
Atmel - AT32UC3B164-Z1UR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 60MHz

Connectivity I²C, IrDA, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 28

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 16K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/at32uc3b164-z1ur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3b164-z1ur-4382813
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2
32059L–AVR32–01/2012

AT32UC3B

• On-Chip Debug System (JTAG interface)
– Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace

• 64-pin TQFP/QFN (44 GPIO pins), 48-pin TQFP/QFN (28 GPIO pins)
• 5V Input Tolerant I/Os, including 4 high-drive pins
• Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply

3
32059L–AVR32–01/2012

AT32UC3B

1. Description
The AT32UC3B is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 60 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems.

Higher computation capability is achieved using a rich set of DSP instructions.

The AT32UC3B incorporates on-chip Flash and SRAM memories for secure and fast access.

The Peripheral Direct Memory Access controller enables data transfers between peripherals and
memories without processor involvement. PDCA drastically reduces processing overhead when
transferring continuous and large data streams between modules within the MCU.

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform frequency measurement, event counting, interval mea-
surement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options
including polarity, edge alignment and waveform non overlap control. One PWM channel can
trigger ADC conversions for more accurate close loop control implementations.

The AT32UC3B also features many communication interfaces for communication intensive
applications. In addition to standard serial interfaces like USART, SPI or TWI, other interfaces
like flexible Synchronous Serial Controller and USB are available. The USART supports different
communication modes, like SPI mode.

The Synchronous Serial Controller provides easy access to serial communication protocols and
audio standards like I2S, UART or SPI.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time
thanks to the rich End-Point configuration. The Embedded Host interface allows device like a
USB Flash disk or a USB printer to be directly connected to the processor.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers
robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key
Suppression® (AKS®) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3B integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control. The
Nanotrace interface enables trace feature for JTAG-based debuggers.

7
32059L–AVR32–01/2012

AT32UC3B

Figure 4-2. TQFP48 / QFN48 Pinout

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to
increase board level reliability.

4.2 Peripheral Multiplexing on I/O lines

4.2.1 Multiplexed signals
Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D (D is only avail-
able for UC3Bx512 parts). The following table define how the I/O lines on the peripherals A, B,C
or D are multiplexed by the GPIO.

G
N

D
1

TC
K

2
P

A
00

3
P

A
01

4
P

A
02

5
V

D
D

C
O

R
E

6
P

A
03

7
P

A
04

8
P

A
05

9
P

A
06

10
P

A
07

11
P

A
08

12

GNDANA13
ADVREF14
VDDANA15
VDDOUT16
VDDIN17
VDDCORE18
GND19
PA0920
PA1021
PA1122
PA1223
VDDIO24

V
D

D
IO

36
P

A
23

35
P

A
22

34
P

A
21

33
P

A
20

32
P

A
19

31
P

A
18

30
P

A
17

29
P

A
16

28
P

A
15

27
P

A
14

26
P

A
13

25

GND 37
DP 38
DM 39

VBUS 40
VDDPLL 41

VDDCORE 42
PA24 43
PA25 44
PA26 45
PA27 46

RESET_N 47
VDDIO 48

Table 4-1. GPIO Controller Function Multiplexing

48-pin 64-pin PIN GPIO Pin Function A Function B Function C
Function D

(only for UC3Bx512)

3 3 PA00 GPIO 0

4 4 PA01 GPIO 1

5 5 PA02 GPIO 2

7 9 PA03 GPIO 3 ADC - AD[0] PM - GCLK[0] USBB - USB_ID ABDAC - DATA[0]

8 10 PA04 GPIO 4 ADC - AD[1] PM - GCLK[1] USBB - USB_VBOF ABDAC - DATAN[0]

9 11 PA05 GPIO 5 EIC - EXTINT[0] ADC - AD[2] USART1 - DCD ABDAC - DATA[1]

15
32059L–AVR32–01/2012

AT32UC3B

Figure 5-1. Power Supply

5.6.2 Voltage Regulator

5.6.2.1 Single Power Supply
The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be exter-
nally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

Figure 5-2. Supply Decoupling

3.3V VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

3.3V

1.8
V

VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

Single Power Supply
Dual Power Supply

1.8V
Regulator1.8V

Regulator

3.3V

1.8V

VDDIN

VDDOUT

1.8V
Regulator

CIN1

COUT1COUT2

CIN2

19
32059L–AVR32–01/2012

AT32UC3B

Figure 6-1. Overview of the AVR32UC CPU

6.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 6-2 on page 20 shows an overview of the AVR32UC pipeline stages.

