E·XFL

Intel - EPM7032AETI44-7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

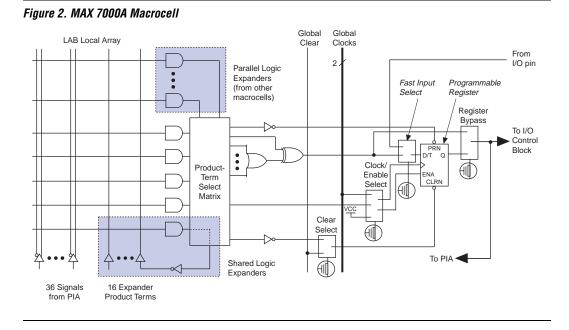
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7032aeti44-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high-density integration of SSI, MSI, and LSI logic functions. It easily integrates multiple devices including PALs, GALs, and 22V10s devices. MAX 7000A devices are available in a wide range of packages, including PLCC, BGA, FineLine BGA, Ultra FineLine BGA, PQFP, and TQFP packages. See Table 3 and Table 4.

Table 3. MAX 700	OA Maximum U	lser I/O Pins	Note (1)			
Device	44-Pin PLCC	44-Pin TQFP	49-Pin Ultra FineLine BGA (2)	84-Pin PLCC	100-Pin TQFP	100-Pin FineLine BGA (3)
EPM7032AE	36	36				
EPM7064AE	36	36	41		68	68
EPM7128A				68	84	84
EPM7128AE				68	84	84
EPM7256A					84	
EPM7256AE					84	84
EPM7512AE						


Table 4. MAX 7000A Maximum User I/O PinsNote (1)										
Device	144-Pin TQFP	169-Pin Ultra FineLine BGA (2)	208-Pin PQFP	256-Pin BGA	256-Pin FineLine BGA (3)					
EPM7032AE										
EPM7064AE										
EPM7128A	100				100					
EPM7128AE	100	100			100					
EPM7256A	120		164		164					
EPM7256AE	120		164		164					
EPM7512AE	120		176	212	212					

Notes to tables:

- (1) When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.
- (2) All Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details.
- (3) All FineLine BGA packages are footprint-compatible via the SameFrame feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details.

Macrocells

MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell.

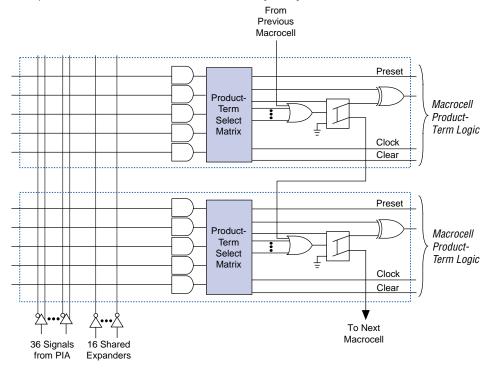
Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

Parallel Expanders


Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

The compiler can allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

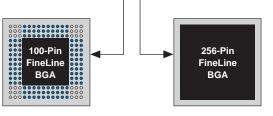
Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders, and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 4. MAX 7000A Parallel Expanders

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

SameFrame Pin-Outs


MAX 7000A devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7128AE device in a 100-pin FineLine BGA package to an EPM7512AE device in a 256-pin FineLine BGA package.

The Altera design software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 7).

Printed Circuit Board Designed for 256-Pin FineLine BGA Package

 100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

For more information on using the Jam STAPL language, see *Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded Processor)* and *Application Note 122 (Using Jam STAPL for ISP & ICR via an Embedded Processor)*.

ISP circuitry in MAX 7000AE devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 5 through 7 are associated with the worst-case method using the enhanced ISP algorithm.

