Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|-------------------------------------------------------------| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 2 | | Number of Macrocells | 32 | | Number of Gates | 600 | | Number of I/O | 36 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LCC (J-Lead) | | Supplier Device Package | 44-PLCC (16.59x16.59) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7032aelc44-10 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 1. MAX 700 | OA Device Featur | es | | | | |------------------------|------------------|-----------|-----------|-----------|-----------| | Feature | EPM7032AE | EPM7064AE | EPM7128AE | EPM7256AE | EPM7512AE | | Usable gates | 600 | 1,250 | 2,500 | 5,000 | 10,000 | | Macrocells | 32 | 64 | 128 | 256 | 512 | | Logic array blocks | 2 | 4 | 8 | 16 | 32 | | Maximum user I/O pins | 36 | 68 | 100 | 164 | 212 | | t <sub>PD</sub> (ns) | 4.5 | 4.5 | 5.0 | 5.5 | 7.5 | | t <sub>SU</sub> (ns) | 2.9 | 2.8 | 3.3 | 3.9 | 5.6 | | t <sub>FSU</sub> (ns) | 2.5 | 2.5 | 2.5 | 2.5 | 3.0 | | t <sub>CO1</sub> (ns) | 3.0 | 3.1 | 3.4 | 3.5 | 4.7 | | f <sub>CNT</sub> (MHz) | 227.3 | 222.2 | 192.3 | 172.4 | 116.3 | # ...and More Features - 4.5-ns pin-to-pin logic delays with counter frequencies of up to 227.3 MHz - MultiVolt<sup>TM</sup> I/O interface enables device core to run at 3.3 V, while I/O pins are compatible with 5.0-V, 3.3-V, and 2.5-V logic levels - Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), spacesaving FineLine BGA™, and plastic J-lead chip carrier (PLCC) packages - Supports hot-socketing in MAX 7000AE devices - Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance - PCI-compatible - Bus-friendly architecture, including programmable slew-rate control - Open-drain output option - Programmable macrocell registers with individual clear, preset, clock, and clock enable controls - Programmable power-up states for macrocell registers in MAX 7000AE devices - Programmable power-saving mode for 50% or greater power reduction in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - Programmable security bit for protection of proprietary designs - 6 to 10 pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Programmable output slew-rate control - Programmable ground pins MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms, providing up to 32 product terms per macrocell. MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems. MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes: - Global clock signal. This mode achieves the fastest clock-to-output performance. - Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. Two global clock signals are available in MAX 7000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000AE device may be set to either a high or low state. This power-up state is specified at design entry. Upon power-up, each register in EPM7128A and EPM7256A devices are set to a low state. All MAX 7000A I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast (as low as 2.5 ns) input setup time. # **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. ## Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay ( $t_{SEXP}$ ) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells. Shareable expanders can be shared by any or all macrocells in an LAB. Figure 3. MAX 7000A Shareable Expanders ## Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay ( $t_{PEXP}$ ). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$ . Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders, and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell. # SameFrame Pin-Outs MAX 7000A devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7128AE device in a 100-pin FineLine BGA package to an EPM7512AE device in a 256-pin FineLine BGA package. The Altera design software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 7). Figure 7. SameFrame Pin-Out Example 100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements) 256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements) # **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. # Programming a Single MAX 7000A Device The time required to program a single MAX 7000A device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: $t_{PROG}$ = Programming time $t_{PPULSE}$ = Sum of the fixed times to erase, program, and verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: $t_{VER}$ = Verify time $t_{VPULSE}$ = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices. | Table 9. MAX 7000A Boundary-So | Table 9. MAX 7000A Boundary-Scan Register Length | | | | | | | |--------------------------------|--------------------------------------------------|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | EPM7032AE | 96 | | | | | | | | EPM7064AE | 192 | | | | | | | | EPM7128A | 288 | | | | | | | | EPM7128AE | 288 | | | | | | | | EPM7256A | 480 | | | | | | | | EPM7256AE | 480 | | | | | | | | EPM7512AE | 624 | | | | | | | | Table 10. 