package Maximum Weight

Weight 100 mg

Table 10-12. Package Characteristics

Moisture Sensitivity Level Jedec J-STD-20D-MSL3

Table 10-13. Package Reference

JEDEC Drawing Reference M0-220

JESD97 Classification e3

63
32059L–AVR32–01/2012

AT32UC3B

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected.

8. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.
Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

13. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128.
Fix/Workaround
None.

14. Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources

69
32059L–AVR32–01/2012

AT32UC3B

8. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.
Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

13. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128.
Fix/Workaround
None.

14. VDDCORE power supply input needs to be 1.95V
When used in dual power supply, VDDCORE needs to be 1.95V.
Fix/Workaround
When used in single power supply, VDDCORE needs to be connected to VDDOUT, which is
configured on revision C at 1.95V (typ.).

15. Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources
will not be turned off. This will result in a significantly higher power consumption during the
sleep mode.
Fix/Workaround
Before going to sleep modes where the system RC oscillator is stopped, make sure that the
factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

74
32059L–AVR32–01/2012

AT32UC3B

12.2 AT32UC3B0256, AT32UC3B0128, AT32UC3B064, AT32UC3B1256, AT32UC3B1128,
AT32UC3B164

All industrial parts labelled with -UES (for engineering samples) are revision B parts.

12.2.1 Rev I, J, K

- PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.

80
32059L–AVR32–01/2012

AT32UC3B

12.2.2 Rev. G

- PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected.

83
32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode.

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant: PA29 and PA30.
Fix/Workaround
None.

- TC

1. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

101
32059L–AVR32–01/2012

AT32UC3B

it is done atomically. Even if this step is described in general as not safe in the UC technical
reference guide, it is safe in this very specific case.
2. Execute the RETE instruction.

102
32059L–AVR32–01/2012

AT32UC3B

13. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

13.1 Rev. L– 01/2012

13.2 Rev. K– 02/2011

13.3 Rev. J– 12/2010

13.4 Rev. I – 06/2010

13.5 Rev. H – 10/2009

1. Updated Mechanical Characteristics section.

1. Updated USB section.

2. Updated Configuration Summary section.

3. Updated Electrical Characteristics section.

4. Updated Errata section.

1. Updated USB section.

2. Updated USART section.

3. Updated TWI section.

4. Updated PWM section.

5. Updated Electrical Characteristics section.

1. Updated SPI section.

2 Updated Electrical Characteristics section.

1. Update datasheet architecture.

2 Add AT32UC3B0512 and AT32UC3B1512 devices description.

104
32059L–AVR32–01/2012

AT32UC3B

13.12 Rev. A – 05/2007

1. Initial revision.

