Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 4 | | Number of Macrocells | 64 | | Number of Gates | 1250 | | Number of I/O | 36 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LCC (J-Lead) | | Supplier Device Package | 44-PLCC (16.59x16.59) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7064aelc44-10 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong The MAX 7000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high-density integration of SSI, MSI, and LSI logic functions. It easily integrates multiple devices including PALs, GALs, and 22V10s devices. MAX 7000A devices are available in a wide range of packages, including PLCC, BGA, FineLine BGA, Ultra FineLine BGA, PQFP, and TQFP packages. See Table 3 and Table 4. | Table 3. MAX 70 | 100A Maximum L | lser I/O Pins | Note (1) | | | | |-----------------|----------------|---------------|-------------------------------------|-------------|-----------------|--------------------------------| | Device | 44-Pin PLCC | 44-Pin TQFP | 49-Pin Ultra
FineLine
BGA (2) | 84-Pin PLCC | 100-Pin
TQFP | 100-Pin
FineLine
BGA (3) | | EPM7032AE | 36 | 36 | | | | | | EPM7064AE | 36 | 36 | 41 | | 68 | 68 | | EPM7128A | | | | 68 | 84 | 84 | | EPM7128AE | | | | 68 | 84 | 84 | | EPM7256A | | | | | 84 | | | EPM7256AE | | | | | 84 | 84 | | EPM7512AE | | | | | | | | Table 4. MAX 7000. | A Maximum Use | r I/O Pins Note (| 1) | | | |--------------------|---------------|-----------------------------------|--------------|-------------|-----------------------------| | Device | 144-Pin TQFP | 169-Pin Ultra
FineLine BGA (2) | 208-Pin PQFP | 256-Pin BGA | 256-Pin FineLine
BGA (3) | | EPM7032AE | | | | | | | EPM7064AE | | | | | | | EPM7128A | 100 | | | | 100 | | EPM7128AE | 100 | 100 | | | 100 | | EPM7256A | 120 | | 164 | | 164 | | EPM7256AE | 120 | | 164 | | 164 | | EPM7512AE | 120 | | 176 | 212 | 212 | #### Notes to tables: - When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins. - (2) All Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details. - (3) All FineLine BGA packages are footprint-compatible via the SameFrame feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details. MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms, providing up to 32 product terms per macrocell. MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems. MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. ### **Macrocells** MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell. Figure 2. MAX 7000A Macrocell Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes: - Global clock signal. This mode achieves the fastest clock-to-output performance. - Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. Two global clock signals are available in MAX 7000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000AE device may be set to either a high or low state. This power-up state is specified at design entry. Upon power-up, each register in EPM7128A and EPM7256A devices are set to a low state. All MAX 7000A I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast (as low as 2.5 ns) input setup time. PIA 6 or 10 Global Output Enable Signals (1) From Macrocell Past Input to Macrocell Register To PIA Figure 6. I/O Control Block of MAX 7000A Devices ### Note: (1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. # SameFrame Pin-Outs MAX 7000A devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7128AE device in a 100-pin FineLine BGA package to an EPM7512AE device in a 256-pin FineLine BGA package. The Altera design software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 7). Figure 7. SameFrame Pin-Out Example 100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements) 256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements) The programming times described in Tables 5 through 7 are associated with the worst-case method using the enhanced ISP algorithm. | Device | Progra | mming | Stand-Alone Verification | | | | |--------------|-------------------------|-----------------------|--------------------------|-----------------------|--|--| | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | EPM7032AE | 2.00 | 55,000 | 0.002 | 18,000 | | | | EPM7064AE | 2.00 | 105,000 | 0.002 | 35,000 | | | | EPM7128AE | 2.00 | 205,000 | 0.002 | 68,000 | | | | EPM7256AE | 2.00 | 447,000 | 0.002 | 149,000 | | | | EPM7512AE | 2.00 | 890,000 | 0.002 | 297,000 | | | | EPM7128A (1) | 5.11 | 832,000 | 0.03 | 528,000 | | | | EPM7256A (1) | 6.43 | 1,603,000 | 0.03 | 1,024,000 | | | Tables 6 and 7 show the in-system programming and stand alone verification times for several common test clock frequencies. | Device | | f _{TCK} | | | | | | | | | | | |--------------|--------|------------------|-------|-------|---------|---------|---------|--------|---|--|--|--| | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | | EPM7032AE | 2.01 | 2.01 | 2.03 | 2.06 | 2.11 | 2.28 | 2.55 | 3.10 | s | | | | | EPM7064AE | 2.01 | 2.02 | 2.05 | 2.11 | 2.21 | 2.53 | 3.05 | 4.10 | S | | | | | EPM7128AE | 2.02 | 2.04 | 2.10 | 2.21 | 2.41 | 3.03 | 4.05 | 6.10 | s | | | | | EPM7256AE | 2.05 | 2.09 | 2.23 | 2.45 | 2.90 | 4.24 | 6.47 | 10.94 | S | | | | | EPM7512AE | 2.09 | 2.18 | 2.45 | 2.89 | 3.78 | 6.45 | 10.90 | 19.80 | S | | | | | EPM7128A (1) | 5.19 | 5.27 | 5.52 | 5.94 | 6.77 | 9.27 | 13.43 | 21.75 | s | | | | | EPM7256A (1) | 6.59 | 6.75 | 7.23 | 8.03 | 9.64 | 14.45 | 22.46 | 38.49 | S | | | | | Table 7. MAX 70 | X 7000A Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | | | |-----------------|---|------------------|-------|-------|---------|---------|---------|--------|---|--|--|--| | Device | | f _{TCK} | | | | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | | EPM7032AE | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.09 | 0.18 | 0.36 | s | | | | | EPM7064AE | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | 0.18 | 0.35 | 0.70 | S | | | | | EPM7128AE | 0.01 | 0.02 | 0.04 | 0.07 | 0.14 | 0.34 | 0.68 | 1.36 | S | | | | | EPM7256AE | 0.02 | 0.03 | 0.08 | 0.15 | 0.30 | 0.75 | 1.49 | 2.98 | S | | | | | EPM7512AE | 0.03 | 0.06 | 0.15 | 0.30 | 0.60 | 1.49 | 2.97 | 5.94 | S | | | | | EPM7128A (1) | 0.08 | 0.14 | 0.29 | 0.56 | 1.09 | 2.67 | 5.31 | 10.59 | S | | | | | EPM7256A (1) | 0.13 | 0.24 | 0.54 | 1.06 | 2.08 | 5.15 | 10.27 | 20.51 | S | | | | #### Note to tables: (1) EPM7128A and EPM7256A devices can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices. # Programming with External Hardware MAX 7000A devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the MPU, and the appropriate device adapter. The MPU performs continuity checks to ensure adequate electrical contact between the adapter and the device. For more information, see the *Altera Programming Hardware Data Sheet*. The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation. Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices. For more information, see *Programming Hardware Manufacturers*. ### IEEE Std. 1149.1 (JTAG) Boundary-Scan Support MAX 7000A devices include the JTAG BST circuitry defined by IEEE Std. 1149.1. Table 8 describes the JTAG instructions supported by MAX 7000A devices. The pin-out tables, available from the Altera web site (http://www.altera.com), show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins. ### Figure 9. MAX 7000A AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs. ## Operating Conditions Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000A devices. | Table 1 | Table 13. MAX 7000A Device Absolute Maximum Ratings Note (1) | | | | | | | | | | | | |------------------|--|--|------|------|------|--|--|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | | | | | | | | VI | DC input voltage | | -2.0 | 5.75 | V | | | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | | | | T _A | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | | | | TJ | Junction temperature | BGA, FineLine BGA, PQFP, and TQFP packages, under bias | | 135 | °C | | | | | | | | Figure 11. MAX 7000A Timing Model The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 12 shows the timing relationship between internal and external delay parameters. See Application Note 94 (Understanding MAX 7000 Timing) for more information. Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|----------------|-------|-----|-------|-------|-------|-----|------| | | | | | 4 | | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10 | ns | | t _{SU} | Global clock setup time | (2) | 2.9 | | 4.7 | | 6.3 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 6.7 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.5 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.5 | | 0.5 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.4 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|-------------------|-------|-----|-------|-------|-------|------|------| | | | | -4 | 4 | - | 7 | -1 | 0 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 4.5 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 4.5 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 2.8 | | 4.7 | | 6.2 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.1 | 1.0 | 5.1 | 1.0 | 7.