

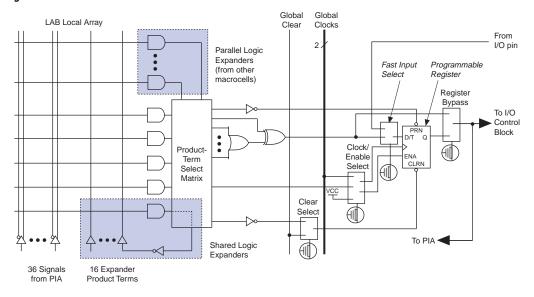
Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	4.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	68
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LBGA
Supplier Device Package	100-FBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064aefc100-4

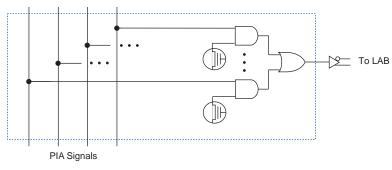

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Macrocells

MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell.

Figure 2. MAX 7000A Macrocell


Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

Figure 5. MAX 7000A PIA Routing

While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or $V_{CC}.$ Figure 6 shows the I/O control block for MAX 7000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

PIA

6 or 10 Global
Output Enable Signals (1)

OE Select Multiplexer

VCC

VCC

OE Select Multiplexer

VCC

Slew-Rate Control

Fast Input to
Macrocell
Register

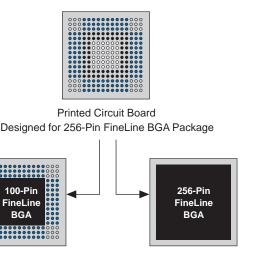
To PIA

Figure 6. I/O Control Block of MAX 7000A Devices

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.


The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

SameFrame Pin-Outs

MAX 7000A devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7128AE device in a 100-pin FineLine BGA package to an EPM7512AE device in a 256-pin FineLine BGA package.

The Altera design software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 7).

Figure 7. SameFrame Pin-Out Example

100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)

256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000A Device

The time required to program a single MAX 7000A device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time

 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells

 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

Table 7. MAX 70	000A Stand	d-Alone Ve	erification	Times for	Different T	est Clock F	requencies	3			
Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM7032AE	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	s		
EPM7064AE	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S		
EPM7128AE	0.01	0.02	0.04	0.07	0.14	0.34	0.68	1.36	S		
EPM7256AE	0.02	0.03	0.08	0.15	0.30	0.75	1.49	2.98	S		
EPM7512AE	0.03	0.06	0.15	0.30	0.60	1.49	2.97	5.94	S		
EPM7128A (1)	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	s		
EPM7256A (1)	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S		

Note to tables:

(1) EPM7128A and EPM7256A devices can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

Programming with External Hardware

MAX 7000A devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the MPU, and the appropriate device adapter. The MPU performs continuity checks to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices.

For more information, see *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000A devices include the JTAG BST circuitry defined by IEEE Std. 1149.1. Table 8 describes the JTAG instructions supported by MAX 7000A devices. The pin-out tables, available from the Altera web site (http://www.altera.com), show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices.

Table 9. MAX 7000A Boundary-Scan Register Length								
Device	Boundary-Scan Register Length							
EPM7032AE	96							
EPM7064AE	192							
EPM7128A	288							
EPM7128AE	288							
EPM7256A	480							
EPM7256AE	480							
EPM7512AE	624							

Table 10. 32	Table 10. 32-Bit MAX 7000A Device IDCODE Note (1)											
Device		IDCODE (32 Bits)										
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)								
EPM7032AE	0001	0111 0000 0011 0010	00001101110	1								
EPM7064AE	0001	0111 0000 0110 0100	00001101110	1								
EPM7128A	0000	0111 0001 0010 1000	00001101110	1								
EPM7128AE	0001	0111 0001 0010 1000	00001101110	1								
EPM7256A	0000	0111 0010 0101 0110	00001101110	1								
EPM7256AE	0001	0111 0010 0101 0110	00001101110	1								
EPM7512AE	0001	0111 0101 0001 0010	00001101110	1								

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST.