AVR32UC CPU pipeline

Instruction memory controller

High
Speed

Bus
master

MPU

H
ig

h
Sp

ee
d

Bu
s

H
ig

h
Sp

ee
d

Bu
s

OCD
system

O
C

D
 in

te
rfa

ce

In
te

rru
pt

 c
on

tro
lle

r i
nt

er
fa

ce

High
Speed

Bus slave

H
ig

h
Sp

ee
d

Bu
s

D
at

a
R

AM
 in

te
rfa

ce

High Speed Bus master

Power/
Reset
control

R
es

et
 in

te
rfa

ce

CPU Local
Bus

master

C
PU

 L
oc

al
 B

us

Data memory controller

22
32059L–AVR32–01/2012

AT32UC3B

6.4 Programming Model

6.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 6-3. The AVR32UC Register File

6.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 6-4 on
page 22 and Figure 6-5 on page 23. The lower word contains the C, Z, N, V, and Q condition
code flags and the R, T, and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 6-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2LC
1

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

-

Mode Bit 2
Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

-

30
32059L–AVR32–01/2012

AT32UC3B

6.6 Module Configuration
All AT32UC3B parts do not implement the same CPU and Architecture Revision.

Table 6-5. CPU and Architecture Revision

Part Name Architecture Revision

AT32UC3Bx512 2

AT32UC3Bx256 1

AT32UC3Bx128 1

AT32UC3Bx64 1

32
32059L–AVR32–01/2012

AT32UC3B

7.3 Peripheral Address Map

Table 7-2. Peripheral Address Mapping

Address Peripheral Name

0xFFFE0000
USB USB 2.0 Interface - USB

0xFFFE1000
HMATRIX HSB Matrix - HMATRIX

0xFFFE1400
HFLASHC Flash Controller - HFLASHC

0xFFFF0000
PDCA Peripheral DMA Controller - PDCA

0xFFFF0800
INTC Interrupt controller - INTC

0xFFFF0C00
PM Power Manager - PM

0xFFFF0D00
RTC Real Time Counter - RTC

0xFFFF0D30
WDT Watchdog Timer - WDT

0xFFFF0D80
EIM External Interrupt Controller - EIM

0xFFFF1000
GPIO General Purpose Input/Output Controller - GPIO

0xFFFF1400
USART0 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART0

0xFFFF1800
USART1 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART1

0xFFFF1C00
USART2 Universal Synchronous/Asynchronous

Receiver/Transmitter - USART2

0xFFFF2400
SPI0 Serial Peripheral Interface - SPI0

0xFFFF2C00
TWI Two-wire Interface - TWI

0xFFFF3000
PWM Pulse Width Modulation Controller - PWM

0xFFFF3400
SSC Synchronous Serial Controller - SSC

0xFFFF3800
TC Timer/Counter - TC

40
32059L–AVR32–01/2012

AT32UC3B

Figure 9-1. MCU Cold Start-Up RESET_N tied to VDDIN

Figure 9-2. MCU Cold Start-Up RESET_N Externally Driven

Figure 9-3. MCU Hot Start-Up

In dual supply configuration, the power up sequence must be carefully managed to ensure a
safe startup of the device in all conditions.

The power up sequence must ensure that the internal logic is safely powered when the internal
reset (Power On Reset) is released and that the internal Flash logic is safely powered when the
CPU fetch the first instructions.

VPOR+VDDCORE

Internal
MCU Reset

TSSU1

Internal
POR Reset

VPOR-

TPOR TRST

RESET_N

VRESTART

VPOR+VDDCORE

Internal
MCU Reset

TSSU1

Internal
POR Reset

VPOR-

TPOR TRST

RESET_N

VRESTART

VDDCORE

Internal
MCU Reset

TSSU2

RESET_N
BOD Reset
WDT Reset

50
32059L–AVR32–01/2012

AT32UC3B

9.9 USB Transceiver Characteristics

9.9.1 Electrical Characteristics

The USB on-chip buffers comply with the Universal Serial Bus (USB) v2.0 standard. All AC
parameters related to these buffers can be found within the USB 2.0 electrical specifications.