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.6 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.4 | | 0.6 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.6 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | Table 25 | 5. EPM7512AE External | Timing Paran | neters | Note (1) | | | | | | |-------------------|--|-------------------|--------|----------|-------|-------|------|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | -7 | 7 | | 10 | -1 | 12 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 7.5 | | 10.0 | | 12.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 7.5 | | 10.0 | | 12.0 | ns | | t _{SU} | Global clock setup time | (2) | 5.6 | | 7.6 | | 9.1 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 4.7 | 1.0 | 6.3 | 1.0 | 7.5 | ns | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 2.5 | | 3.5 | | 4.1 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.4 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 7.8 | 1.0 | 10.4 | 1.0 | 12.5 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 8.6 | | 11.5 | | 13.9 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 116.3 | | 87.0 | | 71.9 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 8.6 | | 11.5 | | 13.9 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 116.3 | | 87.0 | | 71.9 | | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |------------------|----------------------|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | -7 | | 10 | -12 | | 1 | | | | | Min | Max | Min | Max | Min | Max | 1 | | t _{IC} | Array clock delay | | | 1.8 | | 2.3 | | 2.9 | ns | | t _{EN} | Register enable time | | | 1.0 | | 1.3 | | 1.7 | ns | | t_{GLOB} | Global control delay | | | 1.7 | | 2.2 | | 2.7 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.4 | | 1.7 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.4 | | 1.7 | ns | | t_{PIA} | PIA delay | (2) | | 3.0 | | 4.0 | | 4.8 | ns | | t_{LPA} | Low-power adder | (6) | | 4.5 | | 5.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | |-------------------|----------------------|------------|-------------|------|-----|------|-----|------|-----|------|----| | | | | -6 | | -7 | | -10 | | -12 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{RD} | Register delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | t _{COMB} | Combinatorial delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | t _{IC} | Array clock delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{EN} | Register enable time | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.2 | | 1.7 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | t _{CLR} | Register clear time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | t _{PIA} | PIA delay | (2) | | 0.9 | | 1.1 | | 1.5 | | 1.8 | ns | | t_{LPA} | Low-power adder | (6) | | 11.0 | | 10.0 | | 10.0 | | 10.0 | ns | | Table 29. EPM7256A External Timing Parameters Note (1) | | | | | | | | | | | | |--|--|-------------------|-------------|-----|-------|-----|------|------|------|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | Unit | | | | | -6 | | -7 | | -10 | | -12 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{SU} | Global clock setup time | (2) | 3.7 | | 4.6 | | 6.2 | | 7.4 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 4.2 | 1.0 | 5.5 | 1.0 | 6.6 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 8.0 | | 1.0 | | 1.4 | | 1.6 | | ns | | t _{AH} | Array clock hold time | (2) | 1.9 | | 2.7 | | 4.0 | | 5.1 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 6.2 | 1.0 | 7.8 | 1.0 | 10.3 | 1.0 | 12.4 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | Figure 13 shows the typical supply current versus frequency for MAX 7000A devices. Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2) ### EPM7128A & EPM7128AE Figure 19. 144-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. ### Revision History The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions. ### Version 4.5 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.5: Updated text in the "Power Sequencing & Hot-Socketing" section. ### Version 4.4 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.4: - Added Tables 5 through 7. - Added "Programming Sequence" on page 17 and "Programming Times" on page 18. ### Version 4.3 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.3: - Added extended temperature devices to document - Updated Table 14. ### Version 4.2 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.2: - Removed *Note* (1) from Table 2. - Removed *Note* (4) from Tables 3 and 4. ### Version 4.1 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.1: - Updated leakage current information in Table 15. - Updated Note (9) of Table 15. - Updated *Note* (1) of Tables 17 through 30. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. L.S. EN ISO 9001