Open-Drain Output Option

MAX 7000A devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Open-drain output pins on MAX 7000A devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a high $V_{\rm IH}.$ When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V to meet CMOS $V_{\rm OH}$ requirements. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

Programmable Ground Pins

Each unused I/O pin on MAX 7000A devices may be used as an additional ground pin. In EPM7128A and EPM7256A devices, utilizing unused I/O pins as additional ground pins requires using the associated macrocell. In MAX 7000AE devices, this programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

Slew-Rate Control

The output buffer for each MAX 7000A I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

Power Sequencing & Hot-Socketing

Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The V_{CCIO} and V_{CCINT} power planes can be powered in any order.

Signals can be driven into MAX 7000AE devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user.

MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V_{CCINT} and V_{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant.

EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up.

Design Security

All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow.

MAX 7000A Programmable Logic Device Data Sheet

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) For EPM7128A and EPM7256A devices only, V_{CC} must rise monotonically.
- (4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (5) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.
- (6) These values are specified under the recommended operating conditions shown in Table 14 on page 28.
- (7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during power-up is ±300 μA. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified.
- (10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system.
- (11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up.
- (12) Capacitance is measured at 25 °C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF.
- (13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-4	4	-	7	-1	0	
		•	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Table 20	D. EPM7064AE Internal Ti	ming Parameters (Part 2 o	f 2)	Note (1)				
Symbol	Parameter	Conditions	Speed Grade						Unit
			-4 -7				10		
			Min	Max	Min	Max	Min	Max	
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns
t _{PRE}	Register preset time			1.3		2.1		2.9	ns
t _{CLR}	Register clear time			1.3		2.1		2.9	ns
t _{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns
t_{LPA}	Low-power adder	(6)		3.5		4.0		5.0	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
		·	-!	5	-	7	-1	10	
		•	Min	Max	Min	Max	Min	Max	Ē
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.9		5.2		6.9		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.5	1.0	4.8	1.0	6.4	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	2.0		2.7		3.6		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.4	1.0	7.3	1.0	9.7	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.8		7.9		10.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	172.4		126.6		95.2		MHz
t _{ACNT}	Minimum array clock period	(2)		5.8		7.9		10.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	172.4		126.6		95.2		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5		7	-	10	
			Min	Max	Min	Max	Min	Max	
t_{IN}	Input pad and buffer delay			0.7		0.9		1.2	ns
t _{IO}	I/O input pad and buffer delay			0.7		0.9		1.2	ns
t _{FIN}	Fast input delay			2.4		2.9		3.4	ns
t _{SEXP}	Shared expander delay			2.1		2.8		3.7	ns
t _{PEXP}	Parallel expander delay			0.3		0.5		0.6	ns
t_{LAD}	Logic array delay			1.7		2.2		2.8	ns
t _{LAC}	Logic control array delay			0.8		1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.9		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF (5)		1.4		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on V_{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t_{SU}	Register setup time		1.5		2.1		2.9		ns
t_H	Register hold time		0.7		0.9		1.2		ns
t _{FSU}	Register setup time of fast input		1.1		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns
t_{RD}	Register delay			0.9		1.2		1.6	ns
t_{COMB}	Combinatorial delay			0.5		0.8		1.2	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-5 -7		-5 -7 -10		10	
			Min	Max	Min	Max	Min	Max	1
t _{IC}	Array clock delay			1.2		1.6		2.1	ns
t_{EN}	Register enable time			0.8		1.0		1.3	ns
t_{GLOB}	Global control delay			1.0		1.5		2.0	ns
t _{PRE}	Register preset time			1.6		2.3		3.0	ns
t _{CLR}	Register clear time			1.6		2.3		3.0	ns
t_{PIA}	PIA delay	(2)		1.7		2.4		3.2	ns
t_{LPA}	Low-power adder	(6)		4.0		4.0		5.0	ns