32 | Bit MAX 70 | 100A Device IDCODE No | ote (1) | | | | | | | |--------------|---------------------|-----------------------|--------------------------------------|------------------|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | Version<br>(4 Bits) | Part Number (16 Bits) | Manufacturer's<br>Identity (11 Bits) | 1 (1 Bit)<br>(2) | | | | | | | EPM7032AE | 0001 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | EPM7064AE | 0001 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | EPM7128A | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | EPM7128AE | 0001 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | EPM7256A | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | EPM7256AE | 0001 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | EPM7512AE | 0001 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST. # Programmable Speed/Power Control MAX 7000A devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000A device for either high-speed (i.e., with the Turbo Bit<sup>TM</sup> option turned on) or low-power operation (i.e., with the Turbo Bit option turned off). As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder ( $t_{LPA}$ ) for the $t_{LAD}$ , $t_{LAC}$ , $t_{IC}$ , $t_{EN}$ , $t_{SEXP}$ , $t_{ACL}$ , and $t_{CPPW}$ parameters. # Output Configuration MAX 7000A device outputs can be programmed to meet a variety of system-level requirements. # MultiVolt I/O Interface The MAX 7000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000A devices to connect to systems with differing supply voltages. MAX 7000A devices in all packages can be set for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCIO pins can be connected to either a 3.3-V or 2.5-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $\rm V_{CCIO}$ levels lower than 3.0 V incur a slightly greater timing delay of $t_{OD2}$ instead of $t_{OD1}$ . Inputs can always be driven by 2.5-V, 3.3-V, or 5.0-V signals. Table 12 describes the MAX 7000A MultiVolt I/O support. | Table 12. MAX 7000A MultiVolt I/O Support | | | | | | | | | | |--------------------------------------------------------------|-----------|----------|----------|----------|-----|-----|--|--|--| | V <sub>CCIO</sub> Voltage Input Signal (V) Output Signal (V) | | | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | 2.5 | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | | | | | | | 3.3 | 3.3 🗸 🗸 🗸 | | | | | | | | | | Table 1 | 4. MAX 7000A Device Recomm | ended Operating Conditions | | | | |--------------------|-----------------------------------------------------|----------------------------|------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V <sub>CCINT</sub> | Supply voltage for internal logic and input buffers | (3), (13) | 3.0 | 3.6 | V | | V <sub>CCIO</sub> | Supply voltage for output drivers, 3.3-V operation | (3) | 3.0 | 3.6 | V | | | Supply voltage for output drivers, 2.5-V operation | (3) | 2.3 | 2.7 | V | | V <sub>CCISP</sub> | Supply voltage during in-<br>system programming | | 3.0 | 3.6 | V | | V <sub>I</sub> | Input voltage | (4) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V <sub>CCIO</sub> | V | | T <sub>A</sub> | Ambient temperature | Commercial range | 0 | 70 | ° C | | | | Industrial range (5) | -40 | 85 | ° C | | TJ | Junction temperature | Commercial range | 0 | 90 | ° C | | | | Industrial range (5) | -40 | 105 | ° C | | | | Extended range (5) | -40 | 130 | ° C | | t <sub>R</sub> | Input rise time | | | 40 | ns | | t <sub>F</sub> | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------------|--------------------------------------------------------------|-------------------------|------|------| | V <sub>IH</sub> | High-level input voltage | | 1.7 | 5.75 | V | | V <sub>IL</sub> | Low-level input voltage | | -0.5 | 0.8 | V | | V <sub>OH</sub> | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V <sub>CCIO</sub> – 0.2 | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V$ (7) | 2.1 | | V | | | | I <sub>OH</sub> = -1 mA DC, V <sub>CCIO</sub> = 2.30 V (7) | 2.0 | | V | | | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (7)$ | 1.7 | | V | | V <sub>OL</sub> | 3.3-V low-level TTL output voltage | $I_{OL} = 8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.2 | V | | | 2.5-V low-level output voltage | $I_{OL} = 100 \mu A DC, V_{CCIO} = 2.30 V (8)$ | | | V | | | | I <sub>OL</sub> = 1 mA DC, V <sub>CCIO</sub> = 2.30 V (8) | | | V | | | | I <sub>OL</sub> = 2 mA DC, V <sub>CCIO</sub> = 2.30 V (8) | | 0.7 | V | | կ | Input leakage current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (9)$ | -10 | 10 | μΑ | | I <sub>OZ</sub> | Tri-state output off-state current | V <sub>I</sub> = -0.5 to 5.5 V (9) | -10 | 10 | μΑ | | R <sub>ISP</sub> | Value of I/O pin pull-up resistor | V <sub>CCIO</sub> = 3.0 to 3.6 V (10) | 20 | 50 | kΩ | | | during in-system programming | V <sub>CCIO</sub> = 2.3 to 2.7 V (10) | 30 | 80 | kΩ | | | or during power-up | V <sub>CCIO</sub> = 2.3 to 3.6 V (11) | 20 | 74 | kΩ | | Table 1 | 6. MAX 7000A Device Capacital | nce Note (12) | | | | | | |------------------|-------------------------------|-------------------------------------|--|---|----|--|--| | Symbol | Parameter | Parameter Conditions Min Max Uni | | | | | | | C <sub>IN</sub> | Input pin capacitance | V <sub>IN</sub> = 0 V, f = 1.0 MHz | | 8 | pF | | | | C <sub>I/O</sub> | I/O pin capacitance | V <sub>OUT</sub> = 0 V, f = 1.0 MHz | | 8 | pF | | | | Symbol | Parameter | | | Speed | Grade | | | Unit | | |------------------|----------------------|-----|-----|-------|-------|--------|-----|------|----| | | | | - | -4 -7 | | -7 -10 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t <sub>IC</sub> | Array clock delay | | | 1.2 | | 2.0 | | 2.5 | ns | | t <sub>EN</sub> | Register enable time | | | 0.6 | | 1.0 | | 1.2 | ns | | $t_{GLOB}$ | Global control delay | | | 0.8 | | 1.3 | | 1.9 | ns | | t <sub>PRE</sub> | Register preset time | | | 1.2 | | 1.9 | | 2.6 | ns | | t <sub>CLR</sub> | Register clear time | | | 1.2 | | 1.9 | | 2.6 | ns | | $t_{PIA}$ | PIA delay | (2) | | 0.9 | | 1.5 | | 2.1 | ns | | $t_{LPA}$ | Low-power adder | (6) | | 2.5 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | |-------------------|------------------------------------------|-------------------|-------|-------------|-------|-----|-------|------|-----| | | | | -4 | -4 -7 | | 7 - | | 0 | | | | | | Min | Max | Min | Max | Min | Max | | | t <sub>PD1</sub> | Input to non-<br>registered output | C1 = 35 pF<br>(2) | | 4.5 | | 7.5 | | 10.0 | ns | | t <sub>PD2</sub> | I/O input to non-<br>registered output | C1 = 35 pF<br>(2) | | 4.5 | | 7.5 | | 10.0 | ns | | t <sub>SU</sub> | Global clock setup time | (2) | 2.8 | | 4.7 | | 6.2 | | ns | | t <sub>H</sub> | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>FSU</sub> | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | t <sub>FH</sub> | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>CO1</sub> | Global clock to output delay | C1 = 35 pF | 1.0 | 3.1 | 1.0 | 5.1 | 1.0 | 7.0 | ns | | t <sub>CH</sub> | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t <sub>CL</sub> | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t <sub>ASU</sub> | Array clock setup time | (2) | 1.6 | | 2.6 | | 3.6 | | ns | | t <sub>AH</sub> | Array clock hold time | (2) | 0.3 | | 0.4 | | 0.6 | | ns | | t <sub>ACO1</sub> | Array clock to output delay | C1 = 35 pF<br>(2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.6 | ns | | t <sub>ACH</sub> | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t <sub>ACL</sub> | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t <sub>CNT</sub> | Minimum global clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f <sub>CNT</sub> | Maximum internal global clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | t <sub>ACNT</sub> | Minimum array clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f <sub>ACNT</sub> | Maximum internal array clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|-------------------------------------------------------------------------------------------|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 4 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | t <sub>IN</sub> | Input pad and buffer delay | | | 0.6 | | 1.1 | | 1.4 | ns | | t <sub>IO</sub> | I/O input pad and buffer delay | | | 0.6 | | 1.1 | | 1.4 | ns | | t <sub>FIN</sub> | Fast input delay | | | 2.5 | | 3.0 | | 3.7 | ns | | t <sub>SEXP</sub> | Shared expander delay | | | 1.8 | | 3.0 | | 3.9 | ns | | $t_{PEXP}$ | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | $t_{LAD}$ | Logic array delay | | | 1.5 | | 2.5 | | 3.2 | ns | | t <sub>LAC</sub> | Logic control array delay | | | 0.6 | | 1.0 | | 1.2 | ns | | t <sub>IOE</sub> | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t <sub>OD1</sub> | Output buffer and pad delay, slow slew rate = off V <sub>CCIO</sub> = 3.3 V | C1 = 35 pF | | 0.8 | | 1.3 | | 1.8 | ns | | t <sub>OD2</sub> | Output buffer and pad delay, slow slew rate = off V <sub>CCIO</sub> = 2.5 V | C1 = 35 pF<br>(5) | | 1.3 | | 1.8 | | 2.3 | ns | | t <sub>OD3</sub> | Output buffer and pad<br>delay, slow slew rate = on<br>V <sub>CCIO</sub> = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.3 | | 6.8 | ns | | t <sub>ZX1</sub> | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t <sub>ZX2</sub> | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF<br>(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t <sub>ZX3</sub> | Output buffer enable delay, slow slew rate = on V <sub>CCIO</sub> = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | $t_{XZ}$ | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t <sub>SU</sub> | Register setup time | | 1.3 | | 2.0 | | 2.9 | | ns | | t <sub>H</sub> | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t <sub>FSU</sub> | Register setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t <sub>FH</sub> | Register hold time of fast input | | 1.5 | | 1.5 | | 1.5 | | ns | | $t_{RD}$ | Register delay | | | 0.7 | | 1.2 | | 1.6 | ns | | t <sub>COMB</sub> | Combinatorial delay | | | 0.6 | | 0.9 | | 1.3 | ns | | t <sub>IC</sub> | Array clock delay | | | 1.2 | | 1.9 | | 2.5 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|-------------------------------------------------------------------------------------------|-------------------|-----|-----|-------|-------|-----|------|-----------| | | | | - | 5 | | -7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | <u></u> . | | t <sub>IN</sub> | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | $t_{IO}$ | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t <sub>FIN</sub> | Fast input delay | | | 2.5 | | 3.0 | | 3.4 | ns | | t <sub>SEXP</sub> | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | t <sub>PEXP</sub> | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | $t_{LAD}$ | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | t <sub>LAC</sub> | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t <sub>IOE</sub> | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t <sub>OD1</sub> | Output buffer and pad<br>delay, slow slew rate = off<br>V <sub>CCIO</sub> = 3.3 V | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | t <sub>OD2</sub> | Output buffer and pad<br>delay, slow slew rate = off<br>V <sub>CCIO</sub> = 2.5 V | C1 = 35 pF<br>(5) | | 1.3 | | 1.7 | | 2.1 | ns | | t <sub>OD3</sub> | Output buffer and pad<br>delay, slow slew rate = on<br>V <sub>CCIO</sub> = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | t <sub>ZX1</sub> | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t <sub>ZX2</sub> | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF<br>(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t <sub>ZX3</sub> | Output buffer enable delay,<br>slow slew rate = on<br>V <sub>CCIO</sub> = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | $t_{XZ}$ | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | $t_{SU}$ | Register setup time | | 1.4 | | 2.1 | | 2.9 | | ns | | $t_H$ | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t <sub>FSU</sub> | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | t <sub>FH</sub> | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | $t_{RD}$ | Register delay | | | 0.8 | | 1.2 | | 1.6 | ns | | t <sub>COMB</sub> | Combinatorial delay | | | 0.5 | | 0.9 | | 1.3 | ns | | $t_{IC}$ | Array clock delay | | | 1.2 | | 1.7 | | 2.2 | ns | | Symbol | Parameter | Conditions | onditions Speed Grade | | | | | Uni | | |-------------------|------------------------------------------------------------------------------|-------------------|-----------------------|-----|-----|-----|-----|------|----| | | | | -5 | | -7 | | -10 | | 1 | | | | | Min | Max | Min | Max | Min | Max | | | $t_{IN}$ | Input pad and buffer delay | | | 0.7 | | 0.9 | | 1.2 | ns | | t <sub>IO</sub> | I/O input pad and buffer delay | | | 0.7 | | 0.9 | | 1.2 | ns | | t <sub>FIN</sub> | Fast input delay | | | 2.4 | | 2.9 | | 3.4 | ns | | t <sub>SEXP</sub> | Shared expander delay | | | 2.1 | | 2.8 | | 3.7 | ns | | t <sub>PEXP</sub> | Parallel expander delay | | | 0.3 | | 0.5 | | 0.6 | ns | | $t_{LAD}$ | Logic array delay | | | 1.7 | | 2.2 | | 2.8 | ns | | t <sub>LAC</sub> | Logic control array delay | | | 0.8 | | 1.0 | | 1.3 | ns | | t <sub>IOE</sub> | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t <sub>OD1</sub> | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 0.9 | | 1.2 | | 1.6 | ns | | t <sub>OD2</sub> | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF<br>(5) | | 1.4 | | 1.7 | | 2.1 | ns | | t <sub>OD3</sub> | Output buffer and pad delay, slow slew rate = on $V_{CCIO}$ = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.6 | ns | | t <sub>ZX1</sub> | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t <sub>ZX2</sub> | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF<br>(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t <sub>ZX3</sub> | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | $t_{XZ}$ | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | $t_{SU}$ | Register setup time | | 1.5 | | 2.1 | | 2.9 | | ns | | $t_H$ | Register hold time | | 0.7 | | 0.9 | | 1.2 | | ns | | t <sub>FSU</sub> | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | t <sub>FH</sub> | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | $t_{RD}$ | Register delay | | | 0.9 | | 1.2 | | 1.6 | ns | | $t_{COMB}$ | Combinatorial delay | | | 0.5 | | 0.8 | | 1.2 | ns | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | |-------------------|----------------------|------------|-----|-------------|-----|-----|-----|-----|----| | | | | -5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | $t_{IC}$ | Array clock delay | | | 1.2 | | 1.6 | | 2.1 | ns | | $t_{EN}$ | Register enable time | | | 0.8 | | 1.0 | | 1.3 | ns | | t <sub>GLOB</sub> | Global control delay | | | 1.0 | | 1.5 | | 2.0 | ns | | t <sub>PRE</sub> | Register preset time | | | 1.6 | | 2.3 | | 3.0 | ns | | t <sub>CLR</sub> | Register clear time | | | 1.6 | | 2.3 | | 3.0 | ns | | $t_{PIA}$ | PIA delay | (2) | | 1.7 | | 2.4 | | 3.2 | ns | | $t_{LPA}$ | Low-power adder | (6) | | 4.0 | | 4.0 | | 5.0 | ns | | Table 2 | Table 29. EPM7256A External Timing Parameters Note (1) | | | | | | | | | | | |-------------------|----------------------------------------------------------|-------------------|----------------|-----|-------|-----|------|------|------|------|------| | Symbol | Parameter | Conditions | ns Speed Grade | | | | | | | | Unit | | | | | -6 | | -7 | | -10 | | -12 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t <sub>PD1</sub> | Input to non-registered output | C1 = 35 pF<br>(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t <sub>PD2</sub> | I/O input to non-<br>registered output | C1 = 35 pF<br>(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t <sub>SU</sub> | Global clock setup time | (2) | 3.7 | | 4.6 | | 6.2 | | 7.4 | | ns | | t <sub>H</sub> | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>FSU</sub> | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t <sub>FH</sub> | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>CO1</sub> | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 4.2 | 1.0 | 5.5 | 1.0 | 6.6 | ns | | t <sub>CH</sub> | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t <sub>CL</sub> | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t <sub>ASU</sub> | Array clock setup time | (2) | 8.0 | | 1.0 | | 1.4 | | 1.6 | | ns | | t <sub>AH</sub> | Array clock hold time | (2) | 1.9 | | 2.7 | | 4.0 | | 5.1 | | ns | | t <sub>ACO1</sub> | Array clock to output delay | C1 = 35 pF<br>(2) | 1.0 | 6.2 | 1.0 | 7.8 | 1.0 | 10.3 | 1.0 | 12.4 | ns | | t <sub>ACH</sub> | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t <sub>ACL</sub> | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t <sub>CNT</sub> | Minimum global clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f <sub>CNT</sub> | Maximum internal global clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | | t <sub>ACNT</sub> | Minimum array clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f <sub>ACNT</sub> | Maximum internal array clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | Figure 17. 100-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram #### Version 4.3 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.3: - Added extended temperature devices to document - Updated Table 14. ### Version 4.2 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.2: - Removed *Note* (1) from Table 2. - Removed *Note* (4) from Tables 3 and 4. #### Version 4.1 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.1: - Updated leakage current information in Table 15. - Updated Note (9) of Table 15. - Updated *Note* (1) of Tables 17 through 30. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit\_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. L.S. EN ISO 9001