Device	Programming Stand-Alone Ve			Verification
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}
EPM7032AE	2.00	55,000	0.002	18,000
EPM7064AE	2.00	105,000	0.002	35,000
EPM7128AE	2.00	205,000	0.002	68,000
EPM7256AE	2.00	447,000	0.002	149,000
EPM7512AE	2.00	890,000	0.002	297,000
EPM7128A (1)	5.11	832,000	0.03	528,000
EPM7256A (1)	6.43	1,603,000	0.03	1,024,000

Tables 6 and 7 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 6. MAX 7000A In-System Programming Times for Different Test Clock Frequencies										
Device				f	тск				Units	
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM7032AE	2.01	2.01	2.03	2.06	2.11	2.28	2.55	3.10	S	
EPM7064AE	2.01	2.02	2.05	2.11	2.21	2.53	3.05	4.10	s	
EPM7128AE	2.02	2.04	2.10	2.21	2.41	3.03	4.05	6.10	s	
EPM7256AE	2.05	2.09	2.23	2.45	2.90	4.24	6.47	10.94	s	
EPM7512AE	2.09	2.18	2.45	2.89	3.78	6.45	10.90	19.80	s	
EPM7128A (1)	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S	
EPM7256A (1)	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S	

Open-Drain Output Option

MAX 7000A devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Open-drain output pins on MAX 7000A devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a high V_{IH} . When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V to meet CMOS V_{OH} requirements. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Programmable Ground Pins

Each unused I/O pin on MAX 7000A devices may be used as an additional ground pin. In EPM7128A and EPM7256A devices, utilizing unused I/O pins as additional ground pins requires using the associated macrocell. In MAX 7000AE devices, this programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

Slew-Rate Control

The output buffer for each MAX 7000A I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

Power Sequencing & Hot-Socketing	Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order.
	Signals can be driven into MAX 7000AE devices before and during power- up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user.
	MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V _{CCINT} and V _{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant.
	EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up.
Design Security	All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.
Generic Testing	MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow.

VCC

To Test

System

C1 (includes jig

Ŧ

capacitance)

Figure 9. MAX 7000A AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests 703 Ω [521 Ω] *≶* must not be performed under AC conditions. Large-amplitude, fast-ground-Device Output current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between 586 Ω [481 Ω] *≥* the device ground pin and the test system ground, significant reductions in Device input observable noise immunity can result. rise and fall Numbers in brackets are for 2.5-V times < 2 ns outputs. Numbers without brackets are for 3.3-V outputs.

Operating Conditions

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000A devices.

Table 1	Table 13. MAX 7000A Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V					
VI	DC input voltage		-2.0	5.75	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _A	Ambient temperature	Under bias	-65	135	°C					
Τ _J	Junction temperature	BGA, FineLine BGA, PQFP, and TQFP packages, under bias		135	°C					

Table 1	Table 14. MAX 7000A Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (13)	3.0	3.6	V					
V _{CCIO}	Supply voltage for output drivers, 3.3-V operation	(3)	3.0	3.6	V					
	Supply voltage for output drivers, 2.5-V operation	(3)	2.3 2.7 3.0 3.6	V						
V _{CCISP}	Supply voltage during in- system programming		3.0	3.6	V					
VI	Input voltage	(4)	-0.5	5.75	V					
Vo	Output voltage		0	V _{CCIO}	V					
T _A	Ambient temperature	Commercial range	0	70	°C					
		Industrial range (5)	-40	85	°C					
TJ	Junction temperature	Commercial range	0	90	°C					
		Industrial range (5)	-40	105	°C					
		Extended range (5)	-40	130	°C					
t _R	Input rise time			40	ns					
t _F	Input fall time			40	ns					

Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information.

Table 1	7. EPM7032AE External Timi	ng Parameters	Note ((1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-4 -		7 -1		10	1	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz

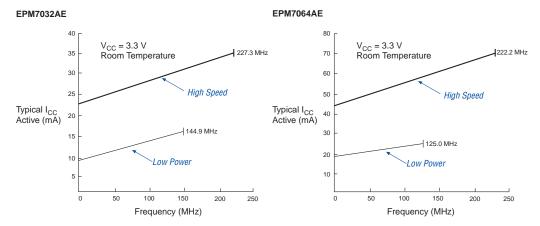
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	7	-	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{FIN}	Fast input delay			2.3		2.8		3.4	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t _{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Register hold time of fast input		1.5		1.5		1.5		ns
t _{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns

Table 20. EPM7064AE Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions	s Speed Grade					Unit	
			-	-4 -7 -10					
			Min	Max	Min	Max	Min	Max	
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns
t _{PRE}	Register preset time			1.3		2.1		2.9	ns
t _{CLR}	Register clear time			1.3		2.1		2.9	ns
t _{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns
t _{LPA}	Low-power adder	(6)		3.5		4.0		5.0	ns

г

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	7		10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		0.9		1.2	ns
t _{IO}	I/O input pad and buffer delay			0.7		0.9		1.2	ns
t _{FIN}	Fast input delay			2.4		2.9		3.4	ns
t _{SEXP}	Shared expander delay			2.1		2.8		3.7	ns
t _{PEXP}	Parallel expander delay			0.3		0.5		0.6	ns
t _{LAD}	Logic array delay			1.7		2.2		2.8	ns
t _{LAC}	Logic control array delay			0.8		1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.9		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.4		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.5		2.1		2.9		ns
t _H	Register hold time		0.7		0.9		1.2		ns
t _{FSU}	Register setup time of fast input		1.1		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns
t _{RD}	Register delay			0.9		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.5		0.8		1.2	ns

-


E

Symbol	Parameter	Conditions	Speed Grade							
			-7		-10		-12		1	
			Min	Max	Min	Max	Min	Max		
t _{IC}	Array clock delay			1.8		2.3		2.9	ns	
t _{EN}	Register enable time			1.0		1.3		1.7	ns	
t _{GLOB}	Global control delay			1.7		2.2		2.7	ns	
t _{PRE}	Register preset time			1.0		1.4		1.7	ns	
t _{CLR}	Register clear time			1.0		1.4		1.7	ns	
t _{PIA}	PIA delay	(2)		3.0		4.0		4.8	ns	
t _{LPA}	Low-power adder	(6)		4.5		5.0		5.0	ns	

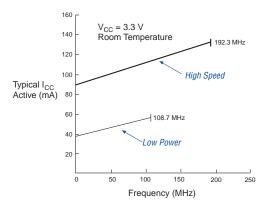
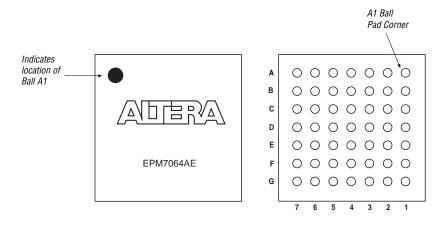

Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-12		
			Min	Max	Min	Max	Min	Мах	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	3.7		4.6		6.2		7.4		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	4.2	1.0	5.5	1.0	6.6	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	0.8		1.0		1.4		1.6		ns
t _{AH}	Array clock hold time	(2)	1.9		2.7		4.0		5.1		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.2	1.0	7.8	1.0	10.3	1.0	12.4	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz
t _{acnt}	Minimum array clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz

Figure 13 shows the typical supply current versus frequency for MAX 7000A devices.



EPM7128A & EPM7128AE

Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outlines not drawn to scale.

Figure 16. 84-Pin PLCC Package Pin-Out Diagram

Package outline not drawn to scale.

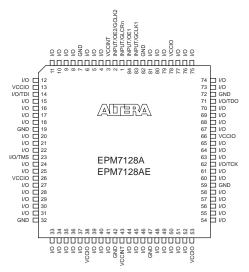


Figure 17. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

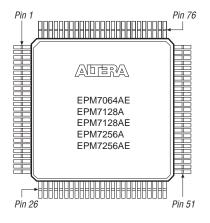
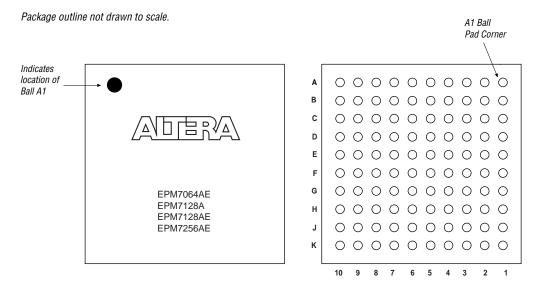



Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram