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6	-	7	-1	10	-1	12	
			Min	Max	Min	Max	Min	Max	Min	Max	
t_{RD}	Register delay			1.7		2.1		2.8		3.3	ns
t _{COMB}	Combinatorial delay			1.7		2.1		2.8		3.3	ns
t _{IC}	Array clock delay			2.4		3.0		4.1		4.9	ns
t _{EN}	Register enable time			2.4		3.0		4.1		4.9	ns
t _{GLOB}	Global control delay			1.0		1.2		1.7		2.0	ns
t_{PRE}	Register preset time			3.1		3.9		5.2		6.2	ns
t _{CLR}	Register clear time			3.1		3.9		5.2		6.2	ns
t_{PIA}	PIA delay	(2)		0.9		1.1		1.5		1.8	ns
t_{LPA}	Low-power adder	(6)		11.0		10.0		10.0		10.0	ns

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6	-	7	-1	10	-1	12	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.4		0.5		0.6	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.4		0.5		0.6	ns
t_{FIN}	Fast input delay			2.4		3.0		3.4		3.8	ns
t _{SEXP}	Shared expander delay			2.8		3.5		4.7		5.6	ns
t _{PEXP}	Parallel expander delay			0.5		0.6		0.8		1.0	ns
t_{LAD}	Logic array delay			2.5		3.1		4.2		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.1		4.2		5.0	ns
t _{IOE}	Internal output enable delay			0.2		0.3		0.4		0.5	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.3		0.4		0.5		0.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF (5)		0.8		0.9		1.0		1.1	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.3		5.4		5.5		5.6	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		4.0		4.0		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF (5)		4.5		4.5		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		5.0	ns
t _{SU}	Register setup time		1.0		1.3		1.7		2.0		ns
t _H	Register hold time		1.7		2.4		3.7		4.7		ns
t _{FSU}	Register setup time of fast input		1.2		1.4		1.4		1.4		ns
t _{FH}	Register hold time of fast input		1.3		1.6		1.6		1.6		ns
t_{RD}	Register delay			1.6		2.0		2.7		3.2	ns

The parameters in this equation are:

MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt)

 MC_{DEV} = Number of macrocells in the device

MC_{USED} = Total number of macrocells in the design, as reported in

the Report File

 f_{MAX} = Highest clock frequency to the device

tog_{LC} = Average percentage of logic cells toggling at each clock

(typically 12.5%)

A, B, C = Constants, shown in Table 31

Table 31. MAX 7000A I _{CC} E	Table 31. MAX 7000A I _{CC} Equation Constants										
Device	A	В	C								
EPM7032AE	0.71	0.30	0.014								
EPM7064AE	0.71	0.30	0.014								
EPM7128A	0.71	0.30	0.014								
EPM7128AE	0.71	0.30	0.014								
EPM7256A	0.71	0.30	0.014								
EPM7256AE	0.71	0.30	0.014								
EPM7512AE	0.71	0.30	0.014								

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outlines not drawn to scale.

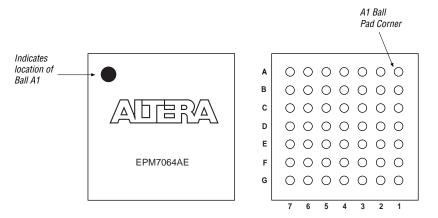
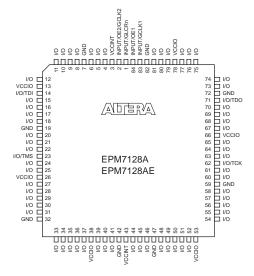



Figure 16. 84-Pin PLCC Package Pin-Out Diagram

Package outline not drawn to scale.

Version 4.3

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.3:

- Added extended temperature devices to document
- Updated Table 14.

Version 4.2

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.2:

- Removed *Note* (1) from Table 2.
- Removed *Note* (4) from Tables 3 and 4.

Version 4.1

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.1:

- Updated leakage current information in Table 15.
- Updated Note (9) of Table 15.
- Updated *Note* (1) of Tables 17 through 30.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.

Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

L.S. EN ISO 9001