Table 9-25. Electrical Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

REXT
Recommended external USB series
resistor

In series with each USB pin with
±5% 39 Ω

57
32059L–AVR32–01/2012

AT32UC3B

Figure 10-2. TQFP-48 package drawing

Table 10-5. Device and Package Maximum Weight

Weight 100 mg

Table 10-6. Package Characteristics

Moisture Sensitivity Level Jedec J-STD-20D-MSL3

Table 10-7. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification e3

61
32059L–AVR32–01/2012

AT32UC3B

11. Ordering Information

Device Ordering Code Package Conditioning
Temperature Operating

Range
AT32UC3B0512 AT32UC3B0512-A2UES TQFP 64 - Industrial (-40°C to 85°C)

AT32UC3B0512-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0512-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UES QFN 64 - Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256 AT32UC3B0256-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0256-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0128 AT32UC3B0128-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0128-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0128-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0128-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B064 AT32UC3B064-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B064-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B064-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B064-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B1512 AT32UC3B1512-Z1UT QFN 48 - Industrial (-40°C to 85°C)

AT32UC3B1512-Z1UR QFN 48 - Industrial (-40°C to 85°C)

AT32UC3B1256 AT32UC3B1256-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1256-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1256-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1256-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1128 AT32UC3B1128-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1128-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1128-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1128-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

AT32UC3B164 AT32UC3B164-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B164-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B164-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B164-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

65
32059L–AVR32–01/2012

AT32UC3B

20. USB

21. UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).
Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID
Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel.

2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode.

72
32059L–AVR32–01/2012

AT32UC3B

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

4. Flash

5. Reset vector is 80000020h rather than 80000000h
Reset vector is 80000020h rather than 80000000h.
Fix/Workaround
The flash program code must start at the address 80000020h. The flash memory range
80000000h-80000020h must be programmed with 00000000h.

- USART

1. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

2. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

3. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

78
32059L–AVR32–01/2012

AT32UC3B

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

4. USART

5. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

6. ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

8. Corruption after receiving too many bits in SPI slave mode
If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8
bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

83
32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode.

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant: PA29 and PA30.
Fix/Workaround
None.

- TC

1. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

87
32059L–AVR32–01/2012

AT32UC3B

12.2.3 Rev. F

- PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.
Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWN counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period.
- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).
Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.
Fix/Workaround
For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.
Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now begin and RXREADY will now behave as expected.

90
32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed
The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data
TWI in master mode will continue to read data on the line even if the shift register and the
RHR register are full. This will generate an overrun error.
Fix/Workaround
To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte
before a STOP condition
In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP
condition (what the master is not supposed to do), the following TWI slave receiver mode
frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by
resetting the TWI.
Fix/Workaround
If the TWI is used as a slave transmitter with a master that acknowledges the last data byte
before a STOP condition, it is necessary to reset the TWI before entering slave receiver
mode.

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant: PA29 and PA30.
Fix/Workaround
None.

9. Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant
Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20,
PB21, PB22, PB23, PB27, PB28.
Fix/Workaround
None.

10. TC

11. Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the

97
32059L–AVR32–01/2012

AT32UC3B

- USART

1. USART Manchester Encoder Not Working
Manchester encoding/decoding is not working.
Fix/Workaround
Do not use manchester encoding.

2. USART RXBREAK problem when no timeguard
In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0
and the break character is located just after the stop bit.
Fix/Workaround
If the NBSTOP is 1, timeguard should be different from 0.

3. USART Handshaking: 2 characters sent / CTS rises when TX
If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty,
the TXHOLDING is also transmitted.
Fix/Workaround
None.

4. USART PDC and TIMEGUARD not supported in MANCHESTER
Manchester encoding/decoding is not working.
Fix/Workaround
Do not use manchester encoding.

5. USART SPI mode is non functional on this revision
USART SPI mode is non functional on this revision.
Fix/Workaround
Do not use the USART SPI mode.

- HMATRIX

1. HMatrix fixed priority arbitration does not work
Fixed priority arbitration does not work.
Fix/Workaround
Use Round-Robin arbitration instead.

- Clock characteristic

1. PBA max frequency
The Peripheral bus A (PBA) max frequency is 30MHz instead of 60MHz.
Fix/Workaround
Do not set the PBA maximum frequency higher than 30MHz.

- FLASHC

1. The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C
on revB instead of 0xFFFE1410
The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C on
revB instead of 0xFFFE1410.
Fix/Workaround
None.

98
32059L–AVR32–01/2012

AT32UC3B

2. The command Quick Page Read User Page(QPRUP) is not functional
The command Quick Page Read User Page(QPRUP) is not functional.
Fix/Workaround
None.

3. PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0]
on revision B instead of WriteData[7:0], ByteAddress[2:0]
PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on
revision B instead of WriteData[7:0], ByteAddress[2:0].
Fix/Workaround
None.

4. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

5.

- RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the
RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the
HSB clock
Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC
peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock.
Fix/Workaround
Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of
four or more relative to the HSB clock.

2. The RTC CLKEN bit (bit number 16) of CTRL register is not available
The RTC CLKEN bit (bit number 16) of CTRL register is not available.
Fix/Workaround
Do not use the CLKEN bit of the RTC on Rev